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Abstract 
 

In this paper, we introduce a new model called the Type II half logistic Rayleigh (TIIHLR) with U-
shaped, increasing and decreasing hazard rate function. Some structural properties of the current 
distribution are derived including; explicit expressions for moments, incomplete moments, order statistics 
and Rényi entropy. Maximum likelihood estimators of the model parameters, based on complete and 
censored samples, are obtained. A numerical study is demonstrated to illustrate the theoretical results. 
The superiority of the new model over some new existing distributions is illustrated through two real data 
sets. In both applications, the TIIHLR model produces better fits than; the transmuted Rayleigh; 
transmuted generalised Rayleigh; exponentiated transmuted generalised Rayleigh and transmuted 
exponentiated inverse Rayleigh distributions.  
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1 Introduction  
 
Most of the popular traditional distributions often do not characterise and do not predict the real world 
phenomena. However, the usual distributions sometimes have some respective drawbacks in analysing 
lifetime data. So, many generalized classes of distributions have been developed and applied to describe 
most of the interesting data sets. In the last few years, the generated family of continuous distributions is a 
new improvement for producing and extending the usual classical distributions. These families have been 
broadly studied in several areas as well as yield more flexibility in many applications. Some of the 
generators are:  Beta-generated (B-G)  (Eugene et al. [1]),  Gamma-G (Zografos and Balakrishnan [2]) and 
Ristic and Balakrishnan [3]),  Kumaraswamy-G (Cordeiro and de Castro [4]), exponentiated generalized 
class (Cordeiro et al. [5]), Weibull-G (Bourguignon et al. [6]), Garhy-G (Elgarhy et al. [7]), Kumaraswamy 
Weibull-G (Hassan and Elgarhy [8]), exponentiated Weibull-G (Hassan and Elgarhy [9]), additive Weibull-
G (Hassan and Hemeda [10]), exponentiated extended-G (Elgarhy et al. [11], Type II half logistic-G( TIIHL-
G)  (Hassan et al. [12]),  generalized additive Weibull-G (Hassan et al. [13]), odd Frechet-G  (Haq and 
Elgarhy [14]), power Lindley-G (Hassan and Nassr [15] and Muth-G (Almarashi and Elgarhy [16]) among 
others.  
 

According to Hassan et al. [12], the cumulative distribution function (cdf) and the probability density 
function (pdf) of TIIHL-G family of distributions are defined, respectively, as follows  
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where,    is the shape parameter and ( ; )G x  is the baseline distribution, which depends on .   However 

different values to ( ; )G x  give new distributions.  
 

In reliability study, life-tests are performed to observe the life of the experimental units put on a test. In such 
test, some surviving units are removed or lost due to time and cost constraints or due to immediate needs of 
the units for other purposes. The data obtained from such a life-test are generally censored samples. The 
most common censoring schemes are Type-I and Type-II. In Type-I censoring scheme, the experiment 
continues until a pre-assigned time T, and failures that occur after T are not observed. In contrast, in Type-II 
censoring scheme the experiment decides to terminate the test after a pre-assigned number of failures 
observed, say k,  k ≤ n.  
 

Our aim in this work is to introduce and study a new two-parameter lifetime model, depending on Rayleigh 
distribution to increase its flexibility for various modelling purposes. Further, estimation of the population 
parameters in case of complete and censored samples is discussed. This paper can be sorted as follows. In 
the next section, the TIIHLR distribution is defined. Section 3 concerns some general mathematical 
properties of the TIIHLR distribution. The maximum likelihood method is applied to obtain the estimators of 
the model parameters, and the simulation study is provided in Section 4. Based on Type I and Type II 
censored samples; maximum likelihood estimators of the model parameters and simulation issues are 
obtained in Section 5. An illustrative purpose on the basis of real data is investigated, in Section 6. Finally, 
concluding remarks are handled in Section 7. 
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2 Type II Half Logistic Rayleigh Distribution   
 
The Rayleigh distribution plays a vital role in modelling the lifetime in many practical applications, 
including reliability, life testing and survival analysis. Rayleigh is a special case from the well-known 

Weibull distribution. The cdf of Rayleigh distribution with scale parameter  is defined by  
 

2

( ; ) 1 , , 0.xG x e x   
                                                                   (3) 

 
Several authors have discussed estimation of the model parameters for Rayleigh distribution; see for 
example; Howlader and Hossian [17], Abd Elfattah et al. [18,19], Lalitha and Mishra [20], Hendi et al. [21], 
Dey and Das [22], Dey [23].  
 
In this section, we obtain the pdf, cdf, survival and hazard rate, cumulative hazard rate, reversed hazard rate 
and odds ratio functions of TIIHLR distribution. The cdf of the TIIHLR distribution is obtained by 
substituting cdf (3) in (1) as follows 
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The pdf corresponding to (4) is given by  
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Plots of a random variable X with density function (5) can be represented through Fig. 1. As it seems from 

Fig. 1, that the pdf of TIIHLR can take different shapes according to different values of  and . It can be 
symmetric, right skewed, unimodel and reversed J-shaped.  

 
(a) 

 
(b) 

 

Fig. 1. The pdf plots of TIIHLR distribution for different values of parameters 


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The survival function, say ( ; , ),F x     is given by   
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The hazard rate function (hrf), say ( ; , ),h x    is as follows  
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Plots of hrf for the TIIHLR distribution are displayed in Fig. 2.  It can be deduced from Fig. 2 that the shape 
of the hrf of the TIIHLR distribution can be constant, increasing or decreasing and U-shaped (depending on 
the value of the parameters). This indicates that The TIIHLR has more flexibility than the classical Rayleigh 
model.  
 

 
(a) (b) 

 

Fig. 2. The hrf plots of TIIHLR distribution for different values of parameters 
 

The reversed hazard rate function, say ( ; , ),r x    is given by  
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Furthermore, the cumulative hazard rate, say ( ; , ),H x   and the odds function; say ( ; , ),O x     are, 

respectively, given by 
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3 Structural Properties  
 
Here, we provide some statistical properties of TIIHLR distribution. 
 

3.1 Moments  
 
Some of the most important characteristics and merit of any distribution can be studied through its moments.  
The i moment for the TIIHLR distribution about zero is obtained from (5) as follows  
 

2 2

2

1

2

0 0

4 [1 ]
( ) ( ; , ) .

1 [1 ]

x x
r r r

x

xe e
E X x f x dx x dx

e

  

 


 

    




 

  
 

 
                                        (6) 

 
Since, the generalised binomial series expansion is as follows 
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Then applying (7) in (6), then (6) can be expressed as follows  
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Also, it is known that  
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Hence, by applying (9) in (8), we obtain 
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Hence, after some manipulation, the 
thr  moment of TIIHLR distribution takes the following form 
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Furthermore, for a random variable X, it is known that the moment generating function is defined as  
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So, the moment generating function of TIIHLR distribution takes the following form  
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3.2 Incomplete moments 
 
The sth  incomplete moment of the TIIHLR distribution, say ( Es(t) ), is obtained by using pdf (5) as follows 
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Hence, by applying binomial expansions (7) and (9) in (11), then we obtain 
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After some simplification, the sth  moment of TIIHLR distribution takes the following form 
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which is the lower incomplete gamma function. Hence, the sth incomplete moment of the TIIHLR 
distribution takes the following form 
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where γ (.,.). is the  lower incomplete gamma function. 
 
Bonferroni and Lorenz curves are important applications for the first incomplete moments. These curves are 
useful in economics, reliability, demography, insurance and medicine The Lorenz and Bonferroni curves are 
obtained, respectively, as follows 
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The mean deviations provide useful information about the characteristics of a population. The mean 
deviations of X about the mean (μ) and about the median (m) can be calculated from the following relations 
 

                         and     

 
where , T(μ) and T(m) are the first incomplete moments, which are obtained from (12) as follows; 
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3.3 Rényi entropy 
 
The entropy of a random variable X is a measure of variation of uncertainty and has been used in many fields 
such as physics, engineering and economics. Rényi [24] defined the Rényi entropy as follows 
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Substituting pdf (5) in (13) and applying the binomial theory (7) and (9), then the pdf ( ; , )f x   can be 
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Therefore, the Rényi entropy of TIIHLR distribution is given by 
 

 

,

1
, 0 2

1
( )

1 2( ) log .
1

2 ( )

i j

i j

t
I X

j
 



  






 
 

  
  

 



 
 

3.4 Order statistics 
 
Order statistics have been extensively applied in many fields of statistics, such as reliability and life testing. 
Let X1, X2,…, Xn be independent and identically distributed random variables with their corresponding 
continuous distribution function. Let X(1)< X(2) <…< X(n)  be the corresponding ordered random sample from 
a population of size n.   The pdf of the rth order statistic is given by  
 

      

  1
( )

0

( ; , )
( ; , ) 1 ( ; , ) ,

( , 1)

n r
v v r

r
v

n rf x
f x F x

vB r n r

 
   


 



 
   

   


                (14) 
 
В(.,.)is the beta function. The pdf of the rth order statistic for TIIHLR distribution is derived by substituting 
(4) and (5) in (14) as follows  
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Applying the binomial expansion (7) in (15), then we have 
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Again, using the binomial expansion (9) in the previous equation, then the pdf of the rth order statistic for 
TIIHLR distribution is obtained as follows 
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Individually, the distribution of the smallest and largest order statistics are obtained by putting r =1  and  r = 
n in (16) respectively as follows 
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4 Parameter Estimation Based on Complete Samples  
 
In this section, we obtain the maximum likelihood estimators of TIHLR distribution in case of complete 
samples and simulation study is performed. 

 

4. 1 Maximum likelihood estimators 

 
This subsection deals with the maximum likelihood estimators of the unknown parameters for the TIIHLR 
distribution. Let  X1, X2, …, Xn be the observed values from the TIIHLR  distribution The log-likelihood 
function of TIIHLR with pdf (5), denoted by ln L,  is obtained as follows 
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Considering the two parameters  and  are unknown and differentiating the log-likelihood function (17) 

with respect to  and  as follows 
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Setting ln L   and ln L    equal to zero and solving these equations numerically yield the 

maximum likelihood estimate (MLE).  

 

4.2 Simulation study 

 
In this subsection, an extensive numerical investigation will be carried out to evaluate the performance of 
MLE for TIIHLR model. Performance of estimators is evaluated through their biases and mean square 
errors (MSEs) for different sample sizes. A numerical study is performed using Mathematica (7) software. 

 

Different sample sizes are generated through the experiments at sample size n =10, 20, 30, 50 and 100. The 
generation of TIIHLR distribution is very simple, if U has a uniform (0,1) random number, then 
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follows TIIHLR distribution.   

 

In addition, the different values of parameters   and   are considered as  =0.5 and  =0.5,0.9 1.2 

and 1.5 . The experiment will be repeated 10000 times.  

 

For each sample size and for selected values of parameters, the MLEs of the model parameters are obtained. 
Hence; the MSEs and biases for the different estimators are recorded in Tables (1) and (2)  
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Table 1. MLEs, Biases, MSEs of TIIHLR distribution 
 

  (0.5,0.5) (0.5,0.9) 
n  MLE Bias MSE MLE Bias MSE 
 

 

0.5880 0.0880 0.0901 0.5878 0.0878 0.0872 

10 
 

0.5145 0.0145 0.0080 0.9279 0.4279 0.2081 

 
 

0.5382 0.0382 0.0267 0.5397 0.0397 0.0272 

20 
 

0.5089 0.0089 0.0042 0.9144 0.4144 0.1848 

 
 

0.5235 0.0235 0.0156 0.5260 0.0260 0.0158 

30 
 

0.5064 0.0064 0.0028 0.9093 0.4093 0.1761 

 
 

0.5164 0.0164 0.0084 0.5144 0.0144 0.0083 

50 
 

0.5032 0.0032 0.0017 0.9059 0.4059 0.1702 

100   0.5057 0.0057 0.0038 0.5079 0.0079 0.0040 

   0.5018 0.0018 0.0008 0.9025 0.4025 0.1647 

 
Table 2. MLEs, Biases, MSEs of TIIHLR distribution 

 
  (0.5,1.2) (0.5,1.5) 
  n  MLE Bias MSE MLE Bias MSE 
 

 

0.5875 0.0875 0.0858 0.5943 0.0943 0.0982 

10 
 

1.2356 0.7356 0.5854 1.5462 1.0462 1.1642 

 
 

0.5384 0.0384 0.0286 0.5433 0.0433 0.0282 

20 
 

1.2200 0.7200 0.5416 1.5216 1.0216 1.0793 

 
 

0.5267 0.0267 0.0161 0.5269 0.0269 0.0158 

30 
 

1.2111 0.7111 0.5211 1.5157 1.0157 1.0565 
 

 

0.5135 0.0135 0.0083 0.5165 0.0165 0.0084 

50 
 

1.2096 0.7096 0.5130 1.5084 1.0084 1.0313 

   0.5063 0.0063 0.0038 0.5074 0.0074 0.0039 

100   1.2061 0.7061 0.5034 1.5038 1.0038 1.0152 

 

The values in the preceding tables show that the MSE for the estimates of the parameters and  decreases 

as the sample size increases. The MSEs of estimates are smaller than the corresponding MSEs of 

estimate for different sample sizes. 
 

5 Parameter Estimation Based on Censoring Samples 
 
In reliability or lifetime testing experiments, most of the data are censored due to various reasons such as 
time limitation, cost or other resources. Here we discuss the estimation of population parameters of TIIHLR 
distribution based on two censoring schemes; namely, Type I and Type II. In Type-I censoring, we have a 
fixed time say T but the number of items fails during the experiment is random. Whereas, in Type-II 
censoring scheme, the experiment is continued (i.e. time varies) until the specified number of failures k 
occur. 
 

5.1 Maximum likelihood estimators in case of type-I censored samples 
 
Suppose that n items, whose life times follow TIIHLR distribution (5) are placed on a life test, and the test is 
terminated at a specified time T before all n items have failed. The number of failures k and all failure times 
are random variables. The log-likelihood function, based on Type-I censoring, is given by: 
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and equating these partial derivatives to zero and solving simultaneously yield the MLE's of and  based 

on Type I censored samples. 
 

5.2 Maximum likelihood estimators in case of type-II censored samples 
 
Consider X(1)< X(2)<,…,<X(k) be a Type-II censoring sample of size n observed from lifetime testing 
experiment whose lifetime have the density function (5). The log-likelihood based on Type II censoring is 
given by:  
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Setting 2ln l     and 2ln l   equal to zero and solving these equations numerically yield the 

MLE’s of and  based on Type II censored sample. 

 

5.3 Numerical studies   
 
In this subsection, we provide a numerical study to evaluate the performance of the maximum likelihood 
estimates of the TIIHLR based on Type I and Type II censoring schemes. The algorithm used here is 
designed as follows: 
 

i. A random sample X(1)< X(2) <…< X(k) of sizes n = 30, 50, 100, 200 and 300 are generated from the 
TIIHLR distribution under Type I and Type II censored samples. 

ii. Select initial value for parameters as =0.5 and =0.25. 

iii. Two termination times are selected as T=5 and 8. 
iv. The number of failure items; k is selected, based on two censoring levels as 50% and 70%.  
v. For each sample sizes, the estimates are obtained. 
vi. For each sample, the experiment is repeated 10000 times, and MLEs of the parameters, their biases 

and MSEs are recorded.  
vii. The simulation results are provided in Tables (3) and (4).  

 
Table 3. MLEs, Biases, MSEs of TIIHLR distribution under Type I censored Samples 

 
  =0.5, =0.5 =0.25 =0.5 

n T MLE Bias MSE MLE Bias MSE 
 5 0.5024 0.0024 0.0018 0.2523 0.0023 0.0005 
50 
 

8 0.5014 0.0014 0.0016 0.2512 0.0012 0.0004 
5 0.5150 0.0150 0.0089 0.5162 0.0162 0.0087 
8 0.5147 0.0147 0.0085 0.5150 0.0150 0.0082 

 5 0.5000 0.0000 0.0008 0.2498 -0.0002 0.0002 
100 
 

8 0.5023 0.0023 0.0008 0.2498 -0.0002 0.0002 
5 0.5094 0.0094 0.0041 0.5110 0.0110 0.0041 
8 0.5047 0.0047 0.0037 0.5126 0.0126 0.0041 

 5 0.5015 0.0015 0.0005 0.2504 0.0004 0.0001 
200 
 

8 0.5005 0.0005 0.0004 0.2502 0.0002 0.0001 
5 0.5032 0.0032 0.0018 0.5029 0.0029 0.0018 
8 0.5041 0.0041 0.0020 0.5062 0.0062 0.0019 

 5 0.5012 0.0012 0.0003 0.2494 -0.0006 0.0001 
300 
 

8 0.5013 0.0013 0.0003 0.2507 0.0007 0.0001 
5 0.5017 0.0017 0.0012 0.5023 0.0023 0.0012 
8 0.5018 0.0018 0.0011 0.5013 0.0013 0.0013 
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Table 4. MLEs, Biases, MSEs of TIIHLR distribution under Type II censored Samples 
 

  =0.5, =0.5 =0.25, =0.5 

n X(k) MLE Bias MSE MLE Bias MSE 
 50% 0.3774 -0.1226 0.0175 0.1877 -0.0623 0.0045 
50 
 

80% 0.4158 -0.0842 0.0088 0.2073 -0.0427 0.0023 
50% 0.5766 0.0766 0.0940 0.5774 0.0774 0.0837 
80% 0.5249 0.0249 0.0158 0.5263 0.0263 0.0157 

 50% 0.3734 -0.1266 0.0171 0.1863 -0.0637 0.0043 
100 
 

80% 0.4134 -0.0866 0.0084 0.2059 -0.0441 0.0021 
50% 0.5315 0.0315 0.0225 0.5407 0.0407 0.0265 
80% 0.5101 0.0101 0.0065 0.5114 0.0114 0.0060 

 50% 0.3715 -0.1285 0.0171 0.1858 -0.0642 0.0043 
200 
 

80% 0.4112 -0.0888 0.0083 0.2053 -0.0447 0.0021 
50% 0.5153 0.0153 0.0080 0.5144 0.0144 0.0097 
80% 0.5058 0.0058 0.0028 0.5062 0.0062 0.0033 

 50% 0.3708 -0.1292 0.0171 0.1857 -0.0643 0.0042 
300 
 

80% 0.4102 -0.0898 0.0083 0.2054 -0.0446 0.0021 
50% 0.5104 0.0104 0.0053 0.5104 0.0104 0.0056 
80% 0.5062 0.0062 0.0020 0.5040 0.0040 0.0021 

 
From Table 3 we conclude that; as the sample size n increases the MSE of estimates decreases. Also, as the 
termination time T increases, the MSE of estimates decreases. Based on Table 4, we can see that as the 
sample size n increases the MSE of estimates decreases. Also, as the censoring level time X(k) increases, the 
MSE of estimates decreases.    
 

6 Applications 
 
To illustrate the importance and flexibility of the TIIHLR distribution, two real data sets are demonstrated. 
We compare the fits of the TIIHLR model with some models namely; the transmuted Rayleigh (TR) (see 
Merovci [25], transmuted generalized Rayleigh (TGR) (see Merovci [26], exponentiated transmuted 
generalized Rayleigh (ETGR) (see Ahmed et al. [27]) and transmuted exponentiated inverse Rayleigh 
distribution (TEIR) (see Haq [28]) distributions. Their associated densities are given, respectively, by 
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Criteria like; the maximised log-likelihood ( 2 ),   Akaike information criterion (AIC), the, Bayesian 

information criterion (BIC), Anderson-Darling   ( A* ) and Cramér-von Mises ( W * )  statistics are selected.  
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6.1 First real data set  
 
The first data set (gauge lengths of 10 mm) obtained from Kundu and Raqab [29]. This data set consists of, 
63 observations are listed as follows: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 
2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659,  2.675, 2.738, 2.740, 
2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 
3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 
3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 
 
MLEs of the model parameters are provided in Table (5). While Table (6) summarises the values of AIC, 

BIC, ( 2 ),    A*  and W*.   

 
Table 5. Estimated parameters for first data set 

 
Models Estimated Parameters 

̂   ̂
 

̂  ̂  

TIIHLR (λ, δ)   11.244 0.268389 
TR (β, λ)  1.82396 1  
TGR(α, β, λ) 6.2143 0.5021 0.1207  
TEIR (α, β, λ,) 1.20545 10.1136 1  
ETGR(α, β, λ, δ) 0.169106 0.530147 0.89804 414.148 

 
Table 6. Goodness measures for estimates for the first data set  

 
Models AIC BIC 2   A* W * 
TIIHLR (λ, δ) 117.034 121.320 -56.517 0.36735 0.069889 
TR (β, λ) 155.572 159.858 -75.7858 5.4111 0.906164 
TGR(α, β, λ) 122.640 126.926 -59.320 0.38047 0.084888 
TEIR (α, β, λ,) 157.009 163.438 -75.5045 5.49173 0.920139 
ETGR(α, β, λ, δ) 122.975 131.573 -57.1295 0.38234 0.077132 

 
We reveal from Table (6) that the value of criteria's of the TIIHLR distribution is smaller than the criteria's 
values of the competitive models. So, the TIIHLR distribution seems to be a very competitive model to these 
data. Further, the plots of the histogram and empirical cdf of the first data with the estimated densities 
obtained using maximum likelihood procedure are represented in Fig. 3.  We also observe from this figure 
that the TIIHLR distribution provides an adequate fit to the data than the other competing models.  
 

6.2 Second real data set  
 
The second data set (gauge lengths of 20 mm) is also obtained from Kundu and Raqab [29]. These data set 
consists of 74 observations and are listed as follows: 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 
1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 
2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 
2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 
2.809, 2.818, 2.821, 2.848, 2.880, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 
3.096, 3.128, 3.233, 3.433, 3.585, 3.585. 
 
MLEs of the model parameters are provided in Table (7). Whereas Table (8) contains the values of AIC, 

BIC, 2 ,     A*and W * 
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Fig. 3. Estimated pdf and cdf plots of models for the first data set  

 
Table 7. Estimated parameters for the second data set  

 

Models Estimated Parameters 

̂  ̂
 

̂  ̂  

TIIHLR (λ, δ)   8.58862 0.359385 

TR (β, λ)  1.47664 1  

TGR(α, β, λ) 7.57895 0.692186 -0.635265  

TEIR (α, β, λ,) 1.33763 5.87032 1  

ETGR(α, β, λ, δ) 2.1214 0.6985 0.3201 7.790 
 

Table 8. Goodness measures for estimates for the second data set  
 

Models AIC BIC 2   A * W * 
TIIHLR (λ, δ) 115.095 119.703 -55.5474 0.913365 0.132946 
TR (β, λ) 150.965 155.573 -73.4826 6.72007 1.18901 
TGR(α, β, λ) 127.61 132.218 -61.8050 8.1249 1.71242 
TEIR (α, β, λ,) 157.29 164.202 -75.6448 6.27413 1.08763 
ETGR(α, β, λ, δ) 121.400 130.616 -56.7121 1.13023 0.164683 

 
We detect from the values of criteria for the TIIHLR model in Table 8 are smaller than the values of 
corresponding competitive models. So, the TIIHLR distribution will be chosen as the best model for the 
data. Also, the plots of the histogram and empirical cdf of the second data are shown in Fig. 4.  We also 
observe from this figure that the TIIHLR distribution provides an adequate fit to the data than the other 
competing models.  
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Fig. 4. Estimated pdf and cdf plots of models for the second data set  
 

7 Conclusion 
 
In this paper, we propose a two-parameter model, named the TIIHLR distribution. The TIIHLR model is 
motivated by the wide use of the Rayleigh distribution in practice and also for the fact that the generalisation 
provides more flexibility to analyse positive real-life data. We derive explicit expressions for the ordinary 
and incomplete moments, order statistics, and Rényi entropy. The maximum likelihood estimators of the 
model parameters are investigated based on complete and censored samples. We provide some simulation 
results to assess the performance of the proposed model. An application to real life data shows that the 
TIIHLR distribution is a strong and better competitor than the transmuted Rayleigh, transmuted generalised 
Rayleigh, exponentiated transmuted generalised Rayleigh and transmuted exponentiated inverse Rayleigh 
distributions.  
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