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Abstract

In this paper we introduce and study quasi b-components in bitopological spaces using b-open sets
due to Andrijevic in 1996. This concept is obtained by generalizing the idea of quasi-components
due to Reilly and Young in 1974.
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1 Introduction and Preliminaries

In 1963, Kelly [1] defined a bitopological space (X, τ1, τ2) to be a set X equipped with two topologies
τ1and τ2 on X and he initiated a systematic study of bitopological spaces. After the works
of Kelly on bitopological space, various authors (e.g. [2, 3, 4, 5, 6]) turned their attention to
the generalization of various concepts of topology by considering bitopological spaces instead of
topological spaces. In 2003, the first author and Abo Khadra [7] extended the concept of b-open
sets and b-closed sets to the setting of bitopological spaces. In the present paper we define and
study quasi-b-components in bitopological spaces. This is obtained by generalizing the concept
of quasi-component in bitopological spaces due to Reilly and Young [8]. For a subset A of X,
τi-Cl(A) (resp. τi-Int(A)) denotes the closure (resp. interior) of A with respect to τi for i = 1, 2.
However, τi-Cl(A) and τi-Int(A) are briefly denoted by Cli(A) and Inti(A), respectively, if there
is no possibility of confusion. This paper is closely related to [9].

Definition 1.1. (see[7]). A subset A of a bitopological space (X, τ1, τ2) is said to be:

(a) (τi, τj)- b-open (briefly (i, j)-b-open) if A ⊂ Inti(Clj(A)) ∪ Clj(Inti(A));
(b) (τi, τj)- b-closed (briefly (i, j)-b-closed) if its complement is (i, j)-b-open, equivalently, A ⊃
Clj(Inti(A)) ∩ Inti(Clj(A)) where i 6= j, i, j = 1, 2.

Definition 1.2. (see[7]). Let A be a subset of a bitopological space (X, τ1, τ2). Then

(a) The intersection of all (i, j)-b-closed sets of (X, τ1, τ2) containing A is called the (τi, τj)-b-
closure of A and is denoted by (τi, τj)-bCl(A) (briefly (i, j)-bCl(A)).

(b)The union of all (i, j)-b-open sets of (X, τ1, τ2) contained in A is called the (τi, τj)-b-interior
of A and is denoted by (τi, τj)− bInt(A) (briefly (i, j)− bInt(A)) where i 6= j, i, j = 1, 2.

The collection of all (i, j)-b-open sets of a bitopological space ( X, τ1, τ2 ) will be denoted by (i, j)-
BO(X) for i 6= j and i, j = 1, 2. A subset A of a bitopological space (X, τ1, τ2) is said to be pairwise
b-open if it is (1, 2)-b-open and (2, 1)-b-open. Also A is said to be pairwise b-closed if it is (1,
2)-b-closed and (2, 1)-b-closed.

2 Quasi-b-components in Bitopological Spaces

In this section we define and study pairwise b-component, pairwise totaly b-disconnected and τ1-
locally b-connected in bitopological space (X, τ1, τ2).

Definition 2.1. A bitopological space (X, τ1, τ2) is said to be pairwise b-connected if X cannot
be expressed as the union of two non-empty pairwise b-separated sets, where A, B⊂ X are called
pairwise b-separated if A ∩ τ1 \ bCl(B) = φ = B ∩ τ2 \ bCl(A).

Remark 2.1. If X can be expressed as the union of two non-empty pairwise b-separated sets A, B.
Then we write X = A/B and call this a pairwise b-separation of X.

Definition 2.2. Let (X, τ1, τ2) be any bitopological space. Define a relation R by (x, y) ∈ R if and
only if x and y cannot be separated by a pairwise b-separation A/B of X, where x, y ∈ X. This is
equivalent to saying that for each pairwise b-separation A/B of X either x ∈ A and y ∈ A or x ∈ B
and y ∈ B. It is easy to see that R is an equivalence relation.

Definition 2.3. Let x be any point of a bitopological space (X, τ1, τ2 ). The equivalence class of
x with respect to R is said to be the quasi-b-component of x and is denoted by (QB)x.
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Remark 2.2. A quasi-component of a bitopological space (X, τ1, τ2) need not be a quasi semi-
component [9] and consequently need not be a quasi b-component as shown as by the following
example.

Example 2.1. Let X = {a, b, c}, τ1 = {X,φ, {b}, {b, c}} and τ2 = {X,φ, {c}, {b, c}}. Let A = {b}
and B = {a, c}. Then X = A/B, which is a pairwise b-separation of X. Here b ∈ A and c ∈ B.
Thus b, c do not belong to a quasi b-component of X. But we see that b, c belong to a quasi-component
of X, since the points b and c are not (pairwise) separated.

Theorem 2.1. A quasi-b-component of a bitopological space (X, τ1, τ2) is contained in a quasi-
component.

Proof. The proof is obvious in view of the fact that any two pairwise separated sets in (X, τ1, τ2 )
are pairwise b-separated.

Remark 2.3. Reilly and Young [7] have shown that quasi-components of a bitopological space
(X, τ1, τ2 ) are not related to the quasi-components of the spaces (X, τ1) and (X, τ2 ). Here we
take the same example to show that quasi b-components of (X, τ1, τ2 ) are not related to quasi
b-components of (X, τ1) and (X, τ2 ). The example was: X = {a, b}, τ1 = {X,φ, {a}} and τ2 =
{X,φ, {b}}. Clearly {a}/{b} is a pairwise b-separation of X and so (QB)a = {a}. But quasi-b-
component of a in both (X, τ1) and (X, τ2 ) is X.

Definition 2.4. A subset Y of a bitopological space (X, τ1, τ2 )is said to be pairwise b-connected
if Y cannot be expressed as the union of two non-empty pairwise b-separated sets in X.

Definition 2.5. Let (X, τ1, τ2 )be any bitopological space. Then a maximal pairwise b-connected
set in X is called a b-component of X and if x belongs to this b-component say (B.C.), then it will
be denoted by B.C.(x).

Theorem 2.2. In a bitopological space (X, τ1, τ2 ),every quasi b-component is the union of the
b-components of its points.

Proof. Let (QB)x be a quasi b-component of X containing x. We are to show that (QB)x =
∪{B.C.(q) : q ∈ (QB)x}, where, B.C.(q) denote b-components in (X, τ1, τ2 ). Let y ∈ B.C.(q). Then
(y, q) ∈ R. But q ∈ (QB)x, therefore (q, x) ∈ R and so (y, x) ∈ R. This implies that y ∈ (QB)x.
Hence, B.C.(q) ⊂ (QB)x for each q ∈ (QB)x. This means that∪[B.C.(q) : q ∈ (QB)x] ⊂ (QB)x.
The inclusion(QB)x ⊂ ∪[B.C.(q) : q ∈ (QB)x] is clear.

Theorem 2.3. The following statements are true for any bitopological space (X, τ1, τ2 ).
(i) Every b-component is contained in a quasi b-component.
(ii) Every quasi b-component is a union of b-components.
(iii) A quasi-b-component is a b-component if and only if it is pairwise b-connected.

Proof. Follows directly from Theorem 2.11.

Definition 2.6. A bitopological space (X, τ1, τ2 )is said to be pairwise totally b-disconnected if
each pair of points of X can be separated by a pairwise b-separation of X.

Theorem 2.4. A bitopological space (X, τ1, τ2 )is pairwise totally b-disconnected if and only if
quasi-b-components of X are singletons.

Proof. Obvious.

Definition 2.7. (EL-Atik [10]) A function f : (X, τ1) → (Y, τ2) is said to be b-irresolute if the
inverse image of every b-open set is b-open.
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Theorem 2.5. Let f : (X, τ1, τ2)→ (X, τ∗1 , τ
∗
2 ) be a pairwise b-irresolute pairwise open surjection.

Then the image of a quasi b-component of X lies in a quasi b-component of Y .

Proof. The proof is obvious in view of Theorem 2.11.

Definition 2.8. Let (X, τ1, τ2) be a bitopological space. Then X is said to be τ1-locally b-connected
with respect to τ2 if for each x ∈ X and every τ1-b-open set U containing x, there exists a pairwise b-
connected τ1-open set G such that x ∈ G ⊂ U . A bitopological space (X, τ1, τ2) is said to be pairwise
locally b-connected if it is τ1-locally b-connected with respect to τ2 and τ2-locally b-connected with
respect to τ1.

Theorem 2.6. If a bitopological space (X, τ1, τ2) is pairwise locally b-connected, then the b-components
of X are bi-b-closed.

Theorem 2.7. In a pairwise locally b-connected space (X, τ1, τ2) ,each quasi b-component is a b-
component.

Proof. Let (X, τ1, τ2) be a pairwise locally b-connected space and let x ∈ X. Then with the
usual notations of quasi b-components of X, we have (QB)x = ∪{B.C.(g) : g ∈ (QB)x}. Clearly,
B.C.(x) ⊂ (QB)x. We claim that (QB)x = B.C.(x). Let y ∈ (QB)x \ B.C.(x). Since B.C.(x) is
τ1-open and τ1-b-closed (Theorem 2.18), therefore, X = B.C.(x)/[X \ B.C.(x)] is a pairwise b-
separation of X with x ∈ B.C.(x) and y ∈ X \B.C.(x). Thus y /∈ (QB)x, which is a contradiction.
Hence (QB)x = B.C.(x).

Theorem 2.8. If x is any point of a bitopological space (X, τ1, τ2), {Wa : a ∈ A} is the family of all
τ1-b-open τ2-b-closed sets containing x, and {Vb : b ∈ B} is the family of all τ1-b-closed τ2-b-open
sets containing x, then (QB)x = (

⋂
aWa)

⋂
(
⋂

b Vb).

Proof. Follows directly from the above definitions.

Corollary 2.1. Any quasi-b-component (QB)x of a bitopological space (X, τ1, τ2) satisfies the
relation: (QB)x = τ1 − bCl[(QB)x] ∩ τ2 − bCl[(QB)x].

Proof. With the notations of Theorem 2.20,
⋂

b Vb is a τ1− b−closed set containing (QB)x, so that
τ1 − bCl[(QB)x] ⊂

⋂
b Vb. Similarly τ2 − bCl[(QB)x] ⊂

⋂
aWa. Hence τ1 − bCl[(QB)x]

⋂
τ2 −

[(QB)x] ⊂ (
⋂

aWa)
⋂

(
⋂

b Vb) = (QB)x. Obviously, (QB)x ⊂ τ1 − bCl[(QB)x]
⋂
τ2 − bCl[(QB)x]

and so the relation is satisfied.

3 Conclusion

Some bitopological concepts and their characterizations are obtained. Therefore the results of Arya
and Nour [9] are improvements.
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