

International Research Journal of Pure & Applied Chemistry 5(4): 273-317, 2015, Article no.IRJPAC.2015.024 ISSN: 2231-3443

SCIENCEDOMAIN international www.sciencedomain.org

Structural Characterization of Heterometallic Gold – Iron Clusters

M. Melník^{1*} and P. Mikuš¹

¹Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic, Slovakia.

Authors' contributions

This work was carried out in collaboration between the authors, each section in the ratio 1:1. The authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IRJPAC/2015/11690 <u>Editor(s):</u> (1) Rakeshwar Bandichhor, API- R&D, Innovation Plaza, Dr. Reddy's Laboratories Hyderabad, India. (2) Wenzhong Shen, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, China. <u>Reviewers:</u> (1) Ayi A. Ayi, Pure And Applied Chemistry, University Of Calabar, Nigeria. (2) Anonymous, Technological Educational Institute of Kavala, Greece. (3) Anonymous, Brock University, Canada. Complete Peer review History: <u>http://www.sciencedomain.org/review-history.php?iid=809&id=7&aid=7148</u>

Review Article

Received 29th May 2014 Accepted 19th August 2014 Published 9th December 2014

ABSTRACT

Structural survey of the clusters in Cambridge Structural Database was carried out to investigate the stereochemistry about gold and iron in their heterometallic clusters. Clusters ranging from heterobinuclear to polynuclear clusters were included in the survey. The gold atoms are surrounded from two to six donor atoms, and the iron atoms from six to ten donor atoms. The shortest Au-Fe, Fe-Fe and Au-Au bond distances are 2.438(3), 2.504(3) and 2.630(1)Å. There are few clusters, which contain two crystallographically independent molecules and another one which contains four such molecules. Those are classical examples of distortion isomerism. Correlations between structural parameters and donor atoms are given.

Keywords: Structure; heterometallic; gold/iron; clusters; isomers;

*Corresponding author: Email: qmelnik@stuba.sk, mikuspeter@hotmail.com;

ABBREVIATIONS

1,5-cod	1,5-cyclooctadiene
$C_{11}H_{19}S$	2,2,6,6-tetramethylcyclohexanthiocarbaldehyde
$C_{17}H_{28}NP$	1,1'-(1-dimethylamino-1,3-propanediyl)-2-diphenylphosphine-dicyclopentadienyl
$C_5H_4CH_2NMe_2$	N,N-dimethylaminomethylcyclopentadienyl
C_5H_4Me	methylcyclopentadienyl
$C_5H_4P(Ph)C_5H_4$	dicyclopentadienylphenylphosphine
$C_5H_4PPh_2$	diphenylphosphinocyclopentadienyl
C_6H_6	benzene
Ср	cyclopentadienyl
ddpca	(S*)-N,N-dimethyl-1-[R*]-1',2-(bis(diphenylphosphino) cyclopentadienyl)ethylamine
dppm	bis(diphenylphosphino)methane
dptpc	diphenylthiophosphoryl-cyclopentadienyl
m	monoclinic
Me	methyl
or	orthorhombic
$P(OEt)_3$	tris(ethyloxy)phosphine
PhC₂Ph	1,2-diphenylethenyl
PPh ₂ (tol)	tolyldiphenylphosphine
PPh ₃	triphenylphosphine
Pr ⁱ S	iso-propylthiolate
SiPh ₂ (Me)	methyldiphenylsilicium
tr	triclinic

1. INTRODUCTION

Compounds containing metal-metal bonds are called cluster compounds. Clusters of more than three metal atoms generally consist of polyhedral arrangements of the metal atoms. They form the fascinating and rapidly growing branch of chemistry that we may call "polyhedral cluster chemistry". By applying the 18-electron rule to the polyhedral clusters containing transition metal atoms the entire cluster can be usually and conveniently treated as a unit.

The convention and reactivity of metal-metal bonds is an important aspect of metal cluster chemistry [1]. The key role in the practical and theoretical behavior of the clusters is played by the metal-metal bond opening and closing. Especially transition metal clusters that are capped by a main group atom containing moieties (e.g. CR, PR or SR [2-4]) are good candidates for the study of metal-metal bond cleavage and formation since the capping group preserves the integrity of the molecule.

The aim of this article is to analyze Au-Fe bonds as well as no-bonds in a series of compounds ranging from heterobinuclear compounds to heterooligonuclear compounds.

2. STRUCTURAL CLASSIFICATION

2.1 Heterobinuclear Compounds

There are totally 12 coloured compounds, three with an Au-Fe bond [5-7] and remaining nine without an Au-Fe bond [8-16]. Their crystallographic and structural data are gathered in Table 1.

In three yellow AuFe derivatives, two nonequivalent units, $(Ph_3P)Au$ and $Fe(CO)_3(\eta^3-allyl)$ [5], {(tol)Ph₂P}Au and Fe(CO)₃{Si(Me)Ph₂}(PMe₃) [6], (Ph₃P)Au and Fe(CO)₃. {Si(Me)Ph₂}(PPh₃) [7] are held together only by direct Au-Fe bond, with the distances of 2.519(1)Å [5], 2.527(3)Å [6] and 2.553(1)Å [7]. Each Au atom is almost linearly coordinated (AuPFe) with the P-Au-Fe bond angles of 174.4(2), 178.1(2) and 177.51(6)°, respectively. In [5] the iron atom is seven coordinated (FeC₆Au) and in the remaining two derivatives are sic-coordinated (FeC₃PSiAu).

In another two yellow AuFe derivatives [8] bis(diphenylphosphino)methane (dppm) serve as a bridge between AuL (L= Me or Cl) and $Fe(CO)_2(\eta^4-C_5H_4Me)$ moieties in the manner LAu-P(Ph₂)CH₂CH₂(Ph₂)P-Fe(CO)₂(\eta^4-C_5H_4Me). The derivative when L is methyl, contains two crystallographically independent molecules, differ mostly by degree of distortion. Each gold atom is

two-coordinated with the C-Au-P bond angles of $177.3(4)^{\circ}$ (molecule 1) and $175.1(3)^{\circ}$ (molecule 2) and the value of Cl-Au-P bond angle is $176.44(8)^{\circ}$. Each iron atom is seven coordinated (FeC₆P).

In orange triclinic AuFe derivative [9] pair of equivalent diphenylthiophosphorylcyclopentadienyl (dptpc) ligands are coordinated to iron atom via the cyclopentadienyl rings and form a sandwich (FeC₁₀) and to gold atom via the two S atoms (AuS₂). There are two crystallographically independent molecules, differ by degree of distortion. The mean Au-S bond distance and S-Au-S bond angle are 2.301(3)Å and 176.43(12)^e (molecule 1) and 2.284(3)Å and 178.26(11)^e (molecule 2).

Two monoclinic AuFe derivatives, orange [10] and yellow [11] are isostructural. In both a pair of $C_5H_4PPh_2$ ligands are coordinated to AuPPh₃ unit via P atoms (AuP₃) and to iron atom via the cyclopentadienyl rings and form a sandwich (FeC₁₀).

In another AuFe derivative [12] two units, Ph_3PAu and $Fe(\eta^5-cp)$ are held together by hexadentate $C_5H_4C(O)C(H)C(O)Me$ ligand in the $C^{1}:C^{5}$ -fashion. The gold atom is two-coordinated (AuCP) and iron atom is sandwiched (FeC₁₀). In orange AuFe derivative [13] the Ph₃PAu unit is connected with iron by multidentate $C_5H_4C(O)C_6H_4COO-1,2$ in the $O^1:C^{10}$ -fashion. The gold atom is two coordinated (AuOP) and iron atom is sandwiched (FeC₁₀). The O-Au-P bond angle is 176.5(2)º. In another orange AuFe derivative [14] two non-equivalent moieties, Ph_3PAu and $Fe(\eta^5-cp)$ and connected by the $C_5H_4CH_2NMe_2$ ligand in the N¹:C⁵-fashion and completed an almost linear coordination about gold atom (AuNP) and sandwich about iron atom (FeC₁₀). Finally, in yellow AuFe derivative [15] multidentate C17H28NP ligand connected AuCl unit with iron in the P1:C10-fashion. The gold atom is two-coordinated (AgCIP) and iron atom is sandwiched (FeC₁₀).

The data in Table 1 indicates gold in two- AuPFe [5-7], AuCP [8,12,14], AuCIP [8], AuS₂ [9] and AuOP [13] and three- AuP₃ [10,11] coordinated. The mean value of Au-L (monodentate) bond distance in the series of two-coordinated species elongated in the sequence: 2.085\AA (Me) < 2.268\AA (PPh₃) < 2.305\AA (Cl). There is only one homo-P,P'-bidentate ligand, which span between the respective moieties in two derivatives.

Gold and iron units [8] with the mean Au-P and Fe-P bond distances are of 2.267 and 2.210Å, respectively. The multidentate ligands include hetero-donor atoms one O plus ten C, one C plus five C, one P and five P, one P plus ten C donor atoms. All of the multidentate ligands bound to gold atom via one donor atom with the Au-L bond distance elongated in the sequence: 2.059Å (L= O^1C^{10}) < 2.074Å (L= C^1C^5) < 2.240Å (L= P^1C^{10}) < 2.383Å (L= P^1C^5). Multidentate C donor atoms bound the iron atoms.

The iron atoms are six- FeC₃PSiAu [6,7], seven-FeC₆Au [5], FeC₆P [8] and ten- FeC₁₀ [9-15] coordinated. There are two AuFe derivatives [8,9] which contain two crystallographically independent molecules within the same crystal and are examples of distortion isomerism [16]. Noticeable, the AuFe derivatives by far prefer crystallized in the monoclinic space group (x10) with one example which is triclinic.

2.2 Heterotrinuclear Clusters

There are seventeen (six AuFe₂ and eleven Au₂Fe) trinuclear clusters and their crystallographic and structural parameters are summarized in Table 2. In orange AuFe₂ cluster [17] all three metal atoms form a triangle with Fe-Fe bond distance of 2.605(2)Å and Au-Fe bond distances of 2.622(1) and 2.698(1)Å. Two carbonyl groups also bridge the two iron atoms. The core of dark green AuFe₂ cluster [18] consists of an almost equilateral metal triangle. The edge of Fe-Fe bond (2.621(2)Å) is bridged by both an isopropylthiolate ligand and a carbonyl group. In addition the gold atom is coordinated by a triphenylphosphine ligand and three terminal carbonyls are attacked to each iron atom. The mean Au-Fe bond distance of 2.670(1)Å is about 0.010Å longer than that found in [17]. In red orange AuFe₂ cluster [19] two crystallographically independent molecules within the same crystal are present. Two iron atoms and one gold atom form a triangle with the Fe-Fe bond distance of 2.651(4)Å and Au-Fe bond distances of 2.683(4) and 2.700(3)Å in one molecule. The values in the other one are 2.644(4), 2.681(3) and 2.740(4)Å, respectively. The edge of Fe-Fe bond is bridged by thioaldehyde ligand via carbon and sulfur atoms. The basic skeleton of green cluster [20] consists of a highly asymmetric triangular AuFe₂ system with the Fe-Fe bond distance of 2.627(2)Å and Au-Fe bond distances of 2.627(2)and 2.761(2)Å, respectively. The edge of Fe-Fe bond is bridged by a carbonyl group and an $\sigma,\pi\text{-diphenylethenyl}$ group.

In the remaining two orange AuFe₂ clusters [21,22], two (cp)Fe fragments are connected with Au(C=CPh) [21] or AuCl [22] unit with $C_5H_4P(Ph)C_5H_4$ ligand. Each gold atom is two-coordinated, AuCP [21] and AuCIP [22] with P-Au-X bond angles of 174.3(4)^e (X=C) and 176.1(1)^e (X=Cl), respectively. Each iron atom is sandwiched, FeC₁₀.

There are eleven coloured Au₂Fe clusters [23-32]. Two yellow clusters [23-24] contain a triangular core of metal atoms. In [23] four crystallographically independent molecules within the same crystal are present, differing mostly by the degree of distortion, this in the only example in the series of heterotrinuclear clusters with such a number of independent molecules. The mean Au-Fe bond distance of 2.538(3)Å (range from 2.509(3) to 2.553(2)Å) is about 0.363Å shorter than Au-Au bond distances with the mean value of 2.901Å (2.872(2) - 2.928(1)Å).

In red Au₂Fe cluster [25] the Ph₃PAuAuPPh₃ fragment with Au-Au bond distance of 2.768(2)Å is attached to $(\mu_3 - C_5 H_4) Fe(\eta^5 - cp)$ fragment via μ_3 -C atom and, in addition, the iron atom is connected with one Au atom (Fe-Au 2.818(2)Å). In two yellow Au₂Fe clusters [26] the $Fe(C_5H_4PPh_2)_2$ fragment coordinates to two AuX (X=Cl or I) centers in an open bridging mode. The P-Au-Cl and P-Au-I bond angles are very close to the linear with the values of 179.59(5) and 177.0(2)°, respectively. The cyclopentadienyl rings adopts in staggered conformation. In orange Au₂Fe cluster [27] the Fe(C₅H₄PPh₂)₂ fragment is attached via P atoms to AuSAu fragment. The Au-Au bond distance is 2.882(1)Å and Au-S-Au bridge angle is 77.57(9)^o. The P-Au-S bond angles are 173.78(6)^o. The iron atom is sandwiched (FeC_{10}).

In structure of yellow Au_2Fe cluster [28] the $C(PPh_2)_2$ ligand serves as a bridge between the $Cl(PhNC)_3Fe$ unit and two $Au(PPh_3)$ fragments. Two phosphorous atoms of the bridging ligand are directly coordinated to the iron atom and complete pseudo-octahedral coordination about the iron atom (FeC_3P_2Cl). The C atom of the $C(PPh_2)_2$ ligand is bridging two $Au(PPh_3)$ fragments. The Au-Au distance is 2.891(4)Å and Au-C-Au bridge angle is 74.1(15)^e.

In the remaining four Au_2Fe clusters [29-32], the 1,1-bis(diphenylphosphino)ferrocene is singly bridging in [29] the $Au_2\{\mu-\eta^2-S(CH_2)_2S\}$ fragment,

in [30] two Au(η^{1} -F₃CCOO) fragments, in [31] two Au(η^{1} -C₁₆H₉) fragments, and in [32] two AuCl fragments. Each gold atom is almost linearly coordinated and each iron is sandwiched (FeC₁₀) (Table 2). In [32] two crystallographically independent molecules within the same crystal are present, differing mostly by the degree of distortion.

Inspection of the data in Table 2 reveals that the heterotrinuclear (AuFe₂, Au₂Fe) clusters crystallized in two crystal classes, monoclinic (x10) and triclinic (x6). The gold atoms are two-AuXP (X=C [21-31], Cl [22, 26, 32], I [26], S [29] or O [30]), three- AuPFe₂ [17-20], AuPFeAu [23-24], AuSPAu [27], AuCPAu [28], and four-AuCPFeAu [25] coordinated.

For the iron atom the coordinations involved are six- FeC₄AuFe [17, 18], FeC₄Au₂ [23], FeC₃PAu₂ [24], FeC₃P₂Cl [28], seven- FeC₄SAuFe [19], FeC₅AuFe [20], ten (sandwich) - FeC₁₀ [21, 22, 26, 27, 29 - 32] and eleven- FeC₁₀Au [25] donor atoms of which the sandwiched is most common.

The Au-Fe bond distance range from 2.509(3)Å [24] to 2.818(2)Å [25] (mean 2.634Å), Au-Au bond distance from 2.768(4)Å [25] to 2.928(1)Å [23] (mean 2.880Å) and Fe-Fe bond distance from 2.615(2)Å [17] to 2.651(4)Å [19] (mean 2.630Å). The mean Au-L (monodentate) bond distance elongates in the order: 2.036Å (CL) < 2.098\AA (OL) < 2.272\AA (PPh₃) < 2.285\AA (Cl) < 2.353Å (I). There are two clusters. $(Ph_{3}P)AuFe_{2}(\mu-C_{11}H_{19}S)(CO)_{6}$ [19] and $(CIAu)_2(\mu-\eta^1;\eta^5-C_5H_4PPh_2)_2Fe$ [32] which contain two crystallographically independent molecules within the same crystal and {(Ph₃P)Au}₂Fe(CO)₄ [23] contains even four such molecules. These are classical examples of distortion isomerism [16].

2.3 Heterotetranuclear Clusters

There are six categories of clusters: AuFe₃ (4 examples), Au₂Fe₂ (3 examples), Au₃Fe (2 examples), Au₂FePt (1 example), AuM₂M' (2 examples) and AuFeCoRu (1 example), and their crystallographic and structural parameters are gathered in Table 3. There are four red AuFe₃ clusters [33-36]. One of them [33] consists of an ${Fe(CO)_3}_3$ triangular planes capped by a μ_3 -Te² ion with one edge bridged by а triphenylphosphinylgold(I) cation. This moiety has approximately the same distances to two iron atoms. The Au-Fe bond distances are 2.681(3) and 2.652(3)Å and the Fe-Au-Fe bond angle is 64.3(1)^o. The distance between the bridged Fe(I)-Fe(2) atoms is significantly longer (2.837(4)Å than the corresponding distance between the non- bridged Fe(1)-Fe(3) and Fe(2)-Fe(3) distances of 2.623(4)Å. The triphenylphosphinylgold(I) cation lies below the plane of the Fe₃Te tetrahedron with Au-Fe(1)-Fe(3) bond angle of 98.7(1)^e and Au-Fe(2)-Fe(3) bond angle of 99.4(1)^e.

The metal core in $[(Ph_3P)AuFe_3(\mu-CO)(CO)_{10}]^{-1}$ anion [34] consists of a Fe₃Au "butterfly" arrangement, where a triphenylphosphinylgold(I) cation forms a bridge at one edge of the Fe₃ triangle. The interplanar angle here is 59.7(1)^o. The average Fe-Fe distance is 2.655Å [2.632(1), 2.652(1) and 2.682(1)Å]. The mean Au-Fe bond distance is 2.643(1)Å.

The independent molecules in another AuFe₃ cluster [35] are approximate non-super imposable mirror of each other (Fig. 1). The triphenylphosphinylgold(I) cation bridging the Fe(1)-Fe(2) edge of the Fe₃ triangle. Furthermore, it is situated opposite side to the triangle to that occupied by the μ_3 -HC=CBu^t ligand. The AuFe(2)Fe(3) dihedral angle in the two independent molecules differs significantly having the values 110.9 and 132.1^e.

In another AuFe₃ cluster [36] the metal core consists of an isosceles triangle of iron atoms, capped by a μ_3 -SPrⁱ ligand. The longest Fe-Fe bond (2.800(6)Å) is bridged by a triphenylphosphinylgold(I) cation. The resulting "butterfly" angle is 123.9(2)^e. The Au-Fe bond distances are 2.653(4) and 2.645(5)Å. The non-bridged Fe-Fe bond distances are 2.631(8) and 2.644(7)Å.

There is structural information on three complexes containing Au₂Fe₂ clusters [37-39]. In the red Au₂Fe₂ cluster [37] the square planar geometry is tetrahedrally distorted. The dihedral angle between two Au(1)-Au(2)-Fe(1) and Au(1)-Au(2)-Fe(2) planes is 24.7(1)^o. The Au-Fe bond distances 2.527(2) and 2.534(2)Å are shorter than for Fe-Fe and Au-Au (2.900(2) and 2.915(1)Å, respectively). Both gold atoms are bonded to phosphorus atoms of the bridging u n^2 -dppm ligand. The coordination sphere around each iron atom displays a distorted octahedron with bridging to four carbonyl groups, one gold atom and the other iron atom (FeC4AuFe'). Each gold atom is three coordinated (AuPFeAu)(T shape).

In the colourless Au_2Fe_2 cluster [38], which has an approximate C_2 symmetry, the Fe-Au-Au-Fe

chain is a zig-zag chain. Two pairs, of Fe(1) and Au(2) and of Fe(2) and Au(1), are bridged by a μ - η^2 -dppm ligand, thus forming unusual twisted sixmembered rings fused along the Au-Au edge. The average Au-Fe bond distance is 2.549Å. It is interesting to note that the complex forms also a 10- membered ring, where the Au-Au bond distance is 2.962(1)Å is reminiscent of the transannular interactions that occur in middle-sized organic rings.

In a yellow-orange Au_2Fe_2 cluster [39] two $C_5H_4CH_2NMe_2$ ligands act as bridges between two gold atoms and two $Fe(\eta^5$ -cp) moieties, thus forming a 10- membered ring $(AuNC)_2$ with $Au\cdots Au$ separation of 3.122(1)Å.

There are two Au₃Fe clusters [40,41] and the structure of orange Au₃Fe cluster [40] is shown in Fig. 2. The three gold atoms form a plane and an apical sulfur atom is situated 1.29Å out of this The shortest Au-Au distance plane. of 2.8889(8)Å is found between the atoms Au(1) and Au(2), and the remaining two distances are 3.404(1) and 3.759(1)Å between Au(1)-Au(2) and Au(2)-Au(3), respectively. Consequently, also the respective angles are dissimilar with the values of Au(1)-S-Au(2) = 76.36(10), Au(1)-S-Au(3) = 92.64(12) and Au(2)-S-Au(2) = $105.69(14)^{\circ}$. In this mixed-valence cluster the Au(I) and Au(2) atoms have the formal oxidation state of +1, whereas the Au(3) atom has the value +3. The Au(I) cations have an almost linear coordination (AuSP) with the S-Au-P angles of 175.94(14) and 171.72(12)º. The Au(III) cation has squareplanar geometry (AuC_3S).

In colourless Au₃Fe cluster [41] the complex cation consists of two gold atoms bridged by two different ligands, namely C₅H₄PPh₂ and 2pyridinethiolate. The third gold atom is bonded to a tertiary phosphine and to a sulfur atom of the 2pyridinethiolate ligand. Accordingly, the sulfur atom in the 2-pyridinethiolate atoms acts as a terdentate bridging donor atom. The Au(1)-Au(2) separation of 3.2105(13)Å is significantly longer that for the Au(1)-Au(3), than 3.0965(12)Å. The cyclopentadienyl rings adopts coordination approximately midway the staggered and eclipsed ones.

COMPLEX (colour)	Cr. cl. Sp.Gr	a [Â] b [Â]	α [°] β [°]	Chromo- phore	M - L [Å]	Au - Fe [Â]	L – M - L [°]	Ref
(Ph ₃ P)AuFe(CO) ₃ - (η ³ -allyl) (yellow)	Z m C2/c 8	c [A] 30.76(1) 11.60(1) 13.54(2)	<u>γ[[°]]</u> 110.38(1)	AuPFe FeC₀Au	Ph₃P ^b 2.273(5) OC 1.778(9,11) η ³ C 1.99(1,0)	Fe 2.519(1)	P,Fe ^b 174.4(2) C,C 95.8(3,3) 142.9(3) C,Au 71.5(2,6) 106.0(3,4.4), 134.4(6),	5
{(tol)Ph ₂ P}AuFe(CO) ₃ . {Si(Me)Ph ₂ }(PMe ₃) (light yellow)	m P2 ₁ /n 4	10.513(7) 16.137(6) 22.106(5)	90.75(3)	AuPFe FeC₃P. SiAu	Ph ₃ P 2.282(7) OC 1.78(3,10) P 2.231(9) Si 2.35(1)	Fe 2.527(3)	P,Fe 178.1(2) C,C 143(1) P,Si 177.2(4) C,Au 73.2(7,9) 177(1) P,Au 85.7(2) S,Au 95.9(2)	6
(Ph ₃ P)AuFe(CO) ₃ . {Si(Me)Ph ₂ }(PPh ₃) (light yellow)	m P2 ₁ /n 4	11.772(3) 23.094(5) 18.922(5)	117.51(2)	AuPFe FeC₃P. SiAu	Ph ₃ P 2.283(2) OC 1.761(8,14) P 2.244(2) Si 2.357(3)	Fe 2.533(1)	P,Fe 177.51(6) C,C 106.0(4,6.8) 143.8(4) P,Si 173.95(9) C,Si 83.6(3,3.1) C,Au 73.7(3,5.2) 167.7(3) C,P 95.8(3,3.8) P,Au 90.4(6) Si,Au 94.96(7)	7
(Me)Au{μ-ŋ¹:ŋ¹-dppm). Fe(CO)₂(η⁴-C₅H₄Me) [¢] (bright yellow)	n P2 ₁ /n 8	16.606(2) 18.886(3) 21.629(5)	100.60(1)	AuCP FeC₀P	MeC 2.053(11) P 2.291(3) OC 1.731(14,3) n ⁴ C 2.058(15,38) P 2 212(3)		C,P 177.3/4) C,P 96.0(5,1.0)	8
				AuCP FeC₀P	Me,C 2.112(10) P 2.284(3) OC 1.732(11,17) η ⁴ C 2.075(10,35)		C,P 175.1(3) C,P 95.9(3,6)	

Table 1. Crystallographic and structural data of heterobinuclear AuFe compoundsa

Melník and Mikuš: IRJPAC	. 5(4	 273-317. 	2015	: Article no	.IRJPAC.2015.02	4
		,, ,		, ,		

					P 2.204(3)		
CIAu(µ-ŋ ¹ :ŋ ¹ -dppm).	m	10.896(2)		AuCIP	CI 2.290(2)	CI,P176.44(8)	8
$Fe(CO)_2(\eta^4-C_5H_4Me)$	P2₁/n	21.064(5)	101.86(2)		P 2.226(2)		
(vellow)	4	15.212(3)	()	FeC ₆ P	OC 1.756(9,45	C,C 101.5(4)	
				0	n ⁴ C 2.075(9,45)	C,P 96.0(3,6)	
					P 2.217(3)	-,(-,-,	
[Au(μ-η¹:η⁵-dptpc)₂Fe].	tr	12.924(2)	64.985(8)	AuS ₂	S_2.301(3,1)	S,S 176.43(12)	9
CHCl₃ ^c	Pī	17.485(3)	74.296(8)	FeC ₁₀	η⁵C not given	not given	
(orange)	4	20.458(3)	70.575(12	AuS ₂	S 2.284(3,8)	S,S 178.26(11)	
(at 173 K)				FeC ₁₀	η⁵C not given	not given	
[(Ph ₃ P)Au(μ-η ¹ :η ⁵ -	m	14.275(2)		AuP ₃	η ¹ P 2.464(1,25)	P,P 114.4(-,4.0)	10
C ₅ H ₄ PPh ₂) ₂ Fe]2CH ₂ Cl ₂	P21/c	16.997(2)	96.76(2)		Ph ₃ P 2.4(12)	131.2(4)	
(orange)	4	21.219(3)		FeC ₁₀	η⁵C not given	not given	
(at 173 K)						C C	
[(Ph₃P)Au(μ-η¹:η⁵-	m	14.239(6)		AuP₃	η ¹ Ρ 2.383(2,2	P,P 109.5(1)-	11
C ₅ H ₄ PPh ₂) ₂ Fe]ClO ₄	P21/c	16.889(4)	95.81(3)		Ph ₃ P 2.343(2)	132.0(1)	
(yellow)	4	20.866(3)	. ,	FeC ₁₀	η ⁵ C 2.019(8)-	not given	
. ,		. ,			2.068(9)	-	
(Ph₃P)Au{µ-ŋ¹:ŋ⁵-	not			AuCP	η ¹ C 2.120	not given	12
$C_5H_4C(O)C(H)C.$	given				P <u>h</u> ₃P 2.274		
(O)Me}Fe(η ⁵ -cp)				FeC ₁₀	η ^⁵ C not given	not given	
(not given)						-	
(Ph₃P)Au{µ-ŋ¹:ŋ¹º-	m	17.313(6)		AuOP	η¹Ο 2.059(9)	O,P 176.5(2)	13
$C_5H_4C(O)C_6H_4COO$ -	P21/c	8.379(2)	91.97		Ph ₃ P 2.207(3)		
1,2}Fe	4	24.358(8)			η ¹⁰ C 2.03(2,4)		
(orange)				FeC ₁₀	C not given	not given	
$(Ph_3P)Au(\mu-\eta^1:\eta^5-$	m	11.502(1)		AuCP	μC 2.027(6)	C,P 174.5(2)	14
C ₅ H ₄ CH ₂ NMe ₂)Fe(η ⁵ -cp)	P2 ₁ /c	21.272(4)	98.70(1)		Ph ₃ P2.287(2)		
(orange)	4	11.290(2)		FeC ₁₀	μC not given	not given	
(at 153 K)					η ⁵ C not given		
· ·					cpC not given		
[ClAu{μ-η ¹ :η ¹⁰ -C ₁₇ .	m	9.285(3)		AuCIP	CI 2.32(1)	Cl,P 176.5(5)	15
H ₂₈ NP}Fe]1.5C ₆ H ₆	P21/c	18.287(8)	99.55(4)		η ¹ Ρ 2.24(1)		
(yellow)	4	19.427(6)		FeC ₁₀	η ¹⁰ C not given	not given	

Footnotes: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is e.s.d., and the maximum deviation from the mean b. The chemical identity of coordinated atom / ligand is specified in these columns. c.There are two crystallographically independent molecules second is the

COMPOUND (colour)	Cr. cl. Sp.Gr. Z	a [Á] b [Á] c [Á]	α[°] β[°] γ[°]	Chromo- phore	M - L [Á]	M - M [Á] M – L - M ["]	L – M - L [°]	Ref.
A: AuFe ₂ (NEt ₄)[(Ph ₃ P)Au. {Fe(µ-CO)(CO) ₃ } ₂]	m P2ı/c	10.079(2) 19.622(4)	102.82(2)	AuPFe ₂	Ph ₃ P ^b 2.264(2)	Fe 2.660(1,38)	P,Fe ^b 150.1(1,7.3) Fe.Fe 58.6(1)	17
(orange)	4	18.743(4)	(_)	FeC₄Au.Fe	OC 1.790(12,26) μOC 2.001(11,22)	Fe 2.605(2) C 81.34(3)	μC,Fe 49.4(3,7) C,Fe 118.0(3,5.4) μC,Au 88.9(3,6.9) C,Au 77.4(3,2.8)	
							174.2(4,8) Au,Fe 60.4(1,1.8)	
(Ph₃P)AuFe₂(μ-CO). (μ-SPr ⁱ)(CO) ₆	m P2₁/c	11.373(1) 14.899(3)	95.12(2)	AuPFe ₂	Ph ₃ P 2.287(2)	Fe 2.670(1,26)	P,Fe 150.60(6,7.3) Fe,Fe 58.80(4)	18
(dark green)	4	17.997(́3)́		FeC₄Au. Fe	OC 1.792(10,38) μOC 1.937(9) 2.016(9) μS 2.267(2,4)	Fe 2.621(2) C 83.0(3) S 70.66(8)	C,C 93.6(4,6.8) 165.8(4,1) μC,S 80.5(3,9) C,S 95.6(3,1.6) μC,Au 94.6(3,2) C,Au 75.9(3,5.7) μC,Fe 48.5(3,1.3) C,Fe 111.8-132.0(3) Au,Fe 60.60(4,97)	
(Ph ₃ P)AuFe ₂ . (μ-C ₁₁ H ₁₉ S)(CO) ₆ ^c	tr Pī	14.640(3) 15.156(4)	66.82(2) 71.39(2)	AuPFe ₂	Ph₃P 2.284(6)	Fe 2.692(4,9)	P,Fe 150.3(2,7.7) Fe,Fe 59.0(1)	19
(red orange)	4	18.502(5)	71.79(2)	FeC₄S. AuFe	OC not given μC 2.014(25,5) μS 2.209(7,4)	Fe 2.651(4) 82.3(8) 73.7(2)	C,S 48.1(5) Au,Fe 60.5(1,3) C,Au 105.7(4,2) S,Au 104.6(2,4) C,Fe 48.9(5,2) S,Fe 53.6(1,3)	
				AuPFe ₂	Ph ₃ P 2.294(7)	Fe2.711(4,30)	P,Fe 150.7(1,2.6) Fe,Fe 58.4(1)	
				FeC₄S.	OC not given	Fe 2.644(4)	C,S 48.3(7)	

Table 2. Crystallographic and structural data for heterotrinuclear AuFe2 and Au2Fe clustersa

				AuFe	μC 2.033(15,7) μS 2.196(8,3)	C 81.0(7) S 74.0(2)	Au,Fe 60.8(1,1.0) C,Au 101.5(7,8) S,Au 110.0(2,1.0) C,Fe 49.5(2,3) S,Fe 53.0(2,1)	
$(Ph_3P)AuFe_2.(\mu-CO).$	m P2./n	18.334(8)	102 27(2)	AuPFe ₂	Ph ₃ P 2.288(2)	Fe 2.627(2)	P,Fe 151.0(1,5.4)	20
(green)	4	13.430(4)	102.27(2)	FeC₅Au. Fe	OC 1.802(16,29) μOC 1.896(12) μC 2.015(10) C 2.058(10,57) μC 2.253(12)	E 2.627(2) Fe 2.627(2) C 80.8(4,2.5)	C,C 37.5(4) 145.5-171.4(5) μC,Fe 49.6(3,3.2)	
$(\eta^1-PhC=C)Au\{\mu-\eta^1:\eta^{10}-C_5H_4P(Ph)C_5H_4\}.$	m P2 ₁ /a	12.141(7) 19.053(1)	92.62(2)	AuCP	η ¹ C 2.011(15) η ¹ P 2.274(4)		C,P 174.3(4)	21
{Fe(η ⁵ -cp)} ₂ (orange)	4	12.458(8)		FeC ₁₀	C 1.977(20,11) 2.029(27,24)		not given	
$CIAu{\mu-\eta^{1}:\eta^{10}-C_{5}H_{4}P(Ph)C_{5}H_{4}}.$	m P2₁/n	10.205(2) 18.014(4)	98.29(2)	AuCIP	Cl 2.289(2) η ¹ P 2.234(2)		CI,P 176.1(1)	22
${Fe(\eta^5-cp)}_2$ (orange red)	4	12.680(3)		FeC ₁₀	C 2.041(8,17)		not given	
B: Au_2Fe {(Ph ₃ P)Au}. Fe(CO) ₄ ^d	m P2 ₁ /a	20.309(5) 18.379(3)	96.26(2)	AuPFeAu	Ph ₃ P2.277(6,5)	Fe 2.548(3,6) Au 2.897(1)	P,Fe 177(1)	23
(yellow)	16	40.737(6)		FeC ₄ Au ₂	OC 1.76(2,1)		C,C 98(1), 141(1) Au,Au 69.2(1)	
				AuPFeAu	Ph ₃ P 2.274(5,5)	Fe 2.535(3,12) Au 2.928(1)	P,Fe 173.0(1,1.3)	
				FeC ₄ Au ₂	OC 1.76(2,1)		C,C106(1),148(1)	
				AuPFeAu	Ph ₃ P 2.274(5,1)	Fe 2.541(3,4) Au 2.909(1)	P,Fe 171.2(2,2.4)	
				FeC ₄ Au ₂	OC 1.75(2,2)	· · /	C,C 96(1),150(1) Au.Au 69.9(1)	
				AuPFeAu	Ph ₃ P 2.275(5,1)	Fe 2.550(2,3) Au 2.897(1)	P,Fe 177(1)	
				FeC ₄ Au ₂	OC 1.77(2,2)		C,C 98(1), 141(1)	

							Au,Au 69.2(1)	
[{(Ph ₃ P)Au} ₂ Fe. (CO) ₃ {P(OEt) ₃ }.	m P2₁/n	10.385(3) 35.422(10)	91.15(3)	AuPFeAu	Ph ₃ P not given	Fe 2.535(3,26) Au 2.872(2)	P,Au not given	24
H ₂ O	4	13.648(6)	()	FeC ₃ PAu ₂	OC not given		C,C 145.9(8)	
(vellow)					P 2.133(6)		C,P 99.7(7)	
							Au,Au 69.0(1)	
[{(Ph ₃ P)Au} ₂ .	m	14.460(11)		AuCP.	μ ₃ C 2.25(4)	Fe 2.818(2)	C,P 174(1)	25
(µ ₃ -η ¹ :η ¹ -η ⁵ -C₅H₄).	P21/a	30.539(27)	92.61(15)	FeAu	Ph ₃ P 2.283(12)	Au 2.768(2)	C,Fe 49(1)	
Fe(ŋ ⁵ -cp)]BF₄	4	9.509(12)				C 78(1)	P,Fe 135.5(4)	
(red)							C,Au 49(1)	
							P,Au 126.3(4)	
							F,Au 97.6(2)	
				AuCPAu	μ ₃ C 2.12(4)		C,P 169(1)	
					Ph ₃ P2.275(15)		C,Au 53(1)	
					· · ·		P,Au 135.6(3)	
				FeC ₁₀ Au	cpC 2.08(5,8)		not given	
					η ⁵ C 1.91(5)		-	
					2.10(5,3)			
[(ClAu)₂(μ-η¹:η⁵-	tr	8.671(2)	81.82(2)	AuPI	Cl 2.2815(13)	Fe 4.29(1)	CI,P 179.59(5)	26
C ₅ H ₄ PPh ₂) ₂ Fe]CH ₂ Cl ₂	Pī	9.867(2)	74.45(3)		η ¹ Ρ 2.262(13)			
(yellow) (at 173 K)	1	12.359(3)	70.56(2)	FeC ₁₀	η⁵C 2.049(5,14)		not given	
[(IAu)₂(μ-η¹:η⁵-	tr	11.955(3)	85.85(2)	AuPI	η ¹ Ρ 2.244(9,4)		P,I 177.0(2,7)	26
C ₅ H ₄ PPh ₂) ₂ Fe]CH ₂ Cl ₂	Pī	13.472(3)	70.16(2)		l 2.553(3,8)			
(yellow) (at 173 K)	2	14.596(2)	66.04(2)	FeC ₁₀	η⁵C not given		not given	
[(μ-S)Au₂(μ-η¹:η⁵-	m	12.571(4)		AuSPAu	μS2.300(2)	Au 2.882(1)	S,P 173.78(6)	27
C ₅ H ₄ PPh ₂) ₂ Fe].2CHCl ₃	P2 ₁ /n	10.579(4)	107.84(3)		η ¹ Ρ 2.247(2)	S 77.57(9)	S,Au 51.21(4)	
(orange)	2	15.212(4)			_		P,Au 122.66(5)	
(at 143 K)				FeC ₁₀	η ⁵ C 2.039(7,17)		not given	
[{(Ph₃P)Au}₂(μ-η¹:η²-	tr	19.325(4)	105.05(3)	AuCPAu	μC 2.16(5,7)	Au 2.89(4)	C,P 174.7(14,2.8)	28
C(PPh ₂)Fe(CNPh) ₃ Cl)]	Pī	17.430(4)	104.62(3)		Ph ₃ P 2.25(2,2)	C 84.1(15)		
(yellow)	2	11.906(3)	82.95(3)	FeC ₃ P ₂ Cl	PhNC 1.87(7,3)		C,C 90.9(31,3.9)	
					η ² Ρ 2.25(2,2)		174.3(34)	
					Cl 2.38(2)		P,P 69.8(8)	
							C,Cl 90.0(29,5.6)	
							C,P 92.7(22,1)	
							164.2(28)	

							P,CI 100.1(8)	
							169.9(8)	
(η ² -S(CH ₂) ₂ S)Au ₂ .	m	10.263(2)		AuSP	η ² S 2.292(4,3)	Au 3.06	S,P 165.1(1,4)	29
(μ-η ¹ :η ⁵ -C₅H₄PPh₂)₂Fe	P21/n	21.064(4)	97.06(2)		η ¹ P 2.267(3,1)			
(yellow)	4	16.259(3)		FeC ₁₀	η⁵cp 1.633		not given	
					1.645		-	
$\{(\eta^1 - F_3 CCOO)Au\}_2$.	m	15.325(1)		AuOP	η ¹ Ο 2.078(3)	Au 3.254(1)	O,P 177.1(1)	30
(μ-η ¹ :η ⁵ -C ₅ H ₄ PPh ₂) ₂ Fe	C2 ₁ /c	19.058(4)	95.98(3)		η ¹ P 2.219(2)			
(yellow)	4	15.373(3)		FeC ₁₀	η⁵C 2.051(3)		not given	
{(C ₁₆ H ₉)Au} ₂ (μ-η ¹ :η ⁵ -	tr	11.255(4)	104.92(2)	AuCP	C 2.061(8)	Au 8.315	C,P 172.1(3)	31
C ₅ H ₄ PPh ₂) ₂ Fe	Ρī	13.484(4)	91.99(3)		η ¹ Ρ 2.295(2)			
(orange)	1	9.406(2)	114.50(2)	FeC ₁₀	η⁵C 2.033(8)-		not given	
					2.058(8)			
(CIAu) ₂ (μ-η ¹ :η ⁵ -	tr	16.192(4)	93.39(3)	AuCIP	Cl 2.287(4,14)		Cl,P 175.8(1,3)	32
C₅H₄PPh₂)₂Fe ^c	Ρī	16.921(4)	94.28(2)		η ¹ Ρ 2.331(3,9)			
(yellow)	3	10.878(5)	115.29(2)	FeC ₁₀	η⁵C not given		not given	
				AuCIP	CI 2.282(3)		CI,P 173.4(1)	
					η ¹ Ρ 2.229(3)			
				FeC ₁₀	η⁵C not given		not given	

Footnotes: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and the second is maximum deviation from the mean b. The chemical identity of the coordinated atom/ igand is specified in these columns. c. There are two crystallographically independent molecules; d. There are four crystallographically independent molecules

COMPOUND (colour)	Cr. cl. Sp.Gr. Z	a [Å] b [Å] c [Á]	α [°] β [°] γ [°]	Chromo- phore	M - L [Á]	M - M [Á] M – L - M [°]	L – M - L [°]	Ref.
A:AuFe₃ (PPh ₄)[(Ph ₃ P)Au. Fe ₃ (μ ₃ -Te)(CO) ₉]	m P2₁/c	16.970(5) 12.966(4)	95.25(3)	AuPFe ₂	Ph ₃ P ^b 2.290(4)	Fe 2.667(3,15)	P,Fe ^b 147.8(1,8) Fe,Fe 64.3(1.8)	33
(red)	4	21.108(8)		FeC ₃ Te. AuFe ₂ (x2)	OC 1.747(20,59) µ₃Te 2.502(3,3)	Fe 2.620(3) 2.836(3) Te 69.1(1)	C,C 98.5(10,8.8) C,Te 95.2(7,6.1) 153.3(7,2.5) C,Au 74.2(6,8.1) 158.1(8,1.2) C,Fe 100.9(7,9.9) 149.0(6,7.4) Te,Au 111.0(1,6) Au,Fe 57.9(1,5) 99.1(1,4) Fe,Fe 57.3(1,1)	
				FeC ₃ TeFe ₂	OC 1.733(24,1) 1.819(22) µ₃Te 2.457(3)	Fe 2.621(4,1) Te 63.8(1,1)	C,C 99.6(10,1.7) C,Te 104.5(7,1.2) 141.6(4) C,Fe 93.3(7,5.1) 160.0(7,1) Te,Fe 88.9(1,1) Fe,Fe 65.6(1)	
(PPh ₄)[(Ph ₃ P)Au. Fe ₃ (μ-CO)(CO) ₁₀	m P2₁/c	17.532(2) 13.433(1)	95.01(2)	AuPFe ₂	Ph ₃ P 2.28(1)	Fe 2.643(1,11)	P,Fe 150.5(1,1.1) Fe,Fe 59.7(1)	34
(dark red)	4	21.373(3)		FeC₄Au. Fe₂ (x2) FeC₄Fe₂	OC 1.759(3,44) μOC 1.954(2,30) OC 1.753(3,30)	Fe 2.655(1,27) C 84.7(1)	Au,Fe 59.7(1) 97.0(1) Fe,Fe 59.9(1)	
(Ph₃P)AuFe₃. (μ₃-n²-HC=NBu ^t)(CO)₅ ^c	tr Pī	12.815(3) 16.265(4)	67.15(2) 73.46(2)	AuPFe ₂	Ph ₃ P 2.286(5)	Fe 2.675(3,4)	P,Fe 149.9(1,2.5) Fe.Fe 59.7(1)	35
(deep red)	4	19.106(3)	73.12(2)	FeC₃N. AuFe₂	OC 1.73 μN 1.96(1)	Au 2.671(3) Fe 2.635(3,28) N 83.8(6)	Au,Fe 60.2(1) 90.1(1) Fe,Fe 88.1(1)	
				FeC₄N. AuFe₂	OC 1.73 μC 2.08(2) μN 2.02(1)	Au 2.679(1) Fe 2.560(3) 2.662(3)	Au,Fe 60.0(1) 90.9(1) Fe,Fe 59.9(1)	

Table 3. Crystallographic and structural data for heterotetranuclear (gold, iron) clustersa

				FeC4Fe2	OC 1.73	C 79.7(1) Fe2.560(3)	Fe Fe 62 2(1)	
					uC 1.91(2)	2.607(3)	,(.)	
				AuPFe ₂	Ph ₃ P 2.290(5)	Fe 2.659(2)	P.Fe 150.8(1.3.1)	
				_		2.717(3)	Fe,Fe 58.6(1)	
				FeC ₃ N.	OC 1.74	Au2.659(2)	Au, Fe 61.8(1)	
				AuFe ₂	μN 1.97(1)	Fe 2.635(3,8)	104.9(1)	
						N 81.9(4)	Fe,Fe 58.5(1)	
				TeC₄N.	OC 1.74	Au 2.717(3)	Au,Fe 59.6(1)	
				AuFe ₂	μC 2.09(2)	Fe 2.574(3)	105.1(1)	
					μN 2.04(1)	2.627(2)	Fe,Fe 61.1(1)	
						C 79.4(6)		
				FeC ₄ Fe ₂	OC 1.74	Fe 2.574(3)	Fe,Fe 60.5(1)	
					μC 1.94(2)	2.643(3)		
(Ph ₃ P)AuFe ₃ .	m	18.745(3)		AuPFe ₂	Ph₃P 2.251(8)	Fe 2.649(3,4)	P,Fe 147.7(2,4.6)	36
(µ₃-SPr [′])(CO) ₉	P21/c	10.638(2)	111.57(3)				Fe,Fe 63.8(1)	
(dark red)	4	18.345(3)		FeC₃S.	OC 1.76(4,7)	Au 2.649(3,4)	S,Au 106.6(3)	
				AuFe ₂	2.04(4)	Fe 2.638(8,7)	S,Fe 51(3,3)	
				(x2)	µ₃S2.121(10,22)	2.800(6)	Au,Fe 57.9(1)	
						S 76.6(4,0)	97(4,0)	
						82.7(3)	Fe,Fe 58(2,0)	
				FeC ₃ SFe ₂	OC 1.80(4,0)		S,Fe 51.4(2,2)	
					1.87(5)		Fe,Fe 64.1(2)	
					µ₃S 2.14(1)			
B: Au ₂ Fe ₂								
Au₂(μ-η²-dppm).	m	16.405(5)		AuPFeAu	P 2.276(2,2)	Fe 2.531(2,4)	P,Fe175.04(9,2.36)	37
Fe ₂ (CO) ₈	P2 ₁ /n	17.031(8)	95.64(2)	(x2)		Au 2.915(1)	P,Au 91.20(8,6)	
(red)	4	12.400(4)					Fe,Au87.46(5,2.28)	
				FeC₄AuFe	OC 1.77(1,1)	Au 2.531(2,4)	C,C 97.9(5,7.3)	
				(x2)		Fe 2.900(1)	150.6(5,9)	
							Au,Fe 87.80(6,14)	
[Au(μ-η²-dppm)Fe.	m	21.930(9)		AuPFeAu	P 2.280(6,14)	Fe 2.549(3,14)	P,Fe 162.9(2,1.2)	38
(CO) ₃ {Si(OMe) ₃ }] ₂ .	P21/a	17.826(7)	90.57(2)	(x2)		Au 2.962(1)	P,Au 88.0(1,7)	
CH ₂ Cl ₂	4	11.297(5)					Fe,Au 106.0(1,1.2)	
(colourless)				FeC₃Si.	OC not given	Au 2.962(1)	C,C 106(1,2)	
				Au (x2)	P 2.235(6,9)		147(1,4)	
					Si 2.275(8,7)		P,Si 172.9(3,1.5)	
[Au(μ-η ² :η ⁵ -	m	11.992(3)		AuNC	ຖ [∠] N 2.148(5)	Au 3.122(1)	N,C 175.9(2)	39
$C_5H_4CH_2NMe_2$).	P2/c	12.804(3)	97.89	(x2)	η [∠] C 2.021(6)			

Fe(η⁵-cp)]₂ (yellow orange)	4	16.428(4)		FeC ₁₀ (x2)	η⁵C not given		not given	
C: Au₃Fe (F₅C ₆)₃Au(μ₃-S). Au₂{(μ-η¹:n⁵-	m P2 ₁ /n	17.876(2) 18.559(2)	104.07(1)	Au ^l PS (x2)	η ¹ Ρ 2.245(4,1) μ ₃ S 2.337(4,5)	Au 2.8889(8) S 76.36(10)	P,S 173.4(1,1.7) P,Au 122.7(1,1.9)	40
C₅H₄PPh₂)₂Fe} (orange) (at 173 K)	4	17.896)2)		Au ^{III} C₃S	C 2.05(2,3) µ₃S 2.374(4)	S 99.2(1,6.6)	S,Au 51.82(9,1.5) C,C 90.1(5,3.0) 179.5(4)	
				FeCto	n ⁵ C not given		C,S 89.9(2,2.7) 176.0(3)	
[(Ph ₂ MeP)Au(μ - η^2 - C ₅ H ₄ NS-2)Au ₂ .	m P2₁/n	13.831(3) 14.181(3)	102.17(2)	Au'SP (x2)	μS 2.339(6,2) P 2.249(4,3)	Au3.0985(12) S 83.0(2)	S,P 177.4(2,6)	41
(μ̃-η ¹ :η⁵-C₅́H₄PPh₂)₂. Fe].(otf)₂	4	31.059(7)		Àu ^l NP	N 2.065(14) P_2.239(5)	Au 3.2105(13)	N,P 173.3(5)	
(colourless) (at 173 K)				FeC ₁₀	η⁵C not given		not given	
D: Au_2FePt [(CO) ₃ Fe(µ-Pcy ₂). {Au(PPh ₃)} ₂ Pt. (1.5- n^4 -cod)]PE ₂	m P2₁/n	22.479(6) 26.781(8) 10.254(3)	102.94(2)	AuPPtFe (x2) FeCePtAue	Ph ₃ P 2.291(5,7)	Fe 2.595(3,19) Pt 2.848(1,27) Au 2 595(3 19)	P,Fe 51.6(2) Pt,Fe 59.61(3,17)	42
(not given)	7	10.234(3)			μP 2.197(6)	Pt 2.715(3) P 75.6(2)	Au,Au 113.2(1) Pt.Au 64.83(7.93)	
				PtC ₄ PAu ₂	η ⁴ C 2.20(2,2) 2.37(2,2) μΡ 2.229(5)	Au 2.848(1,27)	C,P 103.9(7,3.2) 160.9(6,4) Au,Au 99.07(3)	
E: AuM₂M´ (CO)₀Fe₂AuCo. (µ₂-COMe)(PPh₀)	m P2₁/n	13.669(3) 14.315(5)	103 12(2)	AuPFe ₂	Ph ₃ P 2.293(2)	Fe2.690(1,9)	P,Fe 150.1(1,3.7) Fe Fe 58 9(1)	43
(n ⁵ -cp) (black)	4	16.665(4)	100.12(2)	FeC₄Co. AuFe	OC 1.789(2,0) µ₃C 1.906(5,19)	Co 2.490(1,4) Au 2.690(1,9)	C,C 97.4(3,6.6) C,Fe 58.0(1,2)	
				CoC ₇ Fe ₂	OC 1.774(6) cpC 2.083(3) μ ₃ C1.932(5)	re 2.043(1)	Fe,Fe 64.1(7)	

(CO) ₃ Fe(µ ₃ -CPh). Co ₂ (CO) ₆ Au(PPh ₃)	or Pna2₁	34.617(6) 8.793(2)		AuPFeCo	Ph ₃ P 2.272(5)	Fe 2.615(3) Co 2.661(3)	not given	44
(black)	4	11.226(2)		FeC ₄ Co ₂ Au	OC 1.772(26,8)	Co 2.566(4,45)	C,C 97.9(11,6.2)	
					1.854(31)	Au 2.615(3)	C,µ₃C 146.0(8)	
					µ ₃ C 1.872(18)	C 68.9(8)	C,Co 95.8(1) 121.1(8)	
							Co,Au 92.3(1)	
				CoC₄Fe.	OC 1.788(26,34)	Fe 2.621(4)	C,C 98.6(11,6.8)	
				AuCo	µ₃C 1.959(21)	Au 2.661(3)	C,µ₃C 150.3(10)	
						Co 2.492(4)	C,Fe 118.7(8)	
						C 73.9(8)	C,Co 100.6(8)	
							Au,Co 91.7(1)	
				CoC₄FeCo	OC 1.817(34,27)	Fe 2.512(4)	C,C 101.4(17,3.0)	
					µ₃C1.953(17)		C,µ₃C 141.9(9)	
							C,Fe 102.9(7)	
							C,Co 97.9(10)	
(CO)₃Fe(µ₃-PMe).	m	12.962(4)		AuPFeRu	Ph ₃ P not given	Fe 2.677(2)	not given	45
CoRuAu(CO) ₆ (PPh ₃)	P21/C	15.082(3)	105.07(2)			Ru 2./29(2)		
(black)	4	17.264(4)		FeC₃PCo.	OC not given	Co 2.678(4)	not given	
				AuRu	µ₃P not given	Au 2.677(2)		
						Ru 2.914(3)		
				CoC₃P.	OC not given	Ru 2.679(3)	not given	
				RuFe	µ ₃ P not given	Au 2.957(3)		
				RuC₃P.	OC not given		not given	
				FeCoAu	µ₃P not given			
(CO) ₃ Fe(µ ₃ -S)Co.	tr	11.971(2)	93.45(2)					45
RuAu(CO) ₆ (PPh ₃)	Pī	14.483(3)	101.24(2)					
(black)	2	9.228(2)	77.55(1)					

Footnotes: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is the e.s.d., and maximum deviation from the mean

b. The chemical identity of the coordinated atom or ligand is specified in these columns. c. There are two crystallographically independent molecules

Fig. 1. Structure of two independent molecules of [(Ph₃P)AuFe₃(µ₄-HC=NBu^t)(CO)₆] [35]

Fig. 2. Structure of $[(F_5C_6)_3Au(\mu_3-S)Au_2\{(\mu-dppcp)_2Fe\}]$ [40]

The structure of an Au₂FePt cluster [42] is illustrated in Fig. 3. As can be seen, the FePt atoms (Fe-Pt 2.715(3)Å) are bridged by a μ -Pcy₂ fragment and by two Au(PPh₃) fragments. The propeller-like core consists of three triangles sharing a Pt-Fe edge. The dihedral angles between the Fe-Pt-Au(1) and Pt-Fe-Au(2) are 134.6^o. The average Au-Fe distance of 2.595Å is much shorter than that for the Au-Pt distance of 2.848Å. The Au-Au distance of 4.333Å is too long to indicate a chemical bond.

In a black complex with an AuFe₂Co cluster [43], a Fe₂Co triangle base is capped by an AuPPh₃ moiety from one side and by a μ_3 -COMe ligand

from the other side, resulting in a trigonal bipyramid. The average Fe-Co bond distance of 2.490Å is clearly shorter than the average value for the Au-Fe bond distances (2.690Å) or the Fe-Fe bond distance of 2.643(1)Å.

The structure of a black $(OC)_3Fe(\mu_3-CPh)Co_2(CO)_6Au(PPh_3)$ [44] contains a FeCo₂AuC core, where a CPh fragment serves as a bridge between Fe and two Co atoms. The average Fe-Co bond distance of 2.566Å is shorter than that for Fe-Au or Co-Au distances of 2.615(3) and 2.661(3)Å, respectively. The Co-Co distance of 2.492(4)Å is the shortest one.

There are two more black compounds that have the formula $(OC)_3Fe(\mu_3-E)$. $CoRuAu(CO)_6(PPh_3)$ (E = S or PMe) [45]. Both cluster are isostructural displaying a "butterfly" configuration of the metal atoms. While the cluster with μ_3 -PMe crystallized in the monoclinic class, with the μ_3 -S in triclinic. Unfortunately structural data are available only for the former. The metal-metal bond distance elongated in the order: 2.677(2)Å (Au-Fe) < 2.678(4)Å (Fe-Co) < 2.679(3)Å (Co-Ru) < 2.729(2)Å (Au-Ru) < 2.914(3)Å (Fe-Ru) < 2.957(3)Å (Co-Ru).

Inspection of the data in Table 3 reveals that the heterotetranuclear clusters crystallized in the following crystal classes: monoclinic (x11), triclinic (x2) and orthorhombic (x1). Mostly clusters are red (x5) and black (x4) of colours with two examples of orange and colourless. Gold atoms are two- AuNC [39, 41], AuSP [40, 41], three- AuPFe₂ [33-36, 43], AuPFeM (M=Au' [37,38], Pt [42], Co [44] or Ru [45]) and four-AuC₃S [40] coordinated.

The iron atoms are found six- [33-38, 42], seven-[33-36, 43-45], and ten (sandwiched) [39, 41] coordinated, cobalt atoms are six- [44, 45], seven- [44] and nine- [43] coordinate, gold seven- [42] as well as ruthenium [45].

The series of heterotetranuclear clusters is rich on the direct metal-metal bonds. The mean Au-M bond distance elongated in the order: (M=Fe, 2.633Å (2.527(2)Å [37] – 2.717(3)Å [35]) < Co, 2.661(3)Å [44] < Ru, 2.729(2)Å [45] < Pt, 2.848Å (2.821(1) – 2.875(1)Å [42]) < Au, 2.922Å (2.8889(8)Å [40] – 2.962(1)Å [38]). The mean Fe-M bond distance elongated in the order: M=Co, 2.570Å (2.486(1)Å [43] – 2.678(4)Å [45]) < Au, 2.633Å < Fe, 2.676Å (2.574(2)Å [35] – 2.900(2)Å [37]) < Pt, 2.715(3)Å [42] < Ru, 2.914(3)Å [45]. The Co-M bond distance elongated in the order: M=Co, 2.492(4)Å [44] < Ru, 2.679(3)Å [45].

2.4 Heteropentanuclear Clusters

There are twenty one heteropentanuclear clusters of the eight categories, $AuFe_4$ [46- 49], Au_2Fe_3 [11, 50-53], Au_3Fe_2 [54,55], Au_4Fe [27,56], $AuFe_3Co$ [57], Au_2Fe_2Ir [58], $AuFe_2M_2$ (M=Ir [59], Rh [60]) and AuM_3Fe (M=Co [61-62], Ru [63]), and their crystallographic and structural data are gathered in Table 4. There are five coloured $AuFe_4$ clusters [46-49] for which X-ray data are available. In dark brown $AuFe_4$ cluster [46], the internal dihedral angle of the Fe₄ butterfly framework is 114.6°. The mean Fe-Fe

bond distance is 2.655\AA (range $2.604(2) - 2.680(2)\text{\AA}$). The Au(I) atom has AuPBFe chromophore with the Au-Fe bond distance of $2.580(1)\text{\AA}$.

Dark green AuFe₄ cluster [47] contains wellseparated $(NMe_3CH_2Ph)^+$ cations. $[(OC)_{16}Fe_4Au]^-$ anion and chloride anion. The gold(III) atom sits on a center of symmetry. Two $[Fe_2(CO)_8]^2$ anions linked to a central gold(III) atom adopts a square-planar coordination with the mean Au-Fe bond distance of 2.595Å. The Fe-Fe bond distance is 2.711(2)Å. Black (OC)₁₂Fe(µ₄-COMe)Au(PEt₃) [48a] has a butterfly core. The Fe-Fe bond distances in the butterfly core range from 2.606(3) to 2.687(4)Å and average 2.638Å. Interestingly, the presence of Et₃PAu bridge across the hinge causes by a 0.05Å between in the Fe(2)-Fe(3) bond distance (2.687(4)Å) when compared to the average Fe-Fe bond distance. The Au-Fe(2) and Au-Fe(3) bond distances are 2.666(2) and 2.675(2)Å.

In green AuFe₄ cluster [48b], the four iron atoms are also in a butterfly arrangement while the gold atom bridges the two-wingtip iron atoms. The internal dihedral angle of Fe₄ butterfly framework is 107.3(1)Å. The carbide atom occupies the cavity of the Fe₄Au metal core and is bonded to all five metal atoms. The mean Au-Fe and Fe-Fe bond distances are 2.843 and 2.617Å, respectively. The four iron atoms define a "butterfly" configuration and the gold atom bridges the two "wingtip" iron atoms to give an overall "bridged – butterfly" metal framework for another green cluster [49]. The internal dihedral angle of Fe₄ butterfly framework of 71.7° is the smallest one in the series of AuFe₄ clusters.

There are also five coloured Au₂Fe₃ clusters [11, 50-53]. The black { $(Ph_3P)Au$ }₂. Fe₃(μ_3O)(CO)₉ [50] contains a Au₂Fe₃ trigonal bipyramidal moiety with Au(1) and Fe(5) atom in the axial positions and Au(2), Fe(3) and Fe(4) atoms in the equatorial positions. The molecule of the cluster has C₅ noncrystallographic symmetry, with the mirror plane passing through the atoms Au(1), Au(2) and Fe(5). The $(\mu_3$ -O)(1) atom is bonded with three iron atoms with the average Fe-O bond distance of 1.876Å and Fe-O-Fe bond angles of 88°. The Fe(3)-Fe(4) bond distance between two equatorial iron atoms (2.700(2)Å) is substantially longer than the corresponding values for Fe(3)-Fe(5) (2.537(2)Å) and Fe(4)-Fe(5) (2.578(2)Å) bonds between axial and equatorial iron atoms. The same tendency was

found for Fe-Au bond lengths 2.782(2)Å (Au(2) – Fe(3) and 2.749(2)Å (Au(2) – Fe(4)) for two atoms in equatorial positions and 2.699(2)Å (Au(1) – Fe(3)), 2.714(2)Å (Au(1) – Fe(4)) for atoms in equatorial and axial positions. The Au-Au distance is 2.9915(9)Å.

Structure of deep red Au₂Fe₃ cluster [51] consists of {HFe₃(CO)₉(μ_3 -P)}²⁻ cluster frame coordinated to Au···Au bonded {Au₂(PPh₃)₂}²⁺ unit (Fig. 4). Distinct coordination can be see for each {(Ph₃P)Au}⁺ fragment. The Fe-Fe bond distances in the Fe₃ triangular range from 2.645(3) to 2.693(3)Å and Fe-Fe-Fe bond angles from 59.26(7) to 61.06(7)⁹. The Fe(2)-Au(2) bond length is 2.678(2)Å and Au(1)-Au(2) is 2.991(1)Å.

Structure of black $\{(Ph_3P)Au\}_2Fe_3(\mu_3-S)(CO)_9$ [52] is similar to that of black $\{(Ph_3P)Au\}_2Fe_3(\mu_3-O)(CO)_9$ [50]. Both contain a Fe₃Au₂ trigonal bipyramidal moiety. The M-M bond distances differ from each other, while the mean Fe_{eq}-Au_{eq} bond distance in [52] of 2.734Å is about 0.031Å shorter than that in [50], all remaining mean M-M bond distances are somewhat longer in [52] than those in [50]. The Fe_{eq}-Fe_{eq} bond distances are 2.864(4)Å [52] vs 2.700(2)Å [50], av. Fe_{eq}-Fe_{ax} 2.696Å [52] vs 2.557Å [50], av. Fe_{eq}-Au_{ax} 2.706Å [52] vs 2.700Å [50], and Au-Au 3.020(1)Å [52] vs 2.9915(9)Å [50].

Two yellow Au₂Fe₃ [11, 53] contain [Fe₃(μ - η^{5} : η^{1} -C₅-H₄PPh₂)₆Au₂]²⁺ cations and ClO₄⁻ [11] or Cl⁻ [53] anions. The geometry around the gold atom is in a distorted trigonal pyramidal coordination environment. The gold atom lays 0.073Å [11] and ~0.3Å [53] out of the plane of the three phosphorus atoms. The mean Aq-P bond distances are 2.365Å [11] and 2.380Å [53]. The Fe···Au separations over 4.0Å ruled out direct metal-metal bond.

Structure of two orange Au₃Fe₂ clusters [54,55] differs from each other. The structure of $[{(OC)_4Fe}_2Au_3(\mu-\eta^2-dppm)]^-$ anion [54] consists of an isosceles Au₃ triangle with two shorter edges, Au(1)-Au(3) and Au(2)-Au(3), 2.921(2)Å, spanned by Fe(CO)₄ groups, and a longer one $(Au(2) \cdots Au(3), 3.578(2)Å, bridged by a \mu-\eta^2$ dppm ligand. The mean Au-Fe bond length is 2.562Å. In the structure of the other orange Au₃Fe₂ cluster [55], two satellite {ClAu(μ - η^1 : η^5 ddpea)Fe((μ - η^{1} : η^{5} -C₅H₄PPh₂)} moieties are held together by the central AuCl group. The central gold atom has a trigonal-planar (AuP₂Cl) structure and the satellite gold atoms are linearly (AuCIP) coordinated. Both iron atoms are sandwiched (FeC_{10}).

The Au₄Fe core is found in two orange clusters [27,56]. The structure which is isostructural contains a trigonal bipyramidal Au₄S fragment with one Au and S atom at the axial positions. There are intramolecular Au-Au contacts, the shortest are between the equatorial gold atoms and the gold atom perpendicular to them with the values of 2.9047(12), 2.9210(12) and 2.9775(14)Å. The Au-S-Au angles for the three gold atoms located in the equatorial plane are 124.4(2), 109.8(2) and 108.1(2)°, these values differ from the ideal 120°, which may be is consequence of the interaction with the other gold atom. The Au-S-Au angles between the gold atom in the apical position and the gold atoms in the plane are very narrow, $74.1(2) - 78.1(2)^{\circ}$.

Fig. 3. Structure of $[(OC)_3Fe(\mu-Pcy_2){Au(PPh_3)}_2Pt(1,5-cod)]^+ [42]$

Fig. 4. Structure of $[{(Ph_3P)Au}_2(\mu_3-P)Fe_3(\mu-H)(CO)_9]$ [51]

Structure of red $(OC)_9Fe_3Co)CO)_3(\mu_5-C)Au(PPh_3)$ was investigated at room temperature [57a] and at 173K [57b]. The structures are shown in Fig. 5. As it can be seen the structures differ from each other. While at room temperature the Fe₃Co butterfly moiety, with a carbide atom C(1) inside it, is linked to an Au atom by one Fe(2)-Au and Co-Au bond through the wingtip iron atoms (Fig. 5a), at 173K (Fig. 5b) the Fe₃Co butterfly moiety with a carbide atom C(1) inside it is linked to an Au atom by two Fe-Au bonds through the wingtip iron atoms. Such differences reflect the metal-metal bonds (Table 4).

The cluster core of orange Au₂Fe₂Ir comprises [58] a spiro or "bow-tie" arrangement of the five metal atoms with the two halves of the tie defined by the Ir(1) Fe(1) Fe(2) and Ir(1) Au(1) Au(2) triangles. The dihedral angle between the planes is 86.0°. The metal-metal bonds are Fe-Fe, 2.501(5)Å, Fe-Ir, 2.709(3) and 2.744(4)Å and Ir-Au, 2.726(1)Å. The distances are all comparable to those found in $[(OC)_5Fe_2(\mu-CO)_2Ir_2(\mu-CO)(CO)_4Au(PPh_3)]^-$ [59]. In the anion, the Au(PPh_3) group caps a FeIr₂ face, with Au-Fe, 2.806(1), Au-Ir, 2.797(1) and 2.829(1), and Fe-Ir, 2.668(1) and 2.776(1)Å.

Structure of orange AuFe₂Rh₂ cluster [60] consists of discrete [PPh₄]⁺ cations and $[(OC)_5Fe_2(\mu-CO)_3Rh_2(CO)_4Au(PPh_3)]^{-1}$ anions. with normal van der Waals contacts. The metallic framework can be described as a trigonal bipyramid, with $Fe(CO)_3$ and $Au(PPh_3)$ fragments occupying the apical vertices, whilst two rhodium and the remaining iron atom are located in the equatorial positions, each being connected to only two terminal CO ligands. Bridging CO groups span all the edges of the equatorial plane. The metal-metal bonds are: Feap-Feeq, 2.656(1)Å, Feap-Rh, 2.634(1) and 2.640(1)Å; Fe_{ea}-Rh, 2.732(1), 2.750(1) and 2.760(1)Å, Fe_{eq}-Au, 2.793(1)Å and Au-Rh, 2.781(1) and 2.782(1)Å.

Fig. 5. Structure of [(CO)₉**Fe**₃**Co(CO)**₃(μ₅-**C)Au(PPh**₃)] *a) at room temperature* [57*a*]; *b) at 173 K* [57*b*]

Structure of three purple AuCo₃Fe clusters [61,62] consists of a trigonal bipyramidal array of metal atoms, with the gold and iron atoms at apical positions. The mean metal-metal bonds are: Au-Co, 2.715Å, Co-Fe, 2.59Å and Co-Co, 2.52Å.

Structure of a red AuRu₃Fe cluster [63] contains four $M(CO)_3$ (M=Fe and Ru) groups in a butterfly arrangement, with the nitrogen atom coordinated to all four metal atoms. The gold atom symmetrically bridges the hinge Ru(3)-Ru(4) bond. The mean of Au-Ru bonds is of the value 2.760Å. The gold bridged hinge Ru-Ru bond is lengthened (2.839(2)Å) compared to have nonbridged Ru-Ru bonds (av. 2.788Å). The Fe-Ru(3) and Fe-Ru(4) bonds are 2.717(2) and 2.639(2)Å.

Inspection of the data in Table 4 reveals that the clusters crystallized in three crystal classes orthorhombic (x5), tridinic (x8) and monoclinic (x9). The clusters covered wide range of colours: vellow, green, purple, brown each (x2), red, black each (x3) and orange (x6). The gold atoms are found in coordination number two- AuPCI [55], three- AuP₃ [11, 53], AuPM₂ (M=Fe [48a, 52], Ir [59], Co [62], Ru [63], AuBPFe [46], AuP₂Au [51], AuPFeAu [54], AuP2Cl [55], AuSPAu [56], AuPIrAu [58]; four- AuSPAu₂ [27], AuFe₄ [47], AuCPFe₂ [48b, 49, 57b], AuP₂FeAu [51], AuPM₃ (M=Fe [52], Co [61]), AuFe₂Au₂ [54], AuC₃S [56], AuSPCoFe [57a], AuCPIrAu [58], AuPRh₂Au [60], and five- AuPFe₃Au [50] coordinated. The iron atoms are five- [48b], six- [46-48, 51, 52, 54, 59-60], eight- [50, 52, 57, 59, 60] and ten (sandwiched) [11, 27, 53, 55, 56] coordinated. Remaining heterometal partners are coordinated: six- Ru [63], seven- Co [57], Ir [58], and eight- Ir [59], Rh [60], Co [61, 62] and Ru [63].

The mean Au-M bond distance elongated in the sequence: $2.702\text{\AA}(2.545(4) - 2.880(1)\text{\AA})$ (M=Fe) < $2.724\text{\AA}(2.633(1) - 2.829(1)\text{\AA})$ (M=Ir) < $2.754\text{\AA}(2.710(3) - 2.873(1)\text{\AA})$ (M=Co) < $2.760\text{\AA}(2.754(1) - 2.766(1)\text{\AA}$ (M=Ru) < $2.782\text{\AA}(2.781(1) - 2.783(1)\text{\AA})$ (M=Rh) < 2.936\AA ($2.847(1) - 2.991(1)\text{\AA}$ (M=Au). The mean Fe-M bond distance elongated in the order: 2.545\AA (M=Au) < 2.582\AA (M=Co) < 2.640\AA (M=Fe) < 2.689\AA (M=Rh) < 2.705\AA (M=Ru) < 2.729\AA (M=Ir). The mean Co-Co and Ru-Ru bonds are 2.52 and 2.813\AA , respectively.

2.5 Heterohexa- and Heteroheptanuclear Clusters

In total, twenty one (ten heterohexa- and eleven heteroheptanuclear) clusters have been included in this chapter (Table 5).

There are seven colored Fe₄Au₂ derivatives [21,64-68], for which X-ray data are available. In the green complex [64], the four Fe atoms define a butterfly configuration while the Au(1) atom bridges the two single metal atoms Fe(1) and Fe(2), and the Au(2) atom asymmetrically bridges the butterfly created by the Fe(1), Fe(2)and Fe(4) face and the Au(1) atom. The carbido (C1) atom lies approximately at the center of the distorted square defined by the Fe(1), Fe(2), Fe(3), and Au(1) atoms. The Au(2)-Fe(4) distance (2.560(2)Å) is markedly shorter than those for Au(1)-Fe(2) and Au(1)-Fe(1) (2.825(2) and 2.831(2)Å), respectively. The Au-Au bond length is 2.860(2)Å. In addition the dppm ligand bridged two gold atoms. In another four Fe₄Au₂ clusters [65 - 67] the boron atom, lying approximately at the center of a distorted octahedron formed by six metal atoms.

Structure of orange $(cp)Fe(C_5H_4)(Ph)PAuC \equiv CAuP(Ph)(C_5H_4)Fe(cp)$ [21], is centrosymmetric with respect to the C=C bond. The P-Au-C≡C unit is basically linear, with an angle at C(1) of $178(1)^{\circ}$ and at Au(1) at 175.9(2)^o. Each of the ferrocenyl moieties has an eclipsed geometry with only small in-plane rotations of the ring with respect to each other $(6.4^{\circ} \text{ for } C(11) \text{ and } C(20) \text{ and } 9.7^{\circ} \text{ for } C(21) \text{ and }$ C(30)). The cyclopentadienyl rings within to each ferrocenyl unit are not perfectly parallel, with mean interplanar angles of 2.4 and 3.6°, respectively. The two substituent ferrocenyl units are oriented essentially orthogonal with respect to each other with a dihedral angle of 88º between the mean planes of C(11)-C(15) and C(21)-C(25).

The molecule of Fe_4Au_2 cluster [68] lies on a crystallographic 2-fold axis which bisects the Au(1)-Au(1') and Fe(2)-Fe(2') bonds and passes through the carbido C(1) atom. The four iron atoms define butterfly geometry with a dihedral angle between the "rings" of 72.9°. The two gold atoms lie above but slightly skewed respect to the with Fe(2)-Fe(2') "hinge" bond and bridge the "using-tip" Fe(1) and Fe(1') atoms. The six metal atoms define a distorted octahedron with the carbido C(1) atom, lying approximately at its center.

Structure of dark red Fe₃Au₃ cluster [51] is shows in Fig. 6. The structure consists of a ${Fe_3(CO)_9(\mu_3-P)}^3$ unit frame coordinated to a triangular ${Au_3(PPh_3)_3}^{3+}$ unit. The Au₃ plane makes a dihedral angle of 46^o with respect to the Fe₃ plane. The mean Fe-Au and Fe-Fe bond distances are 2.716 and 2.652Å, are much shorter than that of Au-Au distance with the mean value of 3.207Å.

Fig. 6. Structure of [(CO)₉Fe₃(μ₅-P){Au(PPh₃)}₃] [51]

There are two yellow Fe₂Au₄ complexes, which crystallize in the same space group C2/c, as dimeric $[(CO)_4FeAu_2(\mu-\eta^2-L)]_2$ (L = dppm or since the former lies on dppe), but a crystallographically imposed two fold axis, and the latter on a center of symmetry the structures differ markedly [69]. In the latter, two virtually parallel P-CH₂-CH₂-P moieties function as bridging ligands between two well separated (>6.0Å) Au₂Fe(CO)₄ fragments leading a fourteen-membered ring in a pseudo-chair conformation. In the Au_2Fe triangle Au(1)-Au(2)distance is 2.977(1)Å and the mean Au-Fe bond distance is 2.530Å. In contrast the structure of the former contains an approximate rhombus of gold atoms, which is folded about the Au(1)-Au(1') diagonal of length 3.041(2)Å. Tetrahedral angle between Au(1)-Au(2)-Au(1') and Au(1)-Au(2')-Au(1') planes is $158.3(3)^{\circ}$. The Fe(CO)₄ and doom ligands span the four edges of the rhombus lying alternately above and below the Au₄ mean plane.

Structure of yellow FeAu₅ cluster [70] contains well separated $[(ox)_3FeAu_5(PPh_3)_5]^+$ cations and PF₆⁻ anions. The cationic FeAu₅ cluster form bi capped FeAu₃ tetrahedron with Fe-Au bond distances from 2.590(1) to 2.65(1)Å to all five Au

atoms. The Au-Au distances range from 2.7760(4) to 3.0880(4)Å.

In black Fe₆Au cluster [48b] the {Au(PPh₃)}⁺ unit caps one of the two triangular faces of the {Fe₆(μ_6 -C)(μ -CO)₃(CO)₁₃}²⁻ anion lacking bridging CO ligands. The mean of the three Fe-Au bond distances is 2.750Å. The Fe-Fe bonds range from 2.562(4) to 2.801(4)Å. In orange red Fe₆Au derivative [71] the ppn⁺ cations and [{(CO)₉(μ_3 -PMe)Fe₃(μ_3 -P)}₂Au]⁻ anions are well separated. In the complex anion, two identical [(CO)₉(μ_3 -PMe)Fe₃(μ_3 -P)] units are held together by Au(1) atom, with the central P-Au-P angle of 177°.

Structure of black Fe₅Au₂ cluster [72] contains two Au(PEt₃) groups, which display different bonding modes. The five iron atoms lie at the vertices of a square-based pyramid with the carbide atom lying 0.11Å below the square base. One Au(PEt₃) group symmetrically bridges the Fe(1)-Fe(4) basal edge, the other three basal edges being asymmetrically bridge by carbonyls. The Au atom of the second Au(PEt₃) group caps the square base of the Fe₅ square pyramid to give a distorted octahedral metal arrangement and is also within bonding distance of the carbide atom. The remaining eleven carbonyls are terminally coordinated two of each of the basal iron atoms and three to the apical iron atom. The Fe-Au distances range from 2.696(2) to 3.036(3)Å, and Fe-Fe distances from 2.573(3) to 2.941(3)Å.

Structure of Fe₄Au₃ derivative [73] is based upon a butterfly array in iron atoms containing a naked boron atom. The boron atom is within bonding contact of all seven metal atoms. The boron atom lies 0.457(1)Å above the Fe_{ring}- Fe_{ring} (i.e. Fe(3)-Fe(4)) axis. The three Au(PPh₃) fragments are asymmetrically sited over the surface of the Fe₄B core Au(1) caps the Fe(1)-Fe(4)-B face, Au(2) bridges the Fe(3)-B edge, and Au(3) bridges both Fe(4)-B and Au(2)-B. The Fe-Au bond distances range from 2.616(3) to 2.711(5)Å.

Structure of purple Fe₃Au₄ cluster [74] consists of a slightly distorted square-planar $[Au_4(PPh_3)_4]^{4+}$ unit (Au-Au = 2.976(1)-3.224(2)Å) coordinated to the $[Fe_3(CO)_9P]^{3^\circ}$ (Fe-Fe = 2.632(5)-2.670(5)Å) cluster framework. The dihedral angle between the Fe₃ plane and the Au₄ plane is 30°. The phosphorus atom is within bonding contact of all seven metal atoms. Three of the four Au(1) atoms in the Au₄ square also interact with Fe1 and Fe2 in the Fe₃ triangle. Au₃ bridges the Fe1Fe2 edge, while Au2 and Au4 interact with Fe2 and Fe1, respectively. The Fe-Au bond distances range from 2.690(3) to 2.830(4)Å.

X-ray structure of red Fe₂Au₅ derivative [54] shows well separated $[{(OC)_4Fe}_2Au_5(\eta^2$ $dppm)_2 l^{2+}$ cation and BF_4^- anions. There are two crystallographically independent molecules, differing mostly by degree of distortion. The metal frameworks of the cations consists of a "low-tic" of gold atoms whose tips are bridged by μ - η^2 -dppm ligands, whereas the Fe(CO)₄ units are triply bridging the central Au(1) and two apical gold (Au(2), Au(3)) atoms. The central atoms sit on inversion centers, and the gold frames are therefore planar. The Fe(CO)₄ units adopt idealized Cs symmetry with the two iron atoms pointing upward and downward with the respect to the Au₅ plane (distances from the plane ±0.92Å). The Fe-Au bond distances are in the range of 2.438(3) - 2.750(3)Å and Au-Au distances are rather scattered (Au(center) -Au(periphery) range, 2.630(1) - 2.924(1)Å; Au(periphery) - Au(periphery), 3.051(2) and 3.312(2)Å.

Structure of orange Fe₂Au₅ derivative [40] contains well separated [{Fe(μ -dppcp)₂}₂.{Au¹₂(μ_{3} -S)}₂Au¹¹(C₆F₅)₂]⁺ cations, SO₃CF₃⁻ anions and CH₂Cl₂ molecules. In the complex cation trigonal pyramidal geometry about each sulfur atom is created by the three gold atoms with common Au(III) atom. There are several gold-gold interactions, the shortest are those for Au(I)-Au(I) in the [SAu₂(dppcp)₂Fe] units (2.9158(9) and 2.9511(9)Å. There is also a further Au(I)-Au(I) contact of 3.0436(8)Å between two gold atoms of different [SAu₂(dppcp)₂Fe] units. The Au(I)-Au(II) interactions are 3.2195(8) and 3.3661(10)Å.

Structure of red FeMn₄Au₂ cluster [75] is centrosymmetric with iron in $Fe(C_5H_4PPh_2)_2$ at a crystallographic inversion center, consists of a ferrocenylphosphine bringing two heterometallic triangles (AuMn₂) with Au-Mn bond distance of 2.660(1) and 2.776(1)Å and Mn-Mn of 3.049(2)Å. An alternative view of the cluster is that two Mnbonded dimers are bridged Mn by a fragment heterometallic {Au- $P(Ph_2)C_5H_4FeC_5H_4(Ph_2)P-Au$. In addition each of the PPh₂ ligands serves as a bridge between two Mn atoms and created four-membered bimetallic rings {PMnMnP}.

Structure of orange red $FeRu_4Au_2$ cluster [76] is shows in Fig. 7. The six metal atoms encapsulate the boron atom rendering it interstitial although the geometry of Ru_4Au_2 core is non-octahedral; the Au-Au(*) vector lies at 46° to Ru(1)-Ru1(*) vector. The two Au atoms are related by a molecular C_2 rings are locked in an approximately mutually eclipsed position. The mean Au-Ru bond distance of 2.695(2)Å is about 0.168Å shorter than that of Ru-Ru bond distances (2.863(5)Å). The Au-Au bond distance is 2.818(2)Å.

The red FeRu₄CuAu cluster [77] is only example, which contains four different metal atoms. The metal skeleton to the cluster consists of a tetrahedron of ruthenium atoms, with one face [Ru(1)Ru(2)Ru(3)] capped by a copper atom and one of the faces of the CuRu₃ tetrahedron so formed further capped by a gold atom to give an overall capped trigonal-bipyramidal metal-core geometry. The metal-metal bond distances elongated in the order: 2.641(1)Å (Au-Cu) < 2.795(1)Å (av.) (Au-Ru) < 2.807(2)Å (av.) (Cu-Ru) < 2.885(1)Å (av.) (Ru-Ru). Interestingly, that the metal-metal bond distances elongated while the sum of the covalent radii of the respective metals diminishes: 2.81Å (Au+ Cu) > 2.69Å (Au+Ru) > 2.64Å (Cu+Ru) > 2.52Å (Ru+Ru).

Inspection of the data in Table 5 reveals that in the series of hexanuclear clusters the mean M-M bond distance elongated in the order: 2.646Å (Fe-Fe) < 2.709Å (Fe-Au) < 2.857Å (Au-Au). In the series of heptanuclear clusters the order is: 2.660Å (Au-Mn) < 2.670Å (Fe-Fe) < 2.700Å (Au-Fe) < 2.773Å (Au-Ru) < 2.857Å (Au-Au). The gold atoms are two- AuCIP [21], AuPS [40], AuPFe [69, 70], AuP₂ [51, 71], three- AuP₂Fe

[51], AuPFeAu [64], AuPMn₂ [74], four- AuC₂S₂ [40], AuPFe₃ [48b], AuPFeAu₂ [54], AuCPFe₂ [64, 68], AuBEFeAu, (E=As [65], P [66, 67]), AuP₂Au₂ [74], AuBPRuAu [76], five- AuHPFeAu₂ [73], AuBPFe₂Au [73], AuHPRu₂Au [77], AuPRu₂Au₂ [77], and six- AuFe₂Au₄ [54], AuCIPFe₄ [72], AuP₂Fe₂Au₂ [74] coordinated. The iron atoms are from six- to ten- coordinated, manganese five- and ruthenium from seven- to nine- coordinated. The clusters crystallized in two crystal classes triclinic (x7) and monoclinic (x14). $[{(CO)_4Fe}_2Au_5(\eta^2 - dppm)_2](BF_4)_2$ Red [54] contains two crystallographically independent molecules differ mostly by degree of distortion.

2.6 Heterooligo- and Heteropolynuclear Clusters

Structural parameters for these clusters are gathered in Table 6. Structure of the dark orange Fe_8Au cluster [46] consists of $[Au(PMePh_2)_2)_2]^+$ cation and $[{(CO)}_{12}(\mu-H)Fe_4(\mu_5-BH)]_2Au]^-$ anion. Complex anion contains two $\{HFe_4(CO)_{12}BH\}$ fragments fused in "face-to-face" manner via a single gold(I) atom which bridges one Fe wingtip - B edge of each cluster unit. The geometry of each butterfly fragment varies little. The internal dihedral angle of the Fe₄ skeleton is 116.6(3)^o. The two clusters subunits are twisted with respect to one another with a spiro twist angle of 30.9(3)º at the gold(I) atom. The Au-Fe bond distance is 2.615(1)Å. The Fe-Fe bond distances range from 2.630(2) to 2.688(2)Å (av. 2.651Å). In complex cation $[Au(PMePh_2)_2]^+$, the is unexceptional with linear geometry coordination of the Au(I) center, (P-Au-P = 180.0(1)^o).

In dark green Au₃Fe₆ cluster [78] three Fe₂Au units are linked by the three - legged propeller like structure of the triphos ligand (Fig. 8). Interestingly, the gold atoms are placed at the corners of an almost equilateral triangle. The mean Au-Fe bond distance of 2.689A is about 0.083Å longer than the mean Fe-Fe bond distance (2.606Å). Structure of vellow $[{Fe(C_5H_4PPh_2)}_3{(\mu_3-S)Au_3}_2].8CHCl_3$ [27] consists of an S₂Au₆ core with Au-Au distances vary from 2.905(2) to 3.272(2)Å. The shortest contacts, Au(1)-Au(4) 2.905(2)Å, Au(1)-Au(2) 2.922(2)Å and Au(4)-Au(5) 2.920(2)Å, involve gold atoms of the [Au₂dppf]²⁺ fragment that are bonded to the same sulfur atoms. The shortest Au…Fe separation is 4.284Å.

Fig. 8. Structure of [{(CO)₆(μ -CO)(μ -HC=CPhH)Fe₂Au}₃(μ - η ³-triphos)] [78]

In black Fe₈Au₂ cluster [48a] two "butterfly" clusters {(μ -CO)(CO)₁₁(μ_3 -CO)Fe₄Au(PEt₃)} are connected by {K(18 – crown - 6)} unit (Fig. 9). The potassium is coordinated to the six oxygens of the crown ether in a planar array and also axially to two carbonyl oxygen of two "butterfly" clusters. The Fe-Fe bond distances in butterfly range from 2.623(1) to 2.654(1)Å (av. 2.642Å) and Au-Fe bond distance is 2.666(1)Å.

COMPOUND (colour)	Cr. cl. Sp.Gr. Z	a [Á] b [Á] c [Á]	α [°] β [°] γ [°]	Chromo- phore	M - L [Á]	M - M [Á] M – L - M [ៗ	L – M - L [°]	Ref.
{P(2-MeC ₆ H ₄) ₃ }Au. (µ ₅ -BH)Fe ₄ (µ-H)(CO) ₁₂ (dark brown)	tr Pī 2	10.223(2) 12.814(3) 15.231(4)	104.02(2) 90.47(2) 90.13(2)	AuBPFe	μ₅B ^b 2.310(10) P 2.321(2) OC not given	Fe 2.580(1)	B,P ^b 149.2(2) B,Fe 47.0(2) P,Fe 163.9(1)	46
х, , , , , , , , , , , , , , , , , , ,			()	FeC₃B. AuFe₂	µ₅B 1.964(9)	Au 2.580(1) B 73.8(3) Fe 2.678(2,3) B 83 6(4)	B,Au 59.3(3) B,Fe 49.6(3,1) Au,Fe 99.9(1,1.3) Fe Fe 58 2(1)	
				FeC ₃ BFe ₂ (x3)	OC not given µ₅B 1.964(9) 2.052(9,4)	Fe 2.655(2,51) B 81.9(4,3.1)	B,Fe 49.1(3,5.2) Fe,Fe 60.1(1,1.4) 94.5(1,1)	
(NMe ₃ CH ₂ Ph) ₂ . [(CO) ₁₆ Fe ₄ Au]Cl _(dark green)	or Pccn 4	23.618(4) 16.600(3) 11.594(3)		Au ^{lli} Fe₄ FeC₄AuFe (x4)	OC 1.78(1,2)	Fe 2.595(1,12) Fe 2.771(2)	Fe,Fe not given C,C 158.9(6,7.3)	47
(CO) ₁₂ Fe ₄ (μ ₄ -COMe). Au(PEt ₃)	tr Pī	14.764(2) 9.574(1)	87.26(1) 82.33(2)	AuPFe ₂	Et ₃ P 2.278(5)	Fe2.671(3,5)	P,Fe 149.7(2,3.2) Fe,Fe 60.40(8)	48a
(black)	2	11.094(2)	112.131)	FeC₄AuFe₂ (x2)	OC not given μ₄C 1.98(2,1)	Au 2.671(3,5) Fe 2.638(4,49)	Au,Fe 76.95(9,20) 110.90(11,10) Fe,Fe 59.24(10,36) 97.38(12,43)	
				FeC_4Fe_2	OC not given	C 159 5(8)	Fe.Fe 61.63(9)	
				FeC ₄ OFe ₂	OC not given μ₄C 2.14(2) μ₄O 2.029(9)	0 100.0(0)	Fe,Fe 61.49(9)	
(CO) ₁₁ (ON)Fe ₄ . (μ ₅ -C)Au(PPh ₃)	m P2₁/n	17.142(5) 15.738(2)	108.63(2)	AuCPFe ₂	μ₅C 2.095(9) Ph ₃ P 2.273(3)	Fe 2.843(2,23)	C,P 176.5(2) Fe,Fe 81.03(1)	48b
(green)	4	13.771(4)	. /	FeC₄AuFe (x2)	OC not given μ₅C 1.853(7,8)	Au 2.843(2,23) C 91.9(4,1.2) Fe 2.636(2,21) C 88.6(4,1.0) 176.1(5)	Fe,Fe 58.6(1,2)	

Table 4. Crystallographic and structural data for heteropentanuclear (gold, iron) clustersa

				FeC ₄ Fe ₂	OC not given u₅C 1.915(9)	Fe 2.578(2)	Fe,Fe 61.2(1,3) 89.7(1)	
				FeC₃NFe	OC not given μ₅C 1.926(8) ON not given		Fe,Fe 60.3(1) 88.8(1)	
(CO) ₁₂ (μ-Η)Fe ₄ . (μ ₄ -C)Au(PPh ₃)	tr Pī	9.855(4) 12.495(6)	103.46(2) 98.47(2)	AuCPFe ₂	μ₄C 2.077(5) Ph₃P not given	Fe 2.867(1,13)	Fe,Fe 80.5(1)	49
(green brown)	2	14.938(7)	99.74(2)	FeC₄AuFe₂ (x2)	OC not given	Au 2.867(1,13) C 93.5(2,1.1) Fe 2.634(1,10)	not given	
				FeC ₄ HFe ₂ (x2)	OC not given µ₄C 1.954(5,3) µH 1.91(8,2)	Fe 2.618(1) H 87(3)	not given	
	m P2 ₁ /n 4	8.872(2) 12.136(2) 41.568(9)	90.15(3)	AuPFe ₃ Au (x2)	Ph ₃ P 2.297(3,8)	Fe 2.678(2,10) 2.748(2,34) Au 2.9915(9)	Fe,Fe 57.52(5,92) Fe,Au 55.59(5,66) 99.66(4)	50
				FeC ₃ O. Au ₂ Fe ₂ (x2)	OC not given µ₃O 1.878(7,3)	Au 2.669(2) 2.748(2,34) Fe 2.558(2,21) 2.700(2) O 88.0(3,3.9)	Au,Au 66.46(4,7) Fe,Fe 58.15(6,75) Au,Fe 60.40(5,98) 111.70(7,4.39)	
				FeC₃O. AuFe₂	OC not given μ_3O 1.871(7)	Au 2.688(2) Fe 2.558(2,21) O 86.1(3,1.0)	not given	
$[\{(Ph_{3}P)Au\}_{2}(\mu_{5}-P).\\Fe_{3}(\mu-H)(CO)_{9}].\\1.5C_{6}H_{6}\\(deep red)$	m C2/c 8	20.422(9) 15.434(6) 34.135(11)	93.29(3)	AuP₂FeAu	Ph ₃ P 2.295(3) μ ₅ P 2.428(3)	Fe 2.678(2) Au 2.991(1)	P,µ ₃ P 160.67(12) P,Fe 144.9(1) µ₅P,Fe 52.72(8) Fe,Au 101.91(5)	51
				AuP₂Au	Ph₃P 2.301(3) µ₅P 2.316(3)		P,μ₅P 165.90(12) P,Au137.4(1) μ₅P.Au 52.61(8)	
				FeC₃P. AuFe₂	OC 1.76(1,1) μ ₅ Ρ 2.278(4)	Au 2.678(2) P 69.3(1) Fe 2.651(3,6) P 72.6(1,2)	C,C 97.0(7,1.0) C,P 114.2(5,1.5) 131.6(5) Fe,Fe 61.06(7) Fe,Au 100.58(8.3.93)	

				FeC ₃ PFe ₂ (x2)	OC1.77(1,2) µ5P 2.197(4,3)	Fe 2.664(3,29) P 74.2(1,1.4)	C,C98.4(7,5.5) C,P 98.0(5,3.5) 153.3(5,1.7)	
$\{(Ph_3P)Au\}_2Fe_3.$	tr Pī	14.065(2)	97.57(1) 109.53(1)	AuPFe ₃	Ph ₃ P 2.305(6)	Fe 2.722(4,24)	Fe,Fe 101.91(5) not given	52
(black)	2	10.864(2)	67.64(1)	AuPFe ₂ FeC ₃ S. Au ₂ Fe ₂	Ph₃P 2.301(6) OC 1.80(3,4) μ₃S 2.203(4,15)	Fe 2.711(4,40) Au 2.697(3,26) Fe 2.642(5)	not given not given	
				(x2) FeC₃S. AuFe	OC 1.80(3,4) µ₃S 2.194(5)	2.807(5,57) Au 2.698(4) Fe2.642(3)	not given	
[Au₂(µ-η¹:η⁵-C₅H₄PPh₂) ₆ . Fe₃]Cl₂.CH₂Cl₂ (yellow)	or Pbca 4	19.142(8) 20.759(4) 23.645(10)		AuP ₃ (Cl) (x2)	η ¹ Ρ 2.345(3) 2.398(3,7) Cl 2.929(2)	Fe 4.280(5) 4.850(5)	P,P 104.6(1) 125.1(1,1.1) P,Cl 86.1(1) 103.4(1,2.9)	53
				FeC ₁₀ (x3)	η⁵C not given		not given	
[Au(μ-η ¹ :η ⁵ -C ₅ H ₄ PPh ₂) ₆ . Fe ₃](ClO ₄) ₂ .2CH ₂ Cl ₂ (yellow) (at 173 K)	m C2/c 4	32.858(6) 14.821(3) 26.399(5)	128.48(2)	AuP ₃ (x2) FeC ₁₀ (x3)	η¹P 2.332(4) 2.381(3,4) η⁵C not given		P,P 108.8(1) 125.6(1,3) not given	11
(NEt ₄)[{(CO) ₄ Fe} ₂ . Au ₃ (μ-η ² -dppm)] (orange red)	tr Pī 2	10.051(4) 10.086(2) 33.284(6)	87.79(1) 111.60(2) 82.17(2)	AuFe ₂ Au ₂ AuPFeAu (x2) FeC ₄ Au ₂ (x2)	P 2.271(7,4) OC not given	Fe 2.574(4,2) Au 2.921(2,0) Fe 2.550(4,5) Au 2.662(4,17)	Fe,Fe 172.7(2) Au,Au 75.53(4) P,Fe 168.3(2,2.6) not given	54
[{Fe(μ - η^{5} : η^{1} -C ₅ H ₄ PPh ₂). (μ - η^{5} : η^{1} -ddpca)} ₂ . (AuCl) ₃].Et ₂ O (orange) (at 190 K)	or Pbcn 4	12.791 17.792 36.966		AuPCI (x2) AuP ₂ CI FeC ₁₀ (x2)				55
$[Fe(\mu-\eta^{5}:\eta^{1}-C_{5}H_{4}PPh_{2})_{2}.$ $Au_{2}(\mu_{4}-S)\{Au(PPh_{3})_{2}\}_{2}].$ $3CH_{2}CI_{2}$ (orange) (at 173 K)	tr Pī 2	13.727(2) 15.925(3) 17.763(2)	71.738(12 73.264(4) 75.96(2)	AuSPAu ₂ (x4)	$\begin{array}{l} \mu_4 S \ 2.338(5,29) \\ 2.410(5,6) \\ Ph_3 P2.268(6,12) \end{array}$	Au 2.913(1,8) 2.965(1,13) S 75.8(2,2.3) 109.0(2,9) 124.4(2)	S,P 172.7(2,3.0) S,Au 52.09(13,2.74) 83.02(13,4.56) P,Au 103.8(2,2.2) 120.5(2,3.2) 132.8(2,2.1)	27
5 1				FeC ₁₀	η ⁵ C not given		not given	
[Fe(μ-η ^ͽ :η'-C ₅ H₄PPh ₂) ₂ .	tr	13.321(2)	86.707(8)	AuSPAu	μ ₄ S 2.34(3,2)	Au 2.956(7)	S,P 170.39(11)	56

$\begin{array}{l} Au_2(\mu_4\text{-}S)\{Au(C_6F_5)_3\}_2].\\ CH_2Cl_2 \end{array}$	Pī 2	13.829(2) 20.145(2)	79.431(8) 78.421(10	(x2)	η ¹ Ρ 2.253(3,1)	S 78.30(9)	S,Au 50.85(7,6) P,Au121.57(8,20)	
(orange)		. ,	,	AuC₃S	C 2.050(13,27)	Au 3.333(1)-	C,C 89.5(4,2.8)	
(at 173 K)				(x2)	µ₄S 2.35(3,1)	4.250(1)	177.3(3,1.5)	
						S 96.84(11-	C,S 90.6(3,9)	
						126.22(13)	175.9(4,1.9)	
				FeC ₁₀	η⁵C not given		not given	
(CO) ₉ Fe ₃ Co(CO) ₃ .	tr	11.095(2)	79.54(3)	AuCP.	µ₅C 2.069(3)	Co 2.873(1)	not given	57a
(µ ₅ -C)Au(PPh ₃)	Pī	12.787(3)	81.49(3)	CoFe	Ph₃P 2.267(1)	Fe 2.818(1)		
(red)	2	13.721(3)	64.73(3)	FeC ₄ CoFe ₂	OC not given	Co 2.615(1,1)	not given	
				(x2)	µ₅C 1.940(3,6)	Fe 2.518(1)		
						2.630(1,3)		
				FeC₄Au.	OC not given	Au 2.818(1)	not given	
				CoFe ₂	μ₅C 1.845(5)	Fe 2.630(1,3)	-	
				CoC ₄ AuFe ₂	OC not given	Au 2.873(1)	not given	
					µ₅C 1.847(5)	Fe 2.615(1,1)	-	
(CO) ₉ Fe ₃ Co(CO) ₃ .	tr	11.039(2)	79.00(2)	AuCPFe ₂	μ₅C 2.086(10)	Fe 2.846(1,33)	not given	57b
(µ₅-C)Au(PPh₃)	Pī	12.725(3)	81.09(2)		Ph₃P 2.276(1)	C 92.5(5,1.1)		
(red)	2	13.647(4)	64.83(2)	FeC₄Au.	OC 1.77-1.84	Au 2.846(1,33)	not given	
(at 173 K)				CoFe ₂	µ₅C 1.846(10,9)	C 92.5(5,1.1)		
				(x2)		Co 2.623(1,8)		
						C87.6(5,6)		
						Fe 2.623(1,7)		
						C 174.6(5)		
				FeC ₄ CoFe ₂	OC 1.77-1.84	Co 2.517(1)	not given	
					µ₅C 1.924(10)	C 81.3(5)		
						Fe 2.623(1,7)		
						C 87.2(1,5)		
				CoC ₄ Fe ₃	OC 1.77-1.81	Fe 2.517(1)	not given	
					µ₅C 1.941(10)	2.623(1,8)		
(CO) ₆ Fe ₂ Ir(CO).	m	12.956(1)		AuPIrAu	Ph ₃ P 2.269(2)	lr 2.635(1)	P,Ir 66.0(2)	58
$(PPh_3)(\mu_3 - \eta^2 - C_2Ph).$	Cc	26.604(4)	97.14(1)			Au 2.847(1)	P,Au 132.7(2)	
Au ₂ (PPh ₃) ₂	4	19.190(2)					lr,Au 59.5(1)	
(orange)				AuCPIrAu	µ₃C 2.39(2)	lr 2.726(1)	P,lr 170.0(2)	
					Ph₃P 2.269(6)	Au 2.847(1)	P,Au 122.4(1)	
							C,Au 66.3(1)	

				IrC ₂ PAu ₂ Fe ₂	OC not given μ ₃ C 1.96(2) Ph ₃ P 2.287(2)	Au 2.635(1) 2.726(1) Fe 2.727(4,18) Ir 2.727(4,18)	Au,Au 64.1(1) Au,Fe 88.4(1,1.9) 107.1(1) 144.8(1)	
				FeC₅IrFe (x2)	OC not given μC 2.10(2,4) μ ₃ C 2.075(20,5)	Fe 2.501(5) C not given μ₃C not given	not given	
$(PPh_4)[(OC)_5Fe_2(\mu-CO)_2.$ Ir ₂ (μ -CO)(CO) ₄ Au(PPh ₃)]	m P2 ₁ /c	10.990(3) 13.693(2)	97.99(2)	AuPIr ₂ Fe	Ph ₃ P not given	Ir 2.813(1,16) Fe 2.806(3)	Ir,Ir 58.70(1) Ir.Fe 58.73(1,2)	59
(orange)	4	35.883(3)		FeC ₄ Ir ₂ .	OC 1.776(x2)	lr 2.756(1,21)	lr,Au 60.77(1,15)	
				AuFe	µOC 1.996(x2)	C 83.2(1) Au 2.806(3)	lr,Fe59.44(2,43)	
				FeC ₃ Ir ₂ Fe	OC 1.776	lr 2.679(1,7) Fe 2.645(1)	Ir,Ir 61.96(2) Ir,Fe 62.34(2,60)	
				IrC₄Fe₂.	OC 1.845	Au 2.813(1,16)	Fe,Fe 58.23(2,18)	
				Aulr	μOC 2.133	lr 2.786(1)	Fe,Au 60.49(1,42)	
				(x2)		C 83.2(3)	Fe.Ir 59.02(2,24) Au,Ir 60.71(1,54)	
(PPh ₄)[(CO) ₅ Fe ₂ . (μ-CO) ₃ Rh ₂ (CO) ₄ .	m P2 ₁ /c	10.992(3) 13.724(3)	97.6(2)	AuPRh ₂ Fe	Ph ₃ P 2.283(2)	Rh 2.782(1,1) Fe 2.793(1)	not given	60
Au(PPh ₃)] (orange)	4	35.982(6)		RhC₄Fe₂. AuRh (x2)	OC 1.851(6,45) μOC 2.098(5,83)	Au 2.782(1,1) Fe 2.637(1,3) 2.755(1,5) Rh 2.732(1)	C,Fe 175.9(1,5)	
				FeC₄Rh₂. AuFe	OC 1.815(5,10) μOC 2.018(5,25)	Rh 2.755(1,5) Au 2.793(1) Fe 2.656(1)	C,Fe 175.8(2)	
				FeC ₃ Rh ₂ Fe	OC 1.759(2) 1.788(5,2)	Rh 2.637(1) Fe 2.656(1)	not given	
(CO) ₃ FeCo ₃ (µ-CO) ₃ .	m	9.174(2)	108.08(2)	AuPCo ₃	Ph ₃ P not given	Co 2.714(7,0)	Co,Co 55.3(3)	61
(CO) ₆ Au(PPh ₃)	P21	15.103(2)		CoC₄Fe.	OC 1.75((-,6)	Fe 2.56(-,8)	Fe,Au 112.9(15)	
(purple)	2	12.708(3)		AuCo ₂ (x3)	µOC 1.94(-,7)	Co 2.52(-,8)	Fe,Co 60.5(13)	
				FeC ₃ Co ₃	OC 1.79(-,14)	Co 2.56(-,8)	C,C 96(2) Co,Co 59.0(2)	
$(CO)_3$ FeCo ₃ (µ-CO) ₃ .	m D0/a	22.863(5)	05.00(0)	AuPCo ₂	Ph ₃ P 2.283(3)	Co 2.72(3,0)	Co,Co 54.8(4)	62
$(UU)_5(PIVIe_2PII).$	P2/C	13.232(4)	95.28(9)	COC4Fe.	00 1.74(5)	AU 2.72(3)	0,0 95(1)	

Au(PPh ₃) 8 (purple)	8	28.598(6)	AuCo ₂ (x2)	μOC 1.92(5)	Co 2.50(2) C 139(4)	Fe,Co 61.0(11) Co,Co 60.6(6) Co,Au 62.4(14)	
			CoC₃PFe. AuCo₂	OC 1.74(5) μOC 1.92(5) PbMo B 2.16(2)		C,C 172(5) P,Fe 169(4)	
				$P111110_2P \ge 10(2)$		P,Au 78(4) P Co 128(3)	
			FeC ₃ Co ₃	OC 1.71(9)	Co 2.60(3)	C,C 97(3) Co,Co 57.3(7)	
						154(3)	
(CO) ₃ FeCo ₃ (μ-CO) ₃ . (CO) ₄ {P(OMc) ₃ } ₂ .	or Pn2₁	21.566(5) 13.356(3)	AuPCo ₂ CoC ₃ P.	Ph ₃ P 2.28(3) OC 1.72(9)	Co 2.71(3) Au 2.71(3)	not given C,P 90(2,6)	62
Au(PPh ₃) (purple)	4	15.141(2)	FeAuCo ₂ (x2)	μOC 1.88(10) Ρ 2.24(9)	Fe 2.60(3) Co 2.53(2)	P,Fe 166.8(3) P,Au 81.7(3)	
4 I /					C 137(7)	P,Co 130(2)	
			CoC₄Fe.	OC 1.72(9)		C,C 95(1)	
			AuCo ₂	µOC 1.88(10)		Fe,Co 61.0(6) Co,Co 60.0(6)	
						Co,Au 62.1(6)	
			FeC ₃ Co ₃	OC 1.77(7)	Co 2.60(3)	C,C 99(1)	
						Co,Co 58.1(1) C,Co 100,155(3)	
(CO)₃Fe(µ₄-N).	or	16.977(4)	AuPRu ₂	Ph ₃ P 2.287(4)	Ru 2.876(1,6)	not given	63
Ru ₃ (CO) ₉ Au(PPh ₃)	Pbca	16.980(4)	RuC₃NFe.	OC 1.90(2,3)	Ru2.788(2,10)	not given	
(red)	8	24.872(25)	AuRu ₂ (x2)	μ ₄ N 2.06(1,2)	2.839(2)		
			RuC₃NRu₂	OC 1.86(2,2) µ₄N 1.89(1)	Ru 2.788(2,10)	not given	
			FeC ₄ NRu ₂	OC 1.76(2,2) µ₄N 1.81(1)	Ru 2.705(2,12)	not given	

Footnotes: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is e.s.d., and the second is maximum deviation from the mean value.b. The chemical identity of the coordinated atom or ligand is specified in these columns

COMPOUND (colour)	Cr. cl. Sp.Gr. Z	a [Å] b [Á] c [Á]	α [°] β [°] γ [°]	Chromo- phore	M - L [Á]	M - M [Å] M – L – M [ៗ	L – M - L [°]	Ref.
A: Heterohexa-								
[(CO) ₁₁ (μ-O)Fe₄(μ₅-C). Au₂(μ-η ² -dppm)].tol (green) (at 150(2) K)	m P2 ₁ /c 4	20.210(8) 12.761(7) 17.835(8)	110.48(5)	FeC₄AuFe₂ (x2)	OC [⊳] not given µ₅C 1.860(13)	Au 2.828(2,3) C 92.4(5) Fe 2.648(3,5) C 88.6(6,1,1)	Au,Fe⁵ 84.78(8,7.14) Fe,Fe 58.08(8,4)	64
(dt 100(L) 11)				FeC₄AuFe₃	OC not given μOC not given μ₅C 1.973(14)	Au 2.560(2) C 116.1(6) Fe 2.571(3) 2.658(3,5) C 85.1(5.2.6)	Au,Fe 88.77(7,28) Fe,Fe 60.96(8,12)	
				FeC ₄ Fe ₃	OC not given μOC not given μ₅C 1.922	Fe 2.571(3) 2.649(3,2) C 86.8(5,4.2)	Fe,Fe 60.95(8,16) 89.13(9)	
				AuPFeAu	η ² Ρ 2.282(4)	Fe 2.560(2) Au 2.860(2)	P,Fe 169.64(1) P,Au 93.65(1) Fe,Au 78.34(5)	
				AuCPFe ₂	μ₅C 2.070(12) η²Ρ 2.271(3)	Fe 2.828(2,3)	C,P 170.2(4) P,Fe 137.73(10,3.9) Fe,Fe 82.16(7)	
$[(CO)_{11}(\mu\text{-CO})HFe_4.$ $(\mu_6\text{-B})\{Au(AsPh_3)\}_2]$ $(dark \text{ brown})$	tr Pī 2	10.498(2) 12.239(2) 20.718(5)	79.68(2) 83.00(2) 73.42(1)	FeC ₃ BAu ₂ Fe ₂	OC not given μ₀B 1.999(14)	Au 2.590(1) 2.680(2) B 77.3(5,4.7) Fe 2.725(2,9) B 82.65(5) 160.1(7)	Au,Au 64.9(1) Fe,Fe 56.6(1) Au,Fe 55.6(1) 100.2(1,3.9) B,Au 55.4(4,1.2) B,Fe 49.6(3.9)	65
				FeC₄BAuFe₂	OC not given μOC not given μ ₆ Β 2.068(11)	Au 2.613(1) B 72.4,144.3(6) Fe 2.586(2) 2.709(2,25) B 79.1(5,2.7)	Au,Fe 64.6; 83.5(1);110.2(1) Fe,Fe 61.0(1,4) 94.2(1) B,Au 58.6(4) B,Fe 49.3(4,3.3)	
				FeC ₄ BFe ₂	OC not given µOC not given u₅B 2,114(13)	Fe 2.668(3) 2.717(2) B 81.3(5.1.3)	Fe,Fe 56.7(1,5.6) 95.0(1) B.Fe, 48.8(4.2.2)	
				FeC_4BFe_3	OC not given μ ₆ B 2.031(14)	Fe 2.586(2) 2.668(2)	Fe,Fe 57.8(1) B,Fe 50.5(4,89)	

Table 5. Crystallographic and structural data for heterohexa- and heptanuclear (gold, iron) clusters^a

				AuBAsFeAu	μ ₆ B 2.342(12,2) Ph ₃ As 2.408(1,0)	2.717(2) Au 2.931(1) B 77.4(1)	B,As 151.5(3,4.6) B,Fe 46.4(4,2.6) As,Fe 153.1(1,9.3) Fe Au 53 1 98 4(1)	
$[(CO)_{11}(\mu\text{-CO})HFe_4.$ $(\mu_6\text{-B})\{Au(PPh_3)\}_2]$ (green black)	tr Pī 2	10.870(3) 12.114(3) 20.466(6)	80.23(2) 83.17(2) 73.40(2)	FeC ₃ BAu ₂ Fe ₂	OC not given μ ₆ B 2.00(1)	Au 2.606(1) 2.852(2) B 77.1(4,3.9) Fe 2.714(2,6) B 82.8(5,1.0) 158.9(6)	Au,Au 65.1(0) Fe,Fe 56.7(1) Au,Fe 56.3(0) 100.8(1,3.6) B,Au 57.3(3,2.4) B,Fe 49.1(3)	66
				FeC₄BAuFe₂	OC not given μOC 1.75(1) μ ₆ Β 2.07(1)	Au 2.630(1) B 72.5(4) Fe 2.578(2) 2.695(2,25) B 80.4(4,4.7)	Au, Au 64.4; 84.4(1) Fe,Fe 110.8(1) Au,Fe 61.0(1,4) 94.0(1) B,Au 58.8(3) B Fe 47.6(3.6)	
				FeC₄BFe₃	OC not given μOC2.42(1) μ ₆ Β 2.13(1)	Fe 2.578(2) 2.681(2,27) B 78.7(5,3.1)	Fe,Fe 61.9(1) 97.7(1) B,Fe 4 9.6(4,5) B Au 1.3(3.1)	
				AuBPFeAu	μ₀B 2.36(1,1) Ph₃P 2.301(3,2)	Au 2.943(1) B 77.3(3)	Fe,Au 57.4(0,4.1) 98.0(0)	
[(OC) ₁₂ HFe₄(μ ₆ -B). {Au(PEt ₃)} ₂] (black)	m I2/a 4	17.783(5) 11.277(3) 18.084(7)	106.26(3)	FeC₃BAuFe₂ (x2)	OC 1.780(13,11) μ ₆ Β 1.989(3)	Fe 2.615(1) B 75.6(1) Fe 2.689(2,1) B 93.9(1)	B,Au 56.9(3) B,Fe 49.7(3) Au,Fe 81.1(1) 106.3(1) Fe,Fe 58.3(1)	67
				FeC ₃ BFe ₂	OC 1.799(13,23) μ ₆ Β 2.065(11)	Fe 2.621(2) 2.689(2,1) B 81.7(5.2.9)	B,Fe 48.3(1,2.3) Fe,Fe 60.8(1,1)	
				AuBPFeAu	μ ₆ Β 2.262(11) Et ₃ Ρ2.293(3)	Au 2.880(1) B 79.1(5)	B,P 157.1(1) B,Fe 47.4(1) P,Fe 152.8(1) Fe,Au 83.6(1) B,Au 50.5(2) P,Au 121.5(1)	
$[(OC)_{12}HFe_4(\mu_6\text{-}B). \\ \{AuP(p\text{-}tol)_3\}_2].CH_2Cl_2 \\ (brown black)$	m P2 ₁ /n 4	28.891(6) 13.367(4) 23.441(7)	110.82(3)	FeC ₃ BAu ₂ Fe ₂	OC not given μ ₆ Β 2.008(24)	Au 2.627(2) 2.808(3) B 77.0(8,2.1) Fe 2.688(4,4)	Au,Au 66.3(1) Fe,Fe 56.7(1) B,Au 56.9(6,9) B,Fe 50.7(6.7)	67

				FeC ₃ BAuFe ₃	OC not given μ ₆ B 2.114(19)	2.741(4) B 82.2(8,1.0) Au 2.635(2) B 58.6(5) Fe 2.580(4) 2.712(4,29)	B,Au 58.6(1) Fe,Fe 60.9(1,2) 93.7(1) Au,Fe 62.9; 84.9(1)	
				FeC ₃ BFe ₂	OC not given	B 79.7(5,4.7) Fe 2.680(5,5)	109.6(1) B,Fe 51.3(6,3)	
				FeC ₃ BFe ₃	μ ₆ B2.024(24) OC not given μ ₆ B 2.126(19)	80.2(7) Fe 2.580(4) 2.683(5,9) B 78 8(7 3 8)	Fe,Fe 57.6(1) B,Fe 49.3(6,3.0) Fe,Fe 62.0(1,6) 95.1(1)	
				AuPBFeAu	Ρ 2.313(5,6) μ ₆ Β 2.337(20,31)	Au 2.975(1) B 79.1(5)	P,B 155.5(5,6.0) Fe,Au 56.81,3.0) 97.7(1)	
$(OC)_{12}Fe_4(\mu_6-C)Au_2(PEt_3)_2$	m C2/c 4	21.502(9) 11.457(5) 17.679(9)	125.977(32)	FeC₄AuFe₂	OC not given μ ₆ C 1.929(2,29)	Au 2.770(1) 2.991(2,9) C 87.0(3) Fe 2.562(2) 2.685(2,6) C 175 2(9)	not given	68
				AuCPFe ₂	μ₀C 2.119(11) Et₃P not given	0 173.2(3)	Fe,Fe 82.2(1)	
{[{(cp)Fe} ₂ {μ-η ¹⁰ :η ¹ - C ₅ H ₄ P(Ph) C ₅ H ₄ }} ₂ ,	tr Pī	10.951(5) 11.368(5)	69.08(5) 79.41(5)	FeC ₁₀	C 1.997(6,1) 2.032(13.27)		not given	21
AuC=CAu}.4EtOH (orange)	1	13.106(10)	75.31(4)	AuCP	C 2.002(6) P 2.276(2)		C,P 175.9(2)	
$[(OC)_9Fe_3(\mu_6-P). \\ \{Au(PPh_3)\}_3]. \\ 0.3CH_2Cl_2.0.7Et_2O \\ (dark red) \\ (at 123 K)$	m P2 ₁ /n 4	16.260(1) 20.363(7) 19.526(5)	93.45(5)	FeC ₃ PAu ₂ Fe ₂	OC 1.80(3,3) μ ₆ Ρ 2.31(1)	Au 2.665(5) 2.772(5) P 69.2(3,1.1) 145.4(4) Fe' 2.652(7,7) P 72 6(3)	C,C 97(2,0) C,P 120(1,5) Au,Au' 71.2(1) Fe,Fe' 60.0(2) Au,Fe 60.0(2) 102.8(2,10)	51
				FeC ₃ PAuFe ₂	OC 1.72(5,8) μ ₆ Ρ 2.32(1)	Au 2.711(5) P 68.3(3) 127.4(4,6.0) Fe 2.649(7,4) P 70.9(3,1.2)	C,C 96(2,2) C,P 89(2) 132(2,0) Au,Fe' 62.3(2) 106.3(2) Fe,Fe' 60.3(2)	
				FeC ₃ PFe ₂	OC 1.79(4,4) μ ₆ Ρ 2.18(1)	Fe 2.655(7,4)	C,C 99(2,4) C,P 100(1,1)	

				AuP ₂ Fe ₂ (x2)	Ph ₃ P2.267(3) μ ₆ P 2.502(8)	Fe 2.742(5,31) Au' 3.188(2,21)	151(1) Fe,Fe' 59.8(2) P,P 157.0(3) Fe,Fe' 57.7(2)	
				AuP₂Fe	Ph ₃ P 2.314(9) μ ₆ P 2.455(9)	P 81.5(2,2.1) Au' 3.206(2,39) P 82.6(2,3.2) Fe 2.665(5)	Au,Au 60.61(5,56) P,P 60.61(5,56) Au,Au' 170.9(3) 58.78(5)	
$[(OC)_4 FeAu_2(\mu-\eta^2-dppe)]_2$. C ₃ H ₈ O	m C2/c	15.823(3) 15.858(4)	95.88(2)	FeC ₄ Au ₂	OC not given	Au 2.524(2) 2.535(2)	not given	69
(yellow)	4	25.708(3)	ζ,	AuPFe	$\eta^2 P$ not given	Au 2.977(1) 3.163(1)	not given	
[(OC)₄FeAu₂(μ-η²- dppm)]₂	m C2/c	14.250(5) 19.431(4)	103.44(3)	FeC ₄ Au ₂	OC not given	Au 2.539(3) 2.608(3)	not given	69
(yellow)	4	24.810(11)		AuPFe	Ph ₃ P not given	Au 3.041(2)	not given	
B: Heterohepta- [(OC) ₃ FeAu ₅ (PPh ₃) ₅]PF ₆ (vellow)	m P2₁/c	22.300(7) 16.550(6)	94.14(5)	FeC ₃ Au ₅	OC 1.749(7,20) 1.812(5)	Au 2.620(1,30)	not given	70
(at 203 K)	4	24.627(8)	- (-)	AuPFe	Ph ₃ P 2.282(2,13)	Au 2.821(-,52) 3.0880(4)	not given	
$\begin{array}{l} (NEt_{a})[(CO)_{13}(\mu\text{-}CO)_{3}.\\ Fe_{6}(\mu_{6}\text{-}C)Au(PPh_{3})]\\ (black) \end{array}$	m P2 ₁ /c 4	10.233(2) 22.464(4) 21.530(5)	92.78(2)	FeC₄AuFe₃ (x3)	OC not given μOC not given μ ₆ C 1.901(-,15)	Au 2.733(2,1) 2.785(2) Fe' 2.562-2.801(4) C 82.4(8,4) μ ₆ C 174.6(9,4.4)	not given	48b
				FeC₄Fe₃ (x3)	OC not given μ OC not given $\mu_{1}C$ 1 901(- 15)	C 79.6(7)	not given	
				AuPFe₃	Ph ₃ P 2.295(4)		not given	
(ppn)[{(OC) ₉ (μ ₃ -PMe)Fe ₃ . (μ ₃ -P)} ₂ Au]	m C2/c	21.272(2) 20.153(1)	107.535(6)	FeC ₃ P ₂ Fe	OC not given μ ₃ MeP 2.200(2,23)	Fe 2.693(2,2) 3.549(2)	not given	71
(orange red)	4	17.020(1)		AuP ₂	μ ₃ P 2.263(2,6) μ ₃ P 2.305(2,0)		P,P 177	
[(CO) ₁₁ (μ-CO) ₃ Fe ₅ (μ ₆ -C). (μ ₄ -AuPEt ₃)(μ-AuPEt ₃)] (black)	m P2 ₁ /c 4	12.934(5) 18.879(6) 16.425(9)	106.86(4)	FeC ₃ Au ₂ Fe ₃	OC not given µ₃C 1.876(18)	Au 2.696(2) 2.828(3) Fe 2.617(2,6) 2.941(3)	not given	72
				FeC ₄ Au ₂ Fe ₃	OC not given µOC not given µsC 1.916(14)	Au 2.701(3) 2.871(2) Fe 2.640(3,12)	not given	
				FeC ₄ Fe ₃	OC not given	Fe 2.573(3)	not given	

				(x2)	μOC not given μ ₆ C 1.924(18,12)	2.625(3,3) 2.673(3,13) Au 3.021(3.15)		
				FeC ₄ Fe ₄	OC not given $u_{1}C$ 1 961(14)	Fe 2.612(3) 2.666(3.20)	not given	
				AuCPFe ₄	$\mu_6 C 2.117(14)$ Et_P 2 268(4)	Fe 2.849(2,22) 3.021(3.15)	C,P 176.7(4)	
				AuPFe ₂	Et ₃ P 2.276(5)	Fe 2.698(2,3)	P,Fe 146.9(2,1.9)	
$[(OC)_{12}Fe_4(\mu_7\text{-}B).\\ \{Au(PPh_3)\}_3]$	tr Pī 2	13.404(3) 13.338(3) 20.493(7)	79.37(3) 71.88(3) 73.94(3)	FeC ₃ BAu ₂ Fe ₂	OC not given μ ₇ Β 2.13(2)	Au 2.616(3) 2.711(3)	not given	73
	L	20.400(7)	10.04(0)	FeC ₃ BAuFe ₃	OC not given	Au 2.693(4) Fe not given	not given	
				FeC ₃ BAuFe ₂	$\mu/B = 2.03(2)$ OC not given	Au 2.625(4) Fe not given	not given	
				FeC ₃ BFe ₃	OC not given $\mu_{B} = 2.16(2)$	Fe not given	not given	
				AuPBFe ₂ Au	$\mu_7 B 2.10(2)$ Ph ₃ P not given	Fe 2.702(3,9) 2.877(1)	not given	
				AuPBFeAu ₂	μ ₇ Β 2.34(2) Ph ₃ P not given	Fe 2.625() Au 2.867(1,10)	not given	
				AuP₂BFeAu	μ ₇ Β 2.27 (2) Ph ₃ P not given μ ₇ Β 2.32(2)	Fe 2.616(3) Au 2.858(1)	not given	
[(OC) ₉ Fe ₃ (µ ₇ -P). {Au(PPh ₃)}₄]. [B{3,5(CF ₃) ₂ C ₆ H ₃ }₄]. 1.5Et ₂ O	tr Pī 2	12.918(3) 19.863(9) 23.256(4)	89.94(2) 91.57(2) 94.31(3)	FeC ₃ PAu ₂ Fe ₂ (x2)	OC not given μ ₇ Ρ 2.287(7,9)	Au 2.709(3,20) 2.808(3,22) Fe 2.632(5) 2.672(5.2)	not given	74
(purple) (at 123K)				FeC_3PFe_2	OC not given u ₇ P 2.220(7)	Fe 2.632(5) 2.670(5)	not given	
· /				$AuP_2Fe_2Au_2$	Ph ₃ P 2.287(3) μ ₇ P 2.694(6)	Fe 2.690(4) 2.830(4) Au 2.980(1) 3.224(2)	not given	
				AuP₂FeAu₂ (x2)	Ph ₃ P 2.297(6,2) μ ₇ P 2.419(6,7)	Fe 2.729(3) 2.786(3) Au 2.984(1,8) 3.224(2)	not given	
				AuP_2Au_2	Ph₃P 2.302(6) μ ₇ P 2.357(6)	Au 2.984(1,8)	not given	
$[\{(OC)_4Fe\}_2Au_5.$	tr Pī	10.051(4) 10.086(2)	87.79(1) 111.60(2)	FeC ₄ Au ₃	OC not given	Au 2.533(3) 2.607(3)	not given	54

$(\eta^2\text{-dppm})_2](BF_4)_2^d$ (red)	2	33.284(6)	82.17(2)	AuFe ₂ Au ₄		2.750(4) Fe 2.533(3,0)	not given	
				AuPFeAu ₂	P 2.329(6)	Au 2.624(1)- 2.924(1) Fe 2.607(3)	P,Fe 168.1(2,2.1)	
				(x4) FeC₄Au₃	2.398(6) OC not given	2.750(4) Au 2.438(3) 2.650(4)	not given	
				AuFe ₂ Au		2.751(3) Fe 2.751(3,0) Au 2.630(1)-	not given	
				AuPFeAu ₂ (x4)	P 2.139(6) 2.277(7)	2.840(1) Fe 2.438(3) 2.650(4)	P,Fe 167.4(2,1.5)	
$[\{Fe(\mu,\eta^{5}:\eta^{1}-dppcp)_{2}\}_{2}$	m P2₁/n	18.214(3) 22.444(3)	105 611(12)	FeC ₁₀ (x2)	η⁵C not given		not given	40
$SO_3CF_3.3CH_2Cl_2$	4	24.081(3)	100.011(12)	Au ^l PS	η ¹ Ρ 2.255(4,12)	Au' 2.933(1,17)	P,S 173.5(1,2.8)	
(orange) (at 173 K)				(X4) Au ^{lli} CaSa	μ_3 S 2.342(4,26)	S 77.5(1,6) Au' 3 219(8)	C C 88 6(5)	
(at 175 K)				10 0202	U 2.038(14,3)	3.3661(10)	S,S 95.19(13)	
					μ30 2.002(1,0)	S 106.4(2,7)	C,S 88.2(3,2.9) 174.9(4.1.2)	
$[Fe(\mu-\eta^5:\eta^1-C_5H_4PPh_2)_2]$	m P2./o	14.592(2)	01 46(1)	FeC ₁₀	η ⁵ cpC 2.049(7)		not given	75
(red)	2	16.658(2)	31.40(1)	AuPMn ₂	η ¹ Ρ 2.318(2)	Mn 2.660(1)	P,Mn 145.88(5,3.5)	
				MnC₃PAu	OC 1.82(1,3)	Mn 3.049(2)	P,Au 48.09(6,7)	
F 1					μP 2.283(2,3)		103.01(6,1.84)	
$[Fe(\mu-\eta^3:\eta'-{}_5H_4PPh_2)_2.$	m C2/c	16.819(3) 12 988(2)	104 11(2)		η [°] cpC 2.048(25.24)	Bu 2 695(2)	not given B P 160 6(2)	/6
$Au_2(\mu_6-B)Ru_4(B)(CO)_{12}].$	4	26.993(6)	104.11(2)		2.040(25,24) usB 2 292(20)	B 74.9(3)	B,Au 50.9(4,1.2)	
(orange red)					$\eta^{1}P 2.300(6)$	Au 2.818(2)	P,Au 117.0(2)	
/						B 75.9(8)	148.8(2)	
						Du 2 952/2)	Ru, Au 90.6(1)	
				(x2)	OC not given	B 81.4(6)	B.Ru 51.0(5)	
				()	μ ₆ B 2.133(5)	Ru 2.854(2) B 157.4	Ru,Ru 60.9(1)	
				RuC₃BRu₃		Ru 2.854(2,1)	B,Ru 48.4(1,1.4)	
				(x2)	OC not given μ ₆ Β 2.242(19)	B 80.4(8)	Ru,Ru 59.5(1,1) 94.3(1)	

[Fe(μ-η ⁵ :η¹-C₅H₄PPh₂)₂. Au₂(μ₂-H)Bu₄(μ₂-H)-	tr P-1	13.675(2) 16.999(2)	110.69(2) 112.47(2)	FeC ₁₀	η ⁵ cpC 2.019(8)- 2.071(11)		not given	77
(CO) ₁₂].CH ₂ Cl ₂ (red)	2	13.094(2)	87.99(2)	AuPRu₂Au	η ¹ Ρ 2.305(4)	Ru 2.771(1) 2.846(1) Au 2.901(1)	P,Ru 146.4(1,5.0) P,Au 126.2(1) Ru.Ru 64.9(1)	
				AuHPRu₂Au	μ₃H not given η¹Ρ 2.282(5)	Ru 2.778(1) 2.796(2)	Ru,Au 59.0,76.5(1) P,Ru 146.5(1,6.1) P,Au 113.1(1) Pu Pu 62.8(1)	
				RuC₃HAuRu₄	OC 1.840(18)- 1.902(21)	Au 2.771(1) 3.016(1)	Ru,Ru 53.6(1) Ru,Au 58.2,101.9(1) Au,Au 62.8(1) Ru,Ru 58.4(1,1.6)	
				$RuC_3H_2AuRu_2$	μ₃H not given OC 1.840(18) 1.902(21)	Au 2.788(1) Ru 2.775(2) 2.950(1)	Au, Ru 56.4(1,4) 75.4; 106.7(1,5.7) Au, Ru 56.3(1) 98.8(1) Bu Bu 60.4(1)	
				RuC₃HAuPRu₃	μ₃H not given μH not given OC 1.840(18)- 1.902(21)	Au 2.846(1) Ru 2.886(2)–	Au,Ru 54.2(1,5.3) 93.6(1)	
				RuC_3Ru_3	μH not given OC 1.840(18)– 1.902(21)	3.016(1) Ru 2.775(2)– 2.886(2)	Ru,Ru 57.4(1,1.0) Ru,Ru 63.1(1,3)	

Footnotes: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is e.s.d., and the second is maximum deviation from the mean value.

b. The chemical identity of the coordinated atom or ligand is specified in these columns. c. There are two crystallographically independent molecules

COMPOUD (colour)	Crys.cl. Sp.Gr. Z	a [Á] b [Á] c [Á]	α [°] β [°] γ [°]	Chromo- phore	M - L [Á]	M - M[Á́] M – L - M [°]	L – M - L [°]	Ref.
$[Au(MePh_2)_2].$ $[{(CO)_{12}(\mu-H)Fe_4.}$ $(\mu_5\text{-BH})_2Au]$ (dark orange)	m C2/c 4	21.704(3) 9.542(2) 29.717(6)	97.50(6)	AuB ₂ Fe ₂	μ₅Β ^b 2.300(12)	Fe 2.615(1) B 74.7(4)	B,B ^b 125.8(6) Fe,Fe 143.4(1) B,Fe 47.2(3) 164.9(3)	46
				FeC₃B. AuFe₂ (x2)	OC not given µ₅B 1.990(12)	Au 2.615(1) B 74.7(4) Fe 2.664(2,4) B 81.9(4,1)	B,Au 58.0(3) B,Fe 50.4(3,2) Au,Fe 99.5(1,6) Fe,Fe 59.1(1)	
				FeC ₃ BFe ₂ (x6) AuP ₂	OC not given µ₅B 2.054(12,39) Ph₂MeP2.300(4)	Fe 2.651(2,21) B 90.1(4,1.4)	B,Fe 49.4(3,1.8) Fe,Fe 60.2(1,7) 95.4(1,2) P.P 180.0(1)	
[{(CO) ₆ (μ-CO). (μ-HC=CPhH)Fe ₂ . Au} ₃ (μ-η ³ -triphos)].	tr Pī 2	14.632(4) 14.768(4) 21.750(6)	88.71(2) 77.75(2) 83.76(2)	AuPFe ₃ (x3)	μΡ 2.276(12) 2.294(11,3)	Fe 2.634(7) 2.687(6,20) 2.726(6,2)	P,Fe 151.0(3,10.1) Fe,Fe 57.9(2,3)	78
0.5CH ₂ Cl ₂ (dark green)				FeC₄AuFe (x6)	OC not given μOC not given LC 2.28(4,3) LμC 1.96(4,4) 2.14(4,2)	Au 2.634(7) 2.687(6,20) 2.726(6,2) Fe 2.606(8,12) C 81(2,4)	not given	
$[\{Fe(\mu-\eta^{5}:\eta^{1}-C_{5}H_{4}PPh_{2})_{2}\}_{3}.$ {Au(μ_{3} -S)Au}_{3}]. 8CHCl_{3} (yellow) (at 173 K)	tr Pī 2	15.177(3) 18.408(4) 27.894(8)	88.83(2) 84.46(2) 67.78(2)	AuSPAu (x6)	μ ₃ S 2.331(9,17) 2.368(9) P 2.266(9,16)	Fe 2.917(2,12) 3.255(2,28) S 77.3(2,3) 88.3(3,3)	S,P 171.6(3,4.0) S,Au 47.7(2,4.5) 87.3(2,3.6) P,Au 101.2(2,1.4) 123.3(2,2.5) 136.2(3,3.7)	27
				FeC ₁₀ (x3)	η ^ა Cnot given	Au 4.284	not given	

Table 6. Crystallographic and structural data for heterooligo- and heteropolynuclear (gold, iron) clusters^a

[K(η^{6} -18-crown-6). {(μ -CO)(CO) ₁₁ (μ_{3} - CO). Fe ₄ Au(PEt ₃)} ₂]. CH ₂ Cl ₂	or Pnma 4	20.916(3) 19.361(2) 11.511(2)		AuPFe ₂ (x2) FeC ₄ Au. Fe ₃ (x4)	Et ₃ P 2.278(2) OC 1.767(6,17)	Fe 2.666(1) Au 2.666(1) Fe 2.642(1,10)	P,Fe 150.18(2) Fe,Fe 59.57(4) Au,Fe 80.76(3) 111.92(3) Fe Fe 95 31(4)	48a
(black)				FeC ₃ OFe ₃ (x2)	OC 1.778(9,21) μ ₃ Ο 2.137(9) μCΟ1.996(5)	C 155.8(4)	Fe,Fe 59.86(4)	
				FeC₃Fe₂ (x2)	OC 1.808(9,34) μ ₃ OC 1.851(9)		Fe,Fe 60.64(4)	
				KOଃ	η ⁶ O 2.782(4,36) μCO 2.770(4,0)		not given	
[ClAu(μ-η¹:η⁵- C₅H₄PPh₂).	or F2dd	11.096(4) 31.507(10)		AuP ₂ Cl	η ¹ Ρ 2.303(6,6) Cl2 624(9)		P,P 143.0(2) P.Cl 108.4(2.4.4)	79
Fe].0.4CH ₂ Cl ₂ (yellow)	16	39.71(3)		FeC ₁₀	η^5 C not given		not given	
$[ClAu(\mu-\eta^{1}:\eta^{5}-C_{5}H_{4}PPh_{2}).$	m P2 ₁ /c	12.917(6) 18.321(6)	110.11(2)	AuP ₂ Cl	η ¹ P 2.315(2,0) Cl2.580(3)		P,P 136.5(1) P,Cl 111.7(1,1.0)	79
(yellow)	4	16.242(4)		FeC ₁₀	η⁵C not given			
$ \begin{array}{l} [C Au(\mu - \eta^{1}:\eta^{5} - \\ C_{5}H_{4}PPh_{2}). \end{array} $	m P2 ₁ /c	11.059(7) 24.154(9)	128.94(4)	AuP ₂ Cl	η ¹ P 2.308(2,15) Cl 2.709(2)		P,P 155.2(1) P,Cl 102.4(1,11.2)	80
Fe].CH ₂ Cl ₂ (yellow)	4	13.122(4)		FeC ₁₀	η ⁵ C 2.046(6,3)		not given	

Footnotes: a. Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parenthesis is e.s.d., and the second is maximum deviation from the mean. b. The chemical identity of the coordinated atom or ligand is specified in these columns

		Distances [Å]		
М — М	Shortest [ref.]	Longest [ref.]	Average	Heteronuclearity
Au - Fe	2.519(1) [5]	2.553(1) [7]	2.533	Binuclear
	2.507(3) [24]	2.818(2) [25]	2.634	Trinuclear
	2.527(2) [37]	2.717(3) [35]	2.633	Tetranuclear
	2.545(4) [54]	2.880(1) [40]	2.702	Pentanuclear
	2.776(1) [70]	2.975(1) [67]	2.867	Hexanuclear
	2.438(3) [54]	2.871(2) [72]	2.699	Heptanuclear
	2.615(1) [46]	2.922(2) [27]	2.707	Nonanuclear
	2.666(1) [48a]			Decanuclear
Au - Au	2.768(4) [25]	2.928(1) [23]	2.880	Trinuclear
	2.889(1) [40]	2.962(1) [38]	2.922	Tetranuclear
	2.847(1) [58]	2.991(1) [51]	2.936	Pentanuclear
	2.776(1) [70]	2.971(1) [67]	2.867	Hexanuclear
	2.630(1) [54]	2.992(2) [74]	2.857	Heptanuclear
	2.905(2) [27]	2.929(2) [27]	2.917	Nonanuclear
Fe - Fe	2.605(2) [17]	2.651(4) [19]	2.630	Trinuclear
	2.574(2) [35]	2.900(2) [37]	2.676	Tetranuclear
	2.504(3) [58]	2.782(2) [50]	2.640	Pentanuclear
	2.571(3) [64]	2.741(4) [67]	2.646	Hexanuclear
	2.562(4) [48b]	2.941(3) [72]	2.670	Heptanuclear
	2.594(2) [78]	2.922(2) [68]	2.726	Nonanuclear
	2.623(2) [48a]	2.654(2) [48a]	2.692	Decanuclear
Au-Co	2.661(3) [44]			Tetranuclear
- Pt	2.821(1) [42]	2.875(1) [42]	2.848	Tetranuclear
- Ru	2.729(2) [45]			Tetranuclear
- Ir	2.633(1) [58]	2.829(1) [59]	2.724	Pentanuclear
- Co	2.710(3) [62]	2.873(1) [57a]	2.754	Pentanuclear
- Ru	2.754(1) [63]	2.766(1) [63]	2.760	Pentanuclear
- Rh	2.781(1) [60]	2.783(1) [60]	2.782	Pentanuclear
- Mn	2.660(1) [74]	2.776(1) [74]	2.718	Heptanuclear
<u>- Ru</u>	2.641(2)[77]	2.846(1) [77]	2.773	Heptanuclear
Fe - Co	2.486(1) [43]	2.678(1) [45]	2.570	Tetranuclear
- Pt	2.715(3) [42]			Ietranuclear
- Ru	2.914(3) [45]			letranuclear
- 00	2.51/(1) [57b]	2.633(1) [57a]	2.582	Pentanuclear
- Kh	2.634(1) [60]	2.750(1) [60]	2.689	Pentanuclear
- KU	2.693(2) [63]	2.717(2) [63]	2.705	Pentanuclear
- Ir	2.686(1) [59]	2.776(1) [59]	2.729	Pentanuclea
Co - Co	2.492(4) [44]	0.00 50/5		Ietranuclear
	2.44 [81]	2.60 [61]	2.52	Pentanuclear
Co - Ru	2.679(3) [45]	2.957(3) [45]	2.818	Ietranuclear
Ru - Ru	2.778(2) [63]	2.798(2) [63]	2.788	Pentanuclear

Table 7. Summary	^y of theM-M and M-M'	bond distances
------------------	---------------------------------	----------------

There are three yellow $[Fe(C_5H_4PPh_2)AuCI].S$ (S = 0.4 CH₂Cl₂ [79], 0.48 CHCl₃ [79] and CH₂Cl₂ [80]), which are isostructural. All three compounds comprise polymeric chain structures involving bridging ferrocenylphosphine units linking trigonal (P₂AuCl) groups. The Au···Au, Au···Fe and Fe···Fe separations of 4.2, 8.4 and 11.2Å, ruled out a direct bond.

Inspection of the data in Table 6 reveals, that the clusters crystallized in three crystal classes: monoclinic (x3), triclinic and orthorhombic each

(x2). The clusters are coloured, yellow (x4), and orange, green and black each (x1). The gold atoms are three- AuSPAu [27], AuPFe₂ [48a], AuP₂Cl [79,80] and four- AuB₂Fe₂ [46], and AuPFe₃ [78] coordinated. The iron atoms are five-, six-, seven-, eight- and ten (sandwich) coordinated.

The mean M-M bond distance elongated in the order: 2.633Å (Fe-Fe) < 2.707Å (Au-Fe) < 2.917Å (Au-Au).

3. CONCLUSION

There are almost one hundred heterometallic gold iron clusters in this review. From the nuclearity point of view, there are di- (x12), tri-(x7), tetra- (x14), penta- (x23), hexa- (x10), hepta- (x11), nona- (x4) and poly- (x3) nuclear clusters. The clusters cover wide variety of colours where vellow, orange and red by far prevail. The clusters crystallized in three crystal classes orthorhombic (x8), triclinic (x28) and monoclinic (x58). The gold atoms are two-, three-, four-, five- and even six- coordinated. The iron atoms are surrounded from five- to ten donor atoms. There are six clusters [8, 9, 19, 32, 35, 54] which contain two crystallographically independent molecules and {(Ph₃P)Au}₃Fe(CO)₄ [23] contains four such molecules, which are differ by degree of distortion in the M-L, M-M bond distances and L-M-L bond angles. Such examples are typical of the general class of distortion isomerism [16]. A summary of the M-M and M-M' bond distances is given in Table 7 above, where the shortest are 2.438(3)Å for Au-Fe [54], 2.504(3)Å for Fe-Fe [58], and 2.630(1)Å for Au-Au [54]. There is also wide variety of another metal-metal bond distances.

Heterometallic compounds are important both from a chemical and biological point of view and structural information are crucial for the understanding of their role in both areas. This represents the first overview of structural data for heterometallic gold iron clusters. It is hoped that this review will serve to draw together common structural treads and stimulate activity in areas of particular interest.

ACKNOWLEDGEMENTS

This work was supported by the projects VEGA 1/0664/12 and KEGA 031UK-4/2012.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Adams RD, Horvath JT. Novel reactions of metal carbonyl cluster compounds. Prog. Inorg. Chem. 1985;33:127-181.
- Müller M, Vahrenkamp H. Cluster-Konstruktion: Schrittweiser aufbau von μ₃-RP-trimetall-clustern über p-h-

verbindungen. Chem. Ber. 1983;116:2311-2321.

- 3. Jeffery JC, Lawrence-Smith JG. Synthesis of μ -hydrido- μ -phosphido heterotrimetal alkylidyne clusters: X-ray crystal structure of $[Co_2W(\mu-H)(\mu_3-CMe)(\mu-PPh_2)(CO)_6(\eta-C_5H_5]$. J. Organomet. Chem. 1985;280:C34-C38.
- Richter F, Vahrenkamp H. Basic cluster reactions. 1. Reversible unfolding of FeCo₂Mo and FeCo₂W clusters. Organometallics. 1982;1(5):756-757.
- 5. Simon FE, Lauher JW. Synthesis and molecular structure of $(\epsilon^3 C_3H_5)Fe(CO)_3AuP(C_6H_5)_3$ and the molecular structure of $(\epsilon^3 C_3H_5)Fe(CO)_3Br$. Two compounds with distinctly different coordination geometries. Inorg. Chem. 1980;19:2338-2343.
- 6. Reinhard G, Hirle B, Schubert U. Übergangsmetall-silyl-komplexe: XLII. Einflus des phosphan-liganden auf bildung, struktur und stabilität der heterozweikernkomplexe $(CO)_3(R'_3P)(R_3Si)Fe-$ ML_n (M = Cu, Ag, Au, Hg). J. Organomet. Chem. 1992;427:173-192.
- Schubet U, Kunz E, Knorr M, Müller J. Übergangsmetall-silyl-komplexe, 20¹⁾ untersuchungen zur reaktivität der anionischen silyl-komplexe [Fe(CO)₃(PR'₃)SiR₃]⁻. Chem. Ber. 1987;120:1079-1085.
- 8. Liu LK, Luh LS, Wen YS, Eke UB, Mesubi MA. Synthesis of heterobimetallic complexes from $(\epsilon^4-MeC_5H_5)Fe(CO)_2(\epsilon^1-PPh_2CH_2PPh_2)$. Organometallics. 1995;14(10):4474-4482.
- 9. Gimeno MC, Jones PG, Laguna A, Sarroca C. 1,1'bis(diphenylthiophosphoryl)ferrocene as a trans-chelating ligand in gold(I) and silver(I) complexes. J.Chem. Soc. Dalton Trans. 1995;3563-3564.
- Gimeno MC, Jones PG, Laguna A, Sarroca C.
 1,1'bis(diphenylthiophosphoryl)ferrocene as a trans-chelating ligand in Gold(I) and Silver(I) complexes J. Chem. Soc. Dalton Trans. 1995;3563-3564.
- Gimeno MC, Laguna A, Sarroca C, Jones PG. 1,1'-bis(diphenylphosphino)ferrocene (dppf) complexes of gold(I) and gold(III). Crystal structures of [(dppf)AuPPh₃]. CIO₄.cntdot.CHCl₃ and [(dppf)Au(μdppf)Au(dppf)](CIO₄)₂.cntdot.2CH₂Cl₂. Inorg. Chem. 1993;32(26):5926-5932.

- Grandberg KI, Kuzmina LG, Smyslova EI, Zimin AI, Krutko DP, Dyadchenko VF. Crystal and molecular structure of AuFe dimer (Ph₃P)Au(μ-C₅H₄C(O) CHC(O)Me)Fe(cp). Zh. Neorg. Khim. 1996;41:231-237.
- 13. Baukova TV, Kuzmina LG, Dvorcova NV. Structure of (triphenylphosphine) $Au(C_5H_4C(O)C_6H_4COOFe.$ Zh. Neorg. Khim., 1993;37:1497-1502.
- Jacob K, Voigt F, Merzweiler K, Pietzsch C. Synthese, struktur von 3-(N,Ndimethylamino) propyl- und 2-(Dimethylaminomethyl) ferrocenyl-Derivaten des Goldes und Platins. J. Organomet. Chem. 1997;545:421-433.
- Viotte M, Gautheron B, Parish RG, Pritchard RG. Chloro[(a-dimethylamino [3]ferrocenophan-2-yl) diphenylphosphino]gold(I) Benzene Solvate. Acta Crystallogr. 1996;Sect.C52:1891-1894.
- Melník M. Structural isomerism of copper(II) complexes. Coord. Chem. Rev. 1982;47:239-261.
- 17. Rossell O, Seco M, Jones PG. Preparation and crystal structure of (NEt₄)[Fe₂(CO)₈(.mu.-AuPPh₃)]. Inorg. Chem. 1990;29:348-350.
- Belgado E, Hernandez E, Rossell O, Seco M, Puebla EG, Ruiz C. A comparative study of the use of triethylammonium salts of the [Fe₂(CO)₆(μ-CO)(μ-SR)]⁻ anion in the synthesis of iron-gold clusters. Crystal structures of [Fe₂(CO)₆(μ-CO)(μ-SⁱPr)(μ-AuPPh₃)] and [Fe₂(CO)₅(PPh₃)(μ-SEt)₂]. J. Organomet. Chem. 1993;455:177-184.
- Umland H, Behrens U. Übergangsmetallthioketen-komplexe: IX. Darstellung, struktur und eigenschaften von zweikernigen thioacyl-und thioaldehydeisen-komplexen. J.Organomet.Chem. 1985;287:109-122.
- Reina R, Rossell O, Seco M, Ros J, Yaňes Y, Peraless A. Synthesis and x-ray crystal structure of [Fe₂(CO)₆(μ-CO)(μ-PhC:CPhH)(μ-AuPPh₃)]: First example of a highly asymmetric triangular Fe₂Au system. Inorg. Chem. 1991;30:3973-3976.
- Müller TE, Wing-Kin Choi S, Mingos DMP, Murphy D, Wiliams DJ, Wing-Wah Yam V. Synthesis, structural characterization and photophysical properties of ethyne-gold(I) complexes. J. Organomet. Chem. 1994;484:209-224.
- 22. Jones PG, Erdbürgger CF, Hohbein R, Schwarzmann E. Chloro

[diferrocenyl(phenyl)phosphine] gold(I). Acta Crystallogr. Sect. C. 1988;44:1302-1303.

- Albano VG, Monari M, Iapalucii WC, Longoni G. Structural characterization of the trinuclear cluster compound [Fe(CO)₄(AuPPh₃)₂] and isolation of its parent anion [Fe(CO)₄(AuPPh₃)]⁻. Inorg. Chim. Acta. 1993;213:183-190.
- Arndt LW, Ash CE, Darnsbourgh MJ, Hsiao YM, Kim ChM, Reibenspiespies J, Youngsdahl KA. The synthesis and molecular structure of (Ph₃PAu)₂Fe(CO)₃P(OEt)₃: a triangular Au₂Fe cluster. J. Organomet. Chem. 1990;394:733-741.
- 25. Anbianov VG, Struchtov YuT, Rossinskaya ER, Crystal structure of bis (diphenylphosphinegold)(cyclopentadienylt etrafluoroborate. Zh. Stukt. Khim. 1974;15:74-79.
- 26. Canales F, Gimeno MC, Jones PG, Laguna A, Sarroca A. Substitution reaction studies on $[Au_2Cl_2(\mu\text{-dppf})]$ (dppf = 1,1'bis(diphenylphosphino)ferrocene). Synthesis of the First Gold(I) Complex with a μ_3 -2-Pyridinethiolate Ligand. Inorg. Chem. 1997:36:5206-5211.
- Canales F, Gimeno MC, Laguna A, Jones PG. Aurophilicity at sulfur centers. synthesis and reactivity of the complex [S(Au₂dppf)]; formation of polynuclear sulfur-centered complexes. J. Amer. Chem. Soc. 1996;118:4839-4845.
- Riera V, Ruiz J, Solans X, Tauler E. Reactivity of bis(diphenylphosphino)methane in cationic octahedral iron(II) derivatives. X-Ray structure of mer-[FeCl{(Ph₂P)₂ C(AuPPh₃)₂}(CNPh)₃]PF₆. J.Chem. Soc. Dalton Trans. 1990;1607-1611.
- 29. Viotte M, Gautheron B, Nifant´ev I, Kuzimna LG. New potentially cytotoxic thiolatogold(I) complexes of 1,1'bis(diphenylphosphino)ferrocene. Inorg. Chim. Acta. 1996;253:71-76.
- 30. Low PMM, Zhang ZY, Mak TCW, Hor TSA. General synthesis of ferrocenylphosphinebridged digold carboxylato complexes crystal and molecular structure of $Au_2(\eta^{1-}CF_3CO_2)_2(\eta$ -dppf) $\cdot C_6H_{14}$ (dppf = $Fe(C_5H_4PPh_2)_2$). J. Organomet. Chem. 1997;539:45-51.
- 31. Yam WW V, Choi WK, Cheung KK. Synthesis, photophysics and electrochemistry of [Au₂(dppf)R₂] [dppf =

Fe $(\eta$ -C₅H₄PPh₂)₂; R = alkyl, aryl or alkynyl]. Crystal structure of [Au₂(dppf)(C₁₆H₉)₂] (C₁₆H₉= pyren-1-yl). J. Chem. Soc., Dalton Trans. 1996;3411-3415.

- 32. Hill DT, Girard GR, McCabe FL, Johnson RK, Stupik PD, Zhung JH, Reiff WM, Eggleston DS. m-[1,1'-bis(diphenylphosphino)ferrocene]bis(chlorogold): Synthesis, iron-57 and gold-197 Mossbauer spectroscopy, X-ray crystal structure and antitumor activity. Inorg. Chem. 1989;28:3529-3533.
- Roof LC, Smith DM, Drake GW, Pennington WT, Kolis JW. Synthesis and reactivity of [Fe₃(CO)₉Te]²⁻. Inorg. Chem. 1995;34:337-345.
- 34. Rossell O, Seco M, Reina R, Font-Bardia M, Solans X. Electrophilic additions of $AuPR_3-L$ ²⁺ (L = diphosphine) units to the $[Fe_3(CO)_{11}]^{2^-}$ anion (and $Au_2(MU)$. Organometallics. 1994;13:2127-2130.
- 35. Bruce MJ, Nicholson EK. Cluster chemistry: XVI. Synthesis and crystal structure of $AuFe_3(\mu_3-HC=NBu^t)(CO)_9(PPh_3)$, an $AuFe_3$ butterfly cluster. J. Organomet. Chem. 1983;250:627-638.
- Delgado E, Herhandez E, Rossell O, Seco M, Solans X. Synthesis of tetrametallic thiolate-bridged Fe₃Au clusters. Crystal structure of [Fe₃(CO)₉(μ₃-SPrⁱ){μ-Au(PPh₃)}]. J. Chem. Soc. Dalton Trans. 1993;2191-2195.
- 37. Alvarez S, Rossell O, Seco M, Valls J, Pellingheli MA, Tiripichio A. Square Fe_2Au_2 and triangular Fe_2Au clusters: A reversible transformation. X-ray crystal structure of $[Fe_2Au_2(CO)_8(\mu$ -dppm)] [dppm = bis(diphenylphosphino) methane]. Organometallics. 1991;10:2309-2314.
- Braunstein P, Knorr M, Tiripichio A, Tiripichio-Camellini M. Competing metalmetal bonding in heterometallic complexes of gold and mercury. Synthesis of contrasting iron-gold-gold-iron and ironmercury-iron complexes. Inorg. Chem. 1992;31:3685-3687.
- Jacob K, Voigt F, Merzweiler K, Pietzsh C. Synthese, Struktur von 3-(N,Ndimethylamino) propyl- und 2-(Dimethylaminomethyl) ferrocenyl-Derivaten des Goldes und Platins. J. Organomet. Chem. 1997;545:421-433.
- Calhorda MJ, Canales F, Gimeno MC, Jimenez J, Jones PG, Laguna A, Veiros JF. Gold(I)-Gold(III) Interactions in Polynuclear Sulfur-centered Complexes.

Synthesis and structural characterization of $[S(Au_2dppf){Au(C_6F_5)_3}]$ and $[{S(Au_2dppf)}_2 {Au(C_6F_5)_2}]OTf$ (dppf=1,1'-bis(diphenylphosphino)ferrocene). Organometallics. 1997;16:3837-3844.

- 41. Canales F, Gimeno MC, Jones PG, Laguna A, Sarroca C. Substitution Reaction Studies on $[Au_2Cl_2(\mu-dppf)]$ (dppf = 1,1'-bis(diphenylphosphino)ferrocene) Synthesis of the First Gold(I) Complex with a μ 3-2-Pyridinethiolate Ligand. Inorg. Chem. 1997;36:5206-5211.
- 42. Braunstein P, Knorr M, Stährfeldt T, DeCian A, Fischer J. Electrophilic additions to the bimetallic silyl complexes $[(OC)_3\{(MeO)_3Si\}$ -Fe(μ -PR2)Pt(1,5-COD)] (R = Ph, Cy). Crystal structure of $[(OC)_3Fe(\mu$ -PCy2)(μ -Au(PPh_3)_2Pt-(1,5-COD)][PF₆] (CY = c-C₆H₁₁). J. Organomet. Chem. 1993;459:C1-C5.
- 43. Aitchison AA, Farrugia LJ. Semibridging interactions and conformational equilibria in methoxymethylidyne cluster complexes. Syntheses, spectroscopic, and x-ray crystallographic studies on $CoFe_2(\mu-H)(\mu^3-COCH_3)(CO)_7(\epsilon-C_5H_5)$, $Fe_2Ni(\mu^3-COCH_3)(\mu^3-CO)(CO)_6(\epsilon-C_5H_5)$, and $AuCoFe_2(\mu^3-COCH_3)(\mu^3CO)(CO)_6(PPh_3)(\epsilon-C_5H_5)$. Organometallics. 1986;5:1103-1112.
- 44. Alhgrén M, Pakanen TT, Tahvanainen I. Mixed-metal cluster derivatives of $Co_3(\mu_3$ -CPh)(CO)₉: Crystal structures of $Co_3(\mu_3$ -CPh)(CO)₉, HFeCo₂(μ_3 -CPh)(CO)₉, and FeCo₂(μ -AuPPh₃)(μ_3 -CPh)(CO)₉. J. Organomet. Chem. 1987;323:91-102.
- 45. Fischer K., Müller M., Vahrenkamp H., Schrittweiser Zusammenbau eines Clusters mit vier verschiedenen Metallatomen. Angew. Chem., 1984; 96:138139; Angew. Chem. Int. Ed. Engl. 1984;23:140-141.
- 46. Draper SM, Housecroff CE, Rees JE, Shongwe MS, Haggerty BS, Rheingold AL. To fuse or not to fuse? Reactions of $[HM_4(CO)_{12}BH]$ - (M = iron, ruthenium) with (phosphine)gold(I) chlorides. Molecular structures of HFe₄(CO)₁₂BHAuP(2-MeC₆H₄)₃, [Au(PMePh₂)₂][[HFe₄(CO)₁₂BH]₂Au], and [PPN][[HRu₄(CO)₁₂BH]₂Au]. Organometallics. 1992;11:2356-2367.
- 47. Albano VG, Aureli R, Iapalucci MC, Laschi F, Longoni G, Monari M, Zanello P. Synthesis, Characterization and Electrochemical Behaviour of the $[Fe_4Au(CO)_{16}]^{n}$ (n=1,2,3) Clusters. X ray

Structure of $[NMe_3CH_2Ph][Fe_4Au(CO)_{16}]$.Cl. J. Chem. Soc. Chem. Commun. 1993;1501-1502.

48a Horwitz CP, Holt EM, Brock CP, Shriver DF. Systematics of the formation of .PI.carbonyl ligands in four-iron clusters. Synthesis and structures of [K(18-crown-6)] [Fe₄(AuPEt₃)(CO)₁₃].CH₂C₁₂, Fe₄(AuPEt₃)(CO)₁₂(COCH₃),

C.P., Holt, E.M. Schriver D.F., Interconversion of tetrahedral and .pi.carbonyl containing butterfly clusters: $[Fe_4(MPR_3)(CO)_{12}(\epsilon^2-CO)]$ -

.dblharw.[Fe₄(MPR₃)(CO)₁₃]- (M = gold, R = ethyl; M = copper, R = phenyl) and Fe₄(AuPEt₃)(CO)₁₂(ϵ^2 -COMe). J. Am. Chem. Soc. 1985;107:281-282.

- 48b. Rossell O, Seco M, Segales G, Alvarez S, Pellinghelli MA, Tiripichio A, de Montauzon D. Iron–gold (or –Mercury) carbide clusters derived from $[Fe_6C(CO)_{16}]^2$. X-ray crystal structures of $(NEt_4)[Fe_6C{AuPPh_3}(CO)_{16}]$ and $[Fe_4C{AuPPh_3}(CO)_{11}(NO)]$. Organometallics. 1997;16:236-245.
- Johnson BFG, Kaner DA, Lewis J, Raithby PR, Rosales MJ. Syntheses and structural characterisations of some novel mixedmetal iron-gold carbido clusters; X-ray crystal structures of Fe₄AuC(η-H)(CO)₁₂(PPh₃) and Fe₄Au₂C(CO)₁₂(PEt₃)₂. J. Organomet. Chem. 1982;231:C59-C64.
- 50 Poliakova LA, Gubin SP, Belyakova OA, Zubavichus YV, Slovokhotov YL. Pentaand hexanuclear heterometallic carbonyl clusters with μ_3 -O ligands. Organometallics. 1997;16:4527-4530.
- 51 Sunick DL, White PS, Schauer CK. Phosphorus-mediated gold aggregation on a metal cluster: Syntheses, structures, dynamic behavior, and ligand addition reactions of the clusters (.mu.-H)nFe₃(CO)₉P[Au(PR₃)]3-n (n = 0, 1, 2). Inorg. Chem. 1993;32:5665-5675.
- 52 Roland E, Fischer K, Vahrenkamp H. Überdachung von metallatom dreiecken in clustern durch R₃PAu-einheiten angew. Chem. 1983;95:324-325; Fischer K, Deck W, Schwarz M, Vahrenkamp H. Inorganic reactions of the clusters FeCo₂S(CO)₉, HFe₂CoS(CO)₉, and H₂Fe₃S(CO)₉. Chem. Ber. 1985;118:4946-4964.
- 53 Houthon A, Mingos DMP, Murphy DM, Williams DJ. [Au₂Cl₂(fdpp)₃], a structural intermediate in the assembly of gold-

phosphine chain polymers. Acta Crystallogr. Sect. C. 1995;51:30-32.

- 54 Albano VG, Iapalucci M, Longoni G, Manzi I, Monari M. Synthesis of $[Au_3Fe_2(CO)_8(dppm)]$ and $[Au_5Fe_2(CO)_8(dppm)_2]^+$: X-ray structures of $[NEt_4][Au_3Fe_2(CO)_8(dppm)]$ and $[Au_5Fe_2(CO)_8(dppm)_2][BF_4]$. Organometallics. 1997;16:497-499.
- 55. Togni Α, Pastor SD, Ribs G. Enantioselective synthesis: Catalysis of the aldol reaction by neutral gold(I)-chiral ferrocenylphosphine complexes. Crystal structure the complex of [{(n[°]- $C_5H_4PPh_2)(\eta^5 -$ C₅H₃(PPh₂)CH(Me)N(Me)CH₂CH₂NMe₂)Fe $_{2}(AuCl)_{3}$] $\cdot Et_{2}O.$ J. Organomet. Chem. 1990;381:C21-C25.
- 56 Canales F, Gimeno MC, Laguna A, Jones PG. Synthesis and structural characterization of tetranuclear sulfurcentered complexes with mixed-valent gold atoms: $[S(Au_2dppf)\{Au(C_6F_5)_3\}_2]$ (dppf = 1,1'-bis(diphenylphosphino)ferrocene) and $[S(AuPPh_3)_2[Au(C_6F_5)_3]_2]$. Oganometallics. 1996;15:3412-3415.
- 57a. Thöne C, Vahrenkamp H. Aurated clusters derived from (μ_3 -ketenylidene)-Fe₃ and Fe₂Co clusters. J. Organomet. Chem. 1995;485:185-189.
- 57b. Zubavichus YV, Galuzina TV, Beliakova OA, Gubin SP, Slovokhotov YL, Struchkov YuT. the first uncharged heterotrimetallic "wing-bridged" butterfly. Mendeleev Commun. 1995;5:91-93.
- Bruce MI, Corbin PE, Humphrey PA, 58. Koutsantonis GA, Liddell M, Tiekink ERT. Synthesis of cluster complexes containing Au₂(PPh₃)₂ moieties: Isolobal models of the interaction of H₂ with metal clusters. X-Ray structure $Au_2Fe_2Ir(\mu_4$ of C₂Ph)(CO)₇(PPh₃)₃. J. Chem. Soc., Chem. 1990;674-677. Bruce Commun. MI, Koretzantonis GA, Tiekink ERT. Cluster chemistry: LXVII. Reactions of some Fe Ir clusters. Crystal structures of Fe2lr(µ-H)(μ_3 -CCHPh)(CO)₈(PPh₃) and $Au_2Fe_2Ir(\mu_4-C_2Ph)(CO)_7(PPh_3)_3$. .1 Organomet. Chem. 1991;408:77-94.
- 59. Pergola RD, Garlaschelli L, Demartin F, Manassero M, Masciocchi N, Sansoni M. Chemical behaviour of the mixed-metal carbonyl clusters $[Fe_2Rh(CO)_{10}]^-$ and $[Fe_2Rh_2(CO)_{12}]^{2^-}$. Crystal structures of $[Fe_2Rh(CO)_9(PPh_3)]^-$ and $[Fe_2Rh_2(\mu-CO)_3(CO)_9\{\mu_3-Au(PPh_3)\}]^-$. J. Chem. Soc. Dalton Trans. 1995;2763-2768.

- 60. Pergola RD, Franchia L, Garlaschelli L, Manassero M, Sansoni M. Chemical behavior of the mixed-metal carbonyl clusters $[Fe_2Rh(CO)_{10}]$ and $[Fe_2Rh_2(CO)_{12}]^{2^-}$ - crystal-structures of $[Fe_2Rh(CO)_9(PPh_3)]$ and $[Fe_2Rh_2(\mu-CO)_3(CO)_9(\mu^3-Au(PPh_3)]$. J.Chem. Soc. Dalton Trans. 1995;2763-2768.
- Lauher JW, Wald K. Synthesis and 61. structure of triphenylphosphinegolddodecacarbonyltricobaltiron ([FeCo₃(CO)₁₂AuPPh₃]): Α trimetallic trigonal-bipyramidal cluster. Gold derivatives as structural analogs of hydrides. J. Amer. Chem. Soc. 1981;103:7648-7650.
- 62. Low AA, Lauher JW. Synthetic and structural studies of phosphine and phosphite derivatives of the dodecacarbonyltricobaltferrate(1-) anion and their (triphenylphosphine) gold(1+) adducts. Inorg. Chem. 1987;26:3863-3871.
- Blohm MI, Gladfelter WL. Preparation of gold derivatives of nitrido clusters. Structural characterization of Ph₃PAuFeRu₃N(CO)₁₂. Inorg. Chem. 1987;26:459-463.
- 64. Rossell O, Seco M, Segaés G, Johnson BFG, Dyson PJ, Ingham SL. Effect of diphosphine ligands on the metal framework of carbido heteronuclear cluster compounds: X-ray Structure of [Fe₄Au₂C(CO)₁₂(µ-dppm)]·C₇H₈. Organometallics. 1996;15:884-886.
- 65. Housecroft CE, Shongave MS, Rheingold AL, Zanello P. Synthesis and molecular structure of the borido cluster Fe₄(CO)₁₂BHAu₂{AsPh₃}₂ and an investigation of the electrochemistry of Fe₄(CO)₁₂BHAu₂L₂, L = AsPh₃ or PPh₃. J. Organomet. Chem. 1991;408:7-18.
- 67. Housecroft CE, Shongave MS, Rheingold AL. An appraisal of the steric versus electronic requirements of gold(I) phosphine substituents in clusters: the crystal structure of [HFe₄(CO)₁₂{AuPEt₃}₂B]. Organometallics. 1988;7:1885-1887.
- 68. Das BK, Konatzidis MG. Solvothermal synthesis, molecular structures and spectroscopic characterization of the

cluster compounds $(Ph_4P)_2[Fe_4Te_2(CO)_{14}]$ and $Cs[HFe_3Te(CO)_9]$. J. Organomet. Chem. 1996;513:1-6.

- 69. Briant CE, Hall KP, Mingos DMP. Structural studies on mixed iron-gold clusters with bidentate tertiary phosphine ligands. J. Chem. Soc. Chem. Commun. 1983;843-845.
- 70. Beuter G, Strähle J. Clusteraufbau durch photolyse von R_3PAuN_3 III [1] synthese von [(Ph₃paU)₅fE(co)₃]pf₆ UND rU₃(CO)₁₀(μ -AuPPh₃)(μ -NCO). Z. Naturforsch. 1989;44b:647-652.
- Bautista MT, White PS, Schauer CK. 71. Cluster-Linking Reactions: Synthesis and structure of the dicluster complex $[(Ph_3P)_2N]{Fe_3(CO)_9(\mu_3-PMe)(\mu_3-P)}_2Au]$ and the definitive 31P NMR spectroscopic characterization of tricluster and oligomer tetracluster complexes in mixtures. J.Amer. Chem. Soc. 1994;116:2143-2144.
- 72. Johnson BFG, Kaner DA, Lewis J, Rosales MJ. Synthesis and structural characterisation of the mixed-metal carbido cluster $Fe_5C(\mu_2\text{-}CO)_3(CO)_{11}(\mu_2\text{-}AuPEt_3)$ - $(\mu_4\text{-}AuPEt_3)$ and the oxidation of FeAu clusters. J. Organomet. Chem. 1982;238:C73-C78.
- Harpp KS, Housecroft CE, Rheingold AL, Shongave MS. A metal encapsulated boron atom: Preparation and structure of [Fe₄(CO)₁₂B{AuPPh₃}]. J. Chem. Soc., Chem. Commun. 1988;965-966.
- Sunick DL, White PS, Schauer CK. A cluster-bound triply-bridging phosphorus atom coordinated to four (Ph₃P)Au⁺ units: [Fe₃(CO)₉P{Au(PPh₃)}₄][BAr₄]. Angew. Chem. Int. Ed. Engl. 1994;33:75-77.
- Low PMN, Tan AL, Andy Hor TS, Wen YS, 75. Liu LK. Substituted metal carbonyls. 27.¹ Synthesis, structures, and metal-metal bonding of а ferrocenylphosphine exo-bridged cluster with two heterometallic triangles, $[AuMn_2(CO)_8(\mu-PPh_2)]_2(\mu-dppf),$ and а twisted-bowtie cluster, $PPN^{+}[Au\{Mn_{2}(CO)_{8}(\mu-PPh_{2})\}_{2}]^{-}$ (dppf 1,1'-Bis(dipheny-lphosphino)ferrocene). Organometallics. 1996;15:2595-2603.
- 76. Draper SM, Housecroft CE, Rheingold AL. Synthesis and solution properties of the boron-containing clusters $HM_4(CO)_{12}BAu_2(dppf)$ (M = Fe or Ru) and the competitive formation of $HM_4(CO)_{12}BHAu_2(dppf)$ for M = Ru (dppf = 1,1'-bis(diphenylphosphino)ferrocene).

- 77. Salter ID, Šik V, Williams SA, Adatia T. Variable-temperature nuclear magnetic resonance spectroscopic studies of the dynamic behaviour of the mixed-metal cluster compounds $[MM'Ru_4H_2(\mu$ dppf)(CO)₁₂][M = M'= Cu, Ag or Au; M = Cu, M'= Au; dppf = Fe(η^5 -C₅H₄PPh₂)₂] and the crystal structures of $[MM'Ru_4H_2(\mu$ dppf)(CO)₁₂] (M = Cu or Au, M'= Au). J. Chem. Soc., Dalton Trans. 1996;643-652.
- Ferrer M, Julia A, Rossell O, Seco M, Peltinghelli MA, Tiripichio A. [(CIAu)₃(triphos)] as a building block for the synthesis of heterometallic clusters. Crystal structure of [{Fe₂(μ-CO)(CO)₆(μ-HCCPhH)Au}₃(triphos)]: A compound containing three independent cluster units

linked by a triphosphine ligand. Organometallics. 1997;16:3715-3718.

- 79. Houlton A, Mingos DMP, Murphy DM, Williams DJ, Phang LT, Hor TSA. Dalton communications. Synthesis and structural characterization of an Au–P linked chain polymer. The molecular structure of two pseudo-polymorphic forms of [{AuCl(μ dppf)}_n] [dppf = 1,1'bis(diphenylphosphino)ferrocene]. J. Chem. Soc. Dalton Trans. 1993;3629-3630.
- Phang LT, Hor TSA, Zhou ZY, Mak TCW. 1,1'-bis(diphenylphosphino)ferrocene complexes of gold(I). Polymeric [AuCl(μdppf)]_n and dimeric [Au₂(dppf-P,P')₂(μdppf)](NO₃)₂. J. Organomet. Chem. 1994;469:253-261.

© 2015 Melník and Mikuš; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history.php?iid=809&id=7&aid=7148