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Abstract 
 

There are three interests in this study. First is to make an analogy between graph theory and image 
processing. Given a number of image items (dots) on a picture, this paper shows a way to make a path 
(closed path) connecting and traversing all of them but each only once, imitating to construct a path 
(closed path) on a plane by considering a dot as a vertex and a connecting line as an edge. This looks like 
constructing a Hamiltonian path on a plane and drawing a plane graph connecting all vertices with no 
crossing among the edges. Second is to construct the maze based on the obtained path with some 
detouring within each of image items (dots). This path could be very long and complex. Owing to this 
path, the maze is constructed in an organized manner. Third is to apply this path making procedure to 
different pictures with different image shapes like symbols or English letters --- possibly generating a 
complex picture maze. Pictures or some meaningful message appear when the maze is solved.  Algorithm 
and its proof are given with a number of successful experimental results. 
 

 
Keywords: Maze; picture maze; graph theory; path; Hamiltonian path; plane graph; image processing. 

 

1 Introduction 
 
A maze in this study is a square maze organized in a computer array [1]. It consists of paths and walls. Path 
consists of a set of vertices and a set of edges like a graph. But more restraints are imposed on the maze. 
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Vertex of the maze is placed one in every two cells vertically as well as horizontally in the array. If two 
adjacent vertices are connected, then there is an edge between the two and all the vertices in the array are 
connected but no cycle is allowed. So the maze is a spanning tree on the array. If two vertices on the tree are 
designated as the start and the goal, then the path between the two is the solution. 
 
A maze constructed in this study is based on the maze structure above. But it is generated based on an 
original binary picture. Employing techniques of image processing, graph theoretical concepts, and 
following the constraints of the maze structure, a kind of complex maze (picture maze) is generated. 
Showing a part of the experimental results would rather work better to make the introduction of this study 
and should be more persuasive. 
 
Fig. 1 is the original picture from which a maze would be constructed. Through some processes, a maze such 
as in Fig. 2 can be obtained. However, it is the constructed maze with the solution path (red) painted on it. If 
the dots have some shapes, then some pictures could appear accordingly. 
 

 
 

Fig. 1. Original picture of image dots; number of dots=30 
 

 
Fig. 2. Constructed maze of image dots with solution 

path 
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2 Literature 
 
Maze generation by computing on square grids has been around for some years. The article [2] showed 
various algorithms to generate a square grid based maze, usually used, relating with graph theory. Hosokawa 
[1] presented a number of maze generation algorithms with the relation between path, wall, and coordinates. 
Xu and Kaplan [3] illustrated complex mazes emphasizing aesthetics for the maze. They also introduced a 
picture maze [4] called 'Maze-a-pix' by illustrating a sample picture maze, which is provided by Conceptis, 
Ltd. [5]. However, the method of the maze generation was not given. The internet site of the company shows 
various picture mazes and states a history of computer generated picture maze. Okamoto and Uehara [6] 
demonstrated an automatic generation algorithm for a picture maze by constructing a Hamiltonian path 
which fills up the picture region. However, the path is generated on the 2-by-2 extended array. The maze is 
so constructed that the player obtains the solution path by filling up all the path cells on the maze and by 
going through the path. Hamada [7] improved the method [6] by enabling to place the start and goal at 
different positions. Kurokawa developed a more efficient algorithm of construction of Hamiltonian path with 
a rigorous proof to generate a picture maze and introduced a generalized idea for maze path construction [8]. 
Ikeda and Hashimoto [9] illustrated a picture maze generation method by using simulated annealing. 
Kurokawa, Mori, and Mizuno [10-12] took a different approach and demonstrated the method to generate a 
picture maze by making use of the picture contours. In the method, all the picture contours are extracted and 
are incorporated into the maze solution path. It is a very flexible method and can be applicable to a wide 
range of binary pictures. F. J. Wong and S. Takahashi [13] constructed a hybrid picture maze from two 
photograph images. This maze is not based on the square grid type mazes but on the special grids computed 
from the image. Two photo pictures are overlapped in the maze. The maze player depicts an outline of one 
picture on the other picture background.  
 
Although not about the picture maze construction, the study [14] is the one that makes a typical sample for 
relating the graph theory and the image processing. It extracts a Euler Circuit from one stroke drawing of a 
closed path by making use of the contours of the drawing and generates the maze solution path by applying 
graph theory including by-partitioning to the set of the contours. The present study itself also is a try of 
making an analogy between graph theory and image processing---realizing a Hamiltonian-like path by 
connecting image items on an image plane. 
 

3 Preceding Studies 
 
This study is about one of picture maze generation methods. Graph concepts were incorporated in image 
processing and maze construction. There are a number of preceding studies which have made some 
influences to this study. First is the one that made a picture maze by merging image contours [10-12]. In the 
study, image contour cycle extraction and contour merging played important roles. The second is to generate 
Hamiltonian-like path within an image item so that some image or picture appears when the maze is solved 
[8], features of which mainly brought a hint for doing the research on the path construction in this study. The 
third is Eulerian circuit, organized from a closed path of one stroke drawing [14]. 
  

4 Concepts of this Study 
 
The purpose of this study is three-fold. First is to examine if it is possible to construct a closed path which 
traverses all the image dots, usually of large number (Fig. 1), each once, which are randomly scattered on a 
plane. This is to make an analogy between image processing on image plane and graph theory and generate a 
closed path-like structure on an image array. An image dot (Fig. 1) is considered as a vertex of a graph and a 
connecting line between dots as an edge. This problem is also considered as drawing a closed path (a plane 
graph) traversing all the vertices on the plane with no edge intersection. 
 
As stated, second is to construct the complex maze from the image dots such as in Fig. 1. Fig. 2 is the 
completed maze with the solution path drawn as red. Starting from ‘S’ circled, connecting all the image dots, 
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and ending at ‘E’. This path looks like a Hamiltonian path, which traverses all the image dots (vertices of a 
graph), each dot once. In addition, a Hamiltonian-like path is also constructed within every image dot. Hence 
the entire path could be fairly complex. 
 
Third is to get a picture maze by applying the method to different pictures with some shaped items replacing 
some image dots. It enables the shapes to appear when the maze is solved. 
 
4.1 Image dots as contour cycles and path making 
 
Fig. 1 is the typical original picture from which a complex maze is constructed. The program with VC++ for 
this study first recognizes each of the image dots of such pictures by extracting the contours of the dots, 
which form cycles and are numbered by OpenCV library from 1 to n (=30) as shown in Fig. 3. The cycles 
are organized with the maze path structure which is explained in section 1 and the previous works [8,10-12]. 
The connections between image dots are all based on these cycles. There are n dots in the picture. Then there 
should be n cycles with each having  �� length (number of vertices and edges for the cycle). A cycle, ������, 
is a sequence of coordinates and expressed as:  
 

������ = { 
��
, ��, ��
, ��� |  1 ≤ � ≤ ��}                                                                                   (1) 
 
The set of all cycles, CYCLES, extracted is expressed as: 
 

������ = { ������  |  1 ≤ 
 ≤ �}                                                                                               (2) 
 

Each cycle is considered as a vertex of graph: 
 

������ = ��                                                                                                                                  (3) 
 
There may be a number of ways to make a closed path --- connecting all the dot cycles. One approach may 
be to connect one to a near one repeatedly until all are connected. This paper proposes a method to make a 
closed path connecting all the cycles once for each with no intersection between connecting lines. This 
means that the path drawn is a plane graph. Details are described in the following subsections.  
 
4.2 Algorithm 
 
Input: A set CYCLES of n image dot cycles by (2), Fig. 3; each cycle is considered as a vertex (3).  
                 
Output:  A closed path P of length m (initially 0 and n at the end) with no intersection among the connecting 
lines (edges). P is comprised of a set of ordered cycles (4). But it represents an ordered set of edges. The last 
edge is by ������������. 
 

P = ������������ ⋯ ������                                                                                                              (4) 
 

Each cycle is in turn considered as a vertex. So P is an ordered set of vertices (5). 
 

P = ����⋯��                                                                                                                                      (5) 
 
Definitions: 
 
The distance from ������ to �����! or �� to �! is defined as: 
 

"�
, #� = $���%&%�' & �%)%�* +
��
, ,� − ��#, .��� + 
��
, ,� − ��#, .���
                                   (6) 
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P(j) is the jth item in P, which is circular. 
 
Method: 
 
1. Select an arbitrary �����0 from CYCLES; and delete it from CYCLES. 
2. Find the nearest cycle from i and name it j and delete it from CYCLES. 
3. Find �����! from CYCLES so that "�
, #� + "�#, �� becomes minimal with no cross among connecting 

lines and cycles. 

4. Organize P with constituent cycles i, k, and j which are �0, �! , 1�" �� and order them as 1, 2 and 3. Let 
the length of P be m (=3); 

5. If CYCLES becomes empty, algorithm terminates with m=n and draw P. 
6. For all j from 1 to m and all q in CYCLES do { 

 If( j==m ) {a=j  and b=1} else {a=j; b=j+1 ;} 
 Find a, b and q so that "�2�1�, .� + "�., 2�3�� becomes the minimal 
      with no cross among connecting lines and cycles. 
       } 
} 

7. Insert q between P(a) and P(b), increment m and delete q from CYCLES. Go to 5.  
 
Condition: 
 
It is assumed that the sizes and the shape of contour cycles do not interfere the connections among them. 
This is usually justified. 
 
Explanation: 
 
Since "�2�1�, .� + "
., 2�3�� is the minimal, no cycle exists inside the triangle �2�1�, ., 2�3�� , hence 
inside the region surrounded by P. This is explained later. Even if  "�2�1�, .� + "�., 2�3�� is the minimal, 
there is a possibility that the connecting lines intersects. So selection of q is always made under the condition 
that no intersection occurs. It is naturally justified that at least one contour cycle always exists to be inserted 
to P if CYCLES is not empty because P is the closed path, circular hence faces in all directions.  
 
Fig. 4 shows that an arbitrary ������4 is selected and ������� is found as the nearest and they are connected. 
Fig. 5 shows that ������5 is selected because "�16,19� + "�19,22� is the minimal and form P(������4, 
������5, �������) as clockwise. Fig. 6 illustrates that ������4 is selected and inserted in P and the path 
becomes P(������4, ������5, ������4, �������). Fig. 7 is the final closed path which visits all cycles, each 
only once without intersection. 
 
No attempts were made to seek the efficiency of the algorithm in this study. 
 
Algorithm proof: 
 
The algorithm proof is given by induction: 
 
When there are three (i==3) cycles in P, P is C:, a triangle with no cycle inside. Suppose that P is C; and no 
cycle inside the closed path when � = <. As long as CYCLES is not empty, there is a cycle in CYCLES, 
named as q such that "�2�1�, .� + "�., 2�3�� becomes the minimal with no intersection. This is guaranteed 
because P is circular so it faces in all directions. The cycle q is the (i=r +1)th cycle deleted from CYCLES 
and it is the (r+1)th cycle inserted in P. Therefore, P becomes �=>�. This completes the proof: 
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Fig. 3. Dot contour cycles 
 

 
 

Fig. 4. First connection 
 

 
 

Fig. 5. Three dot cycle closed path 
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Fig. 6. No. 26 is inserted in the closed path 
 

 
 

Fig. 7. Closed path completed 
 

5 Obtaining Complete Maze and Discussion 
 
5.1 Maze construction on a number of image dots 
 
Fig. 7 shows the completed construction of the closed path. As seen, the line between dots 18 and 28 became 
very close to the dot 23. The program is designed just to avoid the collision between the connecting lines and 
the dot cycles. This kind of narrow collision possibly occurs. However, such collisions between lines are 
mostly prevented by the criterion introduced in the algorithm, the minimal sum of two edge line lengths of 
the triangle, explained in the previous sub-section. In addition, this criterion makes each of the connecting 
curves become shorter. The shorter those lines, the smaller the possibility of the intersection between those 
and the connecting lines in later cycles becomes.  Another effect of the criterion is that the overall path 
length become rather shorter, if not the shortest. It probably makes the appearance better. 
 
After constructing the closed path (Fig. 7), the following steps were applied. The line between two cycles 
(16, 21) was removed to designate the start and the goal. The path from the start cycle (16) to the end (21) 
became one stroke line. Whenever a cycle was encountered going along the path, an arc-like curve was 
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randomly chosen. The result is shown as in Fig. 8. Within an image dot region, Hamiltonian-like path was 
organized. This was done by successive insertions of path parts using the method [8,9,13]. Almost all points 
(vertices) within an image dot were inserted into the path, but not necessarily all. This is why white points 
appear at a number of places in dot vertices (Fig. 9). At this point, the solution path of the maze was 
competed. Then, random dead end branches were added in order to hide the solution path. Much attention 
was paid to hide it better. Walls of the maze were thinned to finish the maze (Fig. 10). Fig. 2 is the maze 
with the solution path drawn red as mentioned before. Fig. 11 is another completed maze with the solution. 
The connection lines in Fig. 11 were randomly curved a little. This is to hide the solution more effectively. 
 
Fig. 12 is another original picture of image dots. Five more dots were added then the picture frame became 
almost full. Fig. 13 is the completed maze painted with red solution path. The start and end positions were 
changed from Fig. 11. The program is so designed that the path construction can start from any of the dot 
vertices. The overall path structure and the start and end positions may become different depending on the 
experiments. 
 
5.2 Construction of picture maze 
 
The same procedure was applied to the image items of Fig. 14. The obtained maze is a complex picture 
maze. Fig. 15 shows the maze with the red solution path. This maze is a quiz to find an English word 
“COMPUTER”. Accordingly, when the player draws the solution path, letters appear---‘C’, ‘R’, ‘O’, ‘E’, 
‘U’, ‘P’, ‘T’, and ’M’. The player is naturally asked to find an English word, “COMPUTER” using the found 
letters. The connecting lines between image items are with some randomized zigzag so that the lines on the 
maze cannot be seen easily before it is solved. In order to make the start and end vertices by image dots, a 
number of dot vertices are placed among English letters. Because of some non-connected points in the image 
regions, some alphabets do not appear aesthetically. However, we can recognize them. 
 
For some letters, there are holes in the letter such as ‘P’. They may cause a problem. To cope with them, a 
mask of the original picture was used. And the path extension within letter regions are made with this mask 
so that the path would not be extended in the hole regions.  
 
Fig. 16 is another original picture with different font letter images. Fig. 17 is the maze quiz with the red 
solution path. The answer is “SOLVE MAZE.” Since there are not many pairs of image dots, many different 
path constructions are not possible as long as the start and end are by a pair of the dots.  
 

 
 

Fig. 8. Starting base line of solution path 
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Fig. 9. Maze solution path completed 
 

 
 

Fig. 10. Final maze completed to be presented to players 
 

 
 

Fig. 11. Final maze but with curved solution path lines 
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Fig. 12. Original picture of image dots; number of dots=35 
 

 
 

Fig. 13. Final maze with curved solution path lines 
 

 
 

Fig. 14. Original binary picture with the alphabets of “COMPUTER” 
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Fig. 15. Complete quiz maze with solution path to find “COMPUTER” 
 

 
 

Fig. 16. Original binary picture with the sentence of “SOLVE MAZE” 
 

 
 

Fig. 17. Complete quiz maze with solution path to find “SOLVE MAZE” 
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5.3 About the process of organizing P 
 
P is the closed path of a sequence of the vertices which traverses each of the vertices extracted from a given 
picture once for every vertex. Whenever one vertex is inserted in P by the algorithm previously stated, there 
appears a situation illustrated in Fig. 18. Consider the triangle organized by the three vertices 2�1�, q, and 
2�3� as in Fig. 18, where q is a vertex in CYCLES and b is the next item number of a in P and the triangle 
gives the minimal sum of two edge lengths "�2�1�, .� and "�., 2�3��. If there is a vertex q’ inside the 
triangle from CYCLES, then the following inequality, which is well known, holds. 
 

"�2�1�, .� + "�., 2�3�� ≥ "�2�1�, .′� + "�.′, 2�3��                                                                    (7) 
 
This means that there is no vertex inside the triangle if "�2�1�, .� + "
., 2�3�� is the minimal for a, b in P 
and q in CYCLES. If the combination of a, b and q always provides the minimal, then there is no vertex 
inside the region surrounded by P. Therefore, we can continue to look for such vertices outside the region 
until CYCLES becomes empty.  
 
In case there are more than one vertex satisfying the minimal condition, selecting one of those will not make 
any problem. The one not selected will be incorporated into the path in later cycles. The criterion of the 
minimal rather seems to make the connecting lines shorter. If those are shorter, then it reduces the possibility 
that later connections will make the crossing with those lines.  
 
By the way, we have the following inequality: 
 

"�2�1�, .� + "
., 2�3�� = "�2�1�, .� + "�., <� +  "�<, 2�3��                                                     (8) 
 

≥ "�2�1�, <� + "�<, 2�3��                                                                      (9) 
 

≥ "�2�1�, . ′� + "�.′, <� + "�<, 2�3��                                                  (10) 
 

≥ "�2�1�, . ′� + "�.′, 2�3��                                                                  (11) 
 

 

q’ 

P(a-1) 

q 

P(a) 

P(b) 

P(b+1) 

r 

Fig. 18. Triangle (@�A�, B,  @�C�). b is the next item number of 
a in P which is circular 
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5.4 Point of this study 
 
Picture maze construction with near Hamiltonian path appears in the studies [8]. Here, ‘near’ means that the 
path passes through nearly all the vertices in a set, but possibly not all. The methods in those studies mainly 
deal with only one or a few picture items using the near Hamiltonian path making method. The present study 
also employs the same or similar methods in the near Hamiltonian path making within individual picture 
items. As long as these processes only are concerned, there are no noticeable differences between the present 
study and [8] in relation with the procedure and the experimental results. However, the present study, in 
addition to the above, has the ability to handle a large number of picture items in an organized and flexible 
manner so that it can make a more complex picture maze.  
 

6 Conclusion 
 
The following are the conclusions: 
 

1. Analogy is naturally made between image processing and graph theory or between image space and 
graph space.  

2. The proposed algorithm showed that it constructs a path traversing pre-positioned image dots, 
possibly large number, once for each. The path looks like a Hamiltonian path. Maze is to be 
constructed along those image dots as well as the path in an organized manner. The construction 
algorithm is proved by induction.   

3. It is shown that a complex maze can be constructed using the method. If shaped images are used, 
the maze becomes a picture maze. 
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