

SCIENCEDOMAIN international www.sciencedomain.org

k-*Paranormal, k-Quasi-*paranormal and (n, k)- Quasi-*paranormal Composite Multiplication Operator on L²-spaces

S. Senthil¹, P. Thangaraju^{2*} and D. C. Kumar¹

¹Department of Mathematics, Vickram College of Engineering, Enathi, Tamilnadu, India. ²Department of Mathematics, Saraswathi Narayanan College, Madurai, Tamilnadu, India.

Article Information

DOI: 10.9734/BJMCS/2015/20166 <u>Editor(s):</u> (1) Feliz Manuel Minhós, Professor, Department of Mathematics, School of Sciences and Technology, University of Évora, Portugal. <u>Reviewers:</u> (1) Anonymous, Celal Bayar University, Turkey. (2) Anonymous, Hanyang University, Republic of Korea. (3) Francisco Bulnes, Tecnológico de Estudios Superiores de Chalco, Mexico. (4) Anonymous, SASTRA University, India. Complete Peer review History: <u>http://sciencedomain.org/review-history/11418</u>

Original Research Article

Received: 14 July 2015 Accepted: 09 August 2015 Published: 16 September 2015

Abstract

An operator $A \in B(H)$, A is said to be (n, k)-quasi-*paranormal if $\|A^{l+n}(A^k(x))\|^{\frac{1}{l+n}} \|A^k(x)\|^{\frac{n}{l+n}} \ge \|A^*(A^k(x))\|$ for every x in H[1]. In this paper, the conditions under which composite multiplication operator becomes k-*paranormal operator, k-quasi-*paranormal operator and (n,k)-quasi-*paranormal operator, have been obtained in terms of Radon-Nikodym derivative f_0 .

*Keywords: k-*paranormal; k-quasi-*paranormal;* (n,k) *-quasi-*paranormal; conditional expectation; composition operator; multiplication operator and composite multiplication operator.*

Mathematics Subject Classification 2010: 47B33, 47B34, 47B347 47B48.

1 Introduction

Let X be a non-empty set, C be the field of complex numbers and V(X) be a vector space of complex valued functions on X under the pointwise operations of addition and scalar multiplication. Let T be a

^{*}Corresponding author: E-mail: senthilsnc83@gmail.com;

mapping of X into X such that $f \circ T$ is in V(X) whenever f is in V(X). Define the composition transformation C_T on V(X) as $C_T f = f \circ T$ for every f in V(X). If V(X) has a Banach space structure and C_T is bounded, then C_T is called the composition operator on V(X) induced by T. Let $u: X \to C$ be a function such that M_u , defined as $M_u f = u \cdot f$ for every f in V(X) is a bounded linear operator on V(X). Then the product $C_T M_u$ which becomes a bounded operator on V(X) is called a composite multiplication operator.

Let B(H) be the Banach algebra of all bounded operators on a Hilbert Space H. If (X, Σ, μ) is a σ -finite measure space an $T:X \to X$ is a measurable transformation such that $C_T \in B(L^2(\mu))$, then in [2] R. K. Singh and D. C. Kumar have proved that the measure μT^{-1} , defined as $\mu T^{-1}(E) = \mu(T^{-1}(E))$ for every E in Σ , is absolutely continuous with respect to the measure μ . Let f_0 denote the Radon-Nikodym derivative of μT^{-1} with respect to μ and if $C_T \in B(L^2(\mu))$, then in [2] R. K. Singh has proved that $C_T^*C_T = M_{f_0}$. A composite multiplication operator is a linear transformation acting on a set of complex valued Σ measurable functions f of the form

$$M_{u,T}(f) = C_T M_u(f) = u \circ T f \circ T$$

Where u is a complex valued, Σ measurable function. In case u = 1 almost everywhere, $M_{u,T}$ becomes a composition operator, denoted by C_T .

Let X be a non-empty set and let Σ be a σ -algebra on X. Let μ and μT^{-1} be measures on Σ and $f_0: X \rightarrow [0, \infty]$ be a measurable function, then the following are equivalent:

- (i) μT^{-1} is absolutely continuous with respect to μ and f_0 is Radon-Nikodym derivative of μT^{-1} with respect to μ .
- (ii) For every measurable function $f: X \rightarrow [0, \infty]$, the equality

$$\int_{X} f d\mu T^{-1} = \int_{X} f_0 f d\mu$$

holds.

In the study considered is the using conditional expectation of weighted composition operator on L^2 -spaces. For each $f \in L^p(X, \Sigma, \mu)$, $1 \le p \le \infty$, there exists an unique $T^{-1}(\Sigma)$ -measurable function E(f) such that

$$\int_{A} g f d\mu = \int_{A} g E(f) d\mu$$

for every $T^{-1}(\Sigma)$ -measurable function g, for which the left integral exists. The function E(f) is called the conditional expectation of f with respect to the subalgebra $T^{-1}(\Sigma)$. As an operator of $L^p(\mu)$, E is the projection onto the closure of range of T and E is the identity on $L^p(\mu)$, $p \ge 1$ if and only if $T^{-1}(\Sigma) = \Sigma$. Detailed discussion of E is found in [3,4].

1.1 *paranormal

An operator $A \in B(H)$, A is said to be *paranormal if $\|A^*(x)\|^2 \le \|A^2(x)\| \|x\|$ for all $x \in H$.

1.2 k-*paranormal

An operator $A \in B(H)$, A is said to be k-*paranormal if $\left\|A^{*}(x)\right\|^{k} \leq \left\|A^{k}(x)\right\| \|x\|$ for all $x \in H$.

1.3 Quasi – *paranormal

An operator $A \in B(H)$, A is said to be quasi-*paranormal if

$$\| (A^*A)(x) \|^2 \le \| A^3(x) \| \| A(x) \|$$

for all $x \in H[1]$.

1.4 k- Quasi – *paranormal

An operator $A \in B(H)$, A is said to be k-quasi-*paranormal if

$$\| (A^*A)^k (x) \|^2 \le \| A^{k+2} (x) \| \| A^k (x) \|$$

for all $x \in H[1]$.

1.5 (n, k) -Quasi – *paranormal

An operator $A\in B\left(H\right),\;A$ is said to be $\left(n,k\right)$ -quasi-*paranormal if

$$\left\|A^{l+n}(A^{k}(x))\right\|^{\frac{1}{l+n}}\left\|A^{k}(x)\right\|^{\frac{n}{l+n}} \ge \left\|A^{*}(A^{k}(x))\right\|$$

for all $x \in H[1]$.

1.6 (M, k)* Class

An operator $A \in B(H)$, A is said to be $(M,k)^*$ class if $(AA^*)^k \leq A^{*k}A^k$ for $k \geq 1$.

2 Related Works in the Field

During the last thirty years several authors have defined $W_{u,T} = M_u C_T = u$ (f \circ T) and have studied the properties of various classes of weighted composition operators on L^2 spaces. The study of weighted composition operator was initiated.

 $M_{u,T}(f) = C_T M_u(f) = u \circ T f \circ T$ by R. K. Singh and D. C. Kumar [2]. The concept of normality of bounded linear operators on a Hilbert Space has been generalized by different authors.

Recently, S. Senthil, P. Thangaraju and D. C. Kumar [5] have proved, the theorems on n-Normal and nquasi-normal composite multiplication operator on L^2 -spaces. Arora and Thukral [6,7] have proved, a weighted composition operators $W_{u,T} = M_u C_T$ is *paranormal and quasi-*paranormal operators. Some results have been found by N. Chennappan and S. Karthikeyan [8], in the characterizations of *paranormal and quasi-*paranormal operators. S. Mecheri [9], has proved the results on k-quasi-paranormal operators. Many results have been found, in the characterization of k-*paranormal and (n,k) -quasi-*paranormal weighted composition operators on L^2 -spaces, see [10,11,1].

3k-*Paranormal and (M,k)* Class Composite Multiplication Operator

Throughout the paper, by an operator we mean a bounded linear operator on a Hilbert space. If H denotes an infinite dimensional complex separable Hilbert Space, denotes the algebra of all operators on H by B(H). Fahri Marevi and Muhib Lohaj [12] have proved that, for each positive integer $k \ge 2$ and define an

operator A is k-*paranormal if and only if $A^{*k}A^k - k C^{k-1}A A^* + (k-1)C^kI \ge 0$ for all $C \ge 0$. Followed by Anuradha and Pooja Sharma [11] have characterized k-*paranormal weighted composition operators. In an analogous manner, we give a characterization of *paranormal and $(M,k)^*$ class composite multiplication operator on L^2 –spaces.

3.1 Proposition

Let the composite multiplication operator $M_{u,T} \in B(L^2(\mu))$. Then for $u \ge 0$

(i)
$$M_{u,T}^* M_{u,T} f = u^2 f_0 f$$

(ii) $M_{u,T} M_{u,T}^* f = u^2 \circ T \cdot f_0 \circ T \cdot E(f)$

Since

$$\begin{split} \boldsymbol{M}_{u,T}(f) &= \boldsymbol{C}_T \boldsymbol{M}_u(f) = \boldsymbol{u} \circ \boldsymbol{T} \quad \boldsymbol{f} \circ \boldsymbol{T} \\ \boldsymbol{M}^n_{u,T}(f) &= (\boldsymbol{C}_T \boldsymbol{M}_u)^n(f) = \boldsymbol{u}_n \quad (\boldsymbol{f} \circ \boldsymbol{T}^n) \end{split}$$

the adjoint $M^*_{u,T}$ of $M_{u,T}$ is given by $M^*_{u,T} f = u f_0 \cdot E(f) \circ T^{-1}$ and

$$M^{*''}_{u,T}f = uf_0 \cdot E(uf_0) \circ T^{-(n-1)} \cdot E(f) \circ T^{-n}$$

where

$$E(u f_0) \circ T^{-(n-1)} = E(u f_0) \circ T^{-1} \cdot E(u f_0) \circ T^{-2} \dots E(u f_0) \circ T^{-(n-1)}$$
$$E(u f_0) \circ T^{n-1} = E(u f_0) \circ T^1 \cdot E(u f_0) \circ T^2 \dots E(u f_0) \circ T^{n-1}$$

Theorem 3.2

Let the composite multiplication operator $M_{u,T} \in B(L^2(\mu))$. Then $M_{u,T}$ is *paranormal if and only if

 $u^2 f_0 \cdot E(u^2 f_0) \circ T^{-1} f - 2Cu^2 \circ T \cdot f_0 \circ T \cdot E(f) + C^2 I \ge 0$ almost everywhere, for all $C \ge 0$.

Proof:

Suppose M_{u,T} is *paranormal. Then

$$M^{*^{2}}_{u,T} M^{2}_{u,T} - 2C M_{u,T} M^{*}_{u,T} + C^{2}I \ge 0$$
 for all $C \ge 0$.

This implies that

$$\left\langle (M^{*2}_{u,T} M^{2}_{u,T} - 2CM_{u,T} M^{*}_{u,T} + C^{2}I)f, f \right\rangle \ge 0 \text{ for all } f \in L^{2}(\mu)$$

Since

$$M^{*}_{u,T} f = u f_{0} \cdot E(f) \circ T^{-1}$$

$$M^{*2}_{u,T} M^{2}_{u,T}(f) = u^{2} f_{0} \cdot E(u^{2} f_{0}) \circ T^{-1} f$$

 $M_{u,T}(f) = C_T M_u(f) = u \circ T f \circ T$

and we have

$$\begin{split} & \underset{E}{\overset{M_{u,T}}{\int} M^{*}_{u,T} f = u^{2} \circ T \cdot f_{0} \circ T \cdot E(f)} \\ & \underset{E}{\int} \left\{ u^{2} f_{0} \cdot E(u^{2} f_{0}) \circ T^{-1} f - 2C u^{2} \circ T \cdot f_{0} \circ T \cdot E(f) + C^{2} I \right\} d\mu \geq 0 \text{ for every } E \in \Sigma \\ \Leftrightarrow \\ & u^{2} f_{0} \cdot E(u^{2} f_{0}) \circ T^{-1} f - 2C u^{2} \circ T \cdot f_{0} \circ T \cdot E(f) + C^{2} I \geq 0 \text{ almost everywhere, for all } C \geq 0 \end{split}$$

Corollary 3.3

If the composition operator C_T is in $B(L^2(\mu))$ then C_T is *paranormal if and only if

 $f_0 \cdot E(f_0) \circ T^{-1}f - 2C f_0 \circ T \cdot E(f) + C^2 I \ge 0$ almost everywhere, for all $C \ge 0$.

Proof:

The proof is obtained from theorem 3.2 by putting u = 1.

Corollary 3.4

If the composite multiplication operator $M_{u,T}$ is in $B(L^2(\mu))$ then $M_{u,T}$ is *paranormal if and only if $u^4 \circ T \cdot f_0^2 \circ T \cdot (E(f))^2 \le u^2 f_0 \cdot E(u^2 f_0) \circ T^{-1} f$ almost everywhere.

Proof:

Suppose $M_{u,T}$ is *paranormal is in $B(L^2(\mu))$. Then by theorem 3.2, $u^2 f_0 \cdot E(u^2 f_0) \circ T^{-1} f - 2Cu^2 \circ T \cdot f_0 \circ T \cdot E(f) + C^2 I \ge 0$ almost everywhere, for all $C \ge 0$. We know that, by elementary properties of real quadratic form, if a > 0, b, c are real numbers, then $at^2 + bt + c \ge 0$ for every real t if and only if $b^2 - 4ac \le 0$.

Hence we get,

$$\Leftrightarrow (u^{2} \circ T \cdot f_{0} \circ T \cdot E(f))^{2} \leq u^{2} f_{0} \cdot E(u^{2} f_{0}) \circ T^{-1} f \text{ almost everywhere.}$$
$$\Leftrightarrow u^{4} \circ T \cdot f_{0}^{2} \circ T \cdot (E(f))^{2} \leq u^{2} f_{0} \cdot E(u^{2} f_{0}) \circ T^{-1} f \text{ almost everywhere.}$$

3.5 Example

Let $T: R \to R$ be defined by T(x) = 1 - x for all $x \in R$. Then $f_0(x) = \frac{d \mu T^{-1}(x)}{d \mu(x)} = 1$ and $T = T^{-1}$.

Define $u: R \to R$ as $u(x) = \sqrt{\frac{1}{1 + (x+1)^2}}$ for all $x \in R$ and E(f) = f.

Now, $M_{u,T}$ is *paranormal if and only if $\frac{3-6x}{(1+(2-x)^2)^2 (1+(x+1)^2)} \ge 0$.

Theorem 3.6

Let the composite multiplication operator $M_{u,T} \in B(L^2(\mu))$. Then $M_{u,T}$ is k-*paranormal if and only if $u f_0 \cdot E(u f_0) \circ T^{-(k-1)} \cdot E(u_k) \circ T^{-k} f - k C^{k-1} u^2 \circ T \cdot f_0 \circ T \cdot E(f) + (k-1)C^k I \ge 0$ almost everywhere, for all $C \ge 0$.

Proof:

Suppose M_{u,T} is k-*paranormal. Then

$$M^{*^{k}}_{u,T} M^{k}_{u,T} - k C^{k-1} M_{u,T} M^{*}_{u,T} + (k-1)C^{k}I \ge 0$$
 for all $C \ge 0$.

This implies that

$$\left\langle (M^{*k}_{u,T} M^{k}_{u,T} - kC^{k-1} M_{u,T} M^{*}_{u,T} + (k-1)C^{k}I) f , f \right\rangle \ge 0$$
 for all $f \in L^{2}(\mu)$

Since $M_{u,T}(f) = C_T M_u(f) = u \circ T f \circ T$

$$M_{u,T}^{*}(f) = u f_0 \cdot E(f) \circ T^{-1}$$

$$\mathbf{M^{*}}^{u,T} \mathbf{M}^{k}_{u,T} (f) = u f_{0} \cdot E(u f_{0}) \circ \mathbf{T}^{-(k-1)} \cdot E(u_{k}) \circ \mathbf{T}^{-k} f$$

and we have

$$M_{u,T} M^*_{u,T} f = u^2 \circ T \cdot f_0 \circ T \cdot E(f)$$

$$\int\limits_E \left\{ u f_0 \cdot E(u f_0) \circ T^{-(k-1)} \cdot E(u_k) \circ T^{-k} f - k C^{k-1} u^2 \circ T \cdot f_0 \circ T \cdot E(f) + (k-1) C^k I \right\} d\mu \ge 0 \text{ for every } E \in \Sigma \quad .$$

 $\Leftrightarrow \ u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-l)} \cdot E(u_k) \circ T^{-k} \, f - k \, C^{k-l} \, u^2 \circ T \cdot f_0 \circ T \cdot E(f) + (k-l) C^k \, I \ge 0 \quad almost \quad everywhere, for all \ C \ge 0 \, .$

Corollary 3.7

If the composition operator C_T^{k} is in $B(L^2(\mu))$ then C_T^{k} is k-*paranormal if and only if $f_0 \cdot E(f_0) \circ T^{-(k-1)}f - k C^{k-1} \cdot f_0 \circ T \cdot E(f) + (k-1)C^k I \ge 0$ almost everywhere, for all $C \ge 0$.

Proof:

The proof is obtained from theorem 3.6 by putting u = 1.

Fahri Marevci and Muhib Lohaj [12] have proved that, the weighted composition operator is of class $(M,k)^*$ operator. In this manner we prove the composite multiplication operator as below,

Theorem 3.8

Let the composite multiplication operator $M_{u,T} \in B(L^2(\mu))$ and $k \ge 1$. Then $M_{u,T}$ is of class $(M,k)^*$ operator if and only if

 $u f_0 \cdot E(u f_0) \circ T^{-(k-1)} E(u_k) \circ T^{-k} f - 2Cu^{2k} \circ T \cdot f_0^{-k} \circ T \cdot E(f) + C^2 u f_0 \cdot E(u f_0) \circ T^{-(k-1)} E(u_k) \circ T^{-k} f \ge 0$ almost everywhere, for all $C \ge 0$

Proof:

Suppose $M_{u,T}$ is of class $(M,k)^*$ operator. Then

$$M^{*^{k}}_{u,T} M^{k}_{u,T} - 2C (M_{u,T} M^{*}_{u,T})^{k} + C^{2} M^{*^{k}}_{u,T} M^{k}_{u,T} \ge 0 \text{ for all } C \ge 0$$

This implies that

$$\left\langle (M^{*k}_{u,T} M^{k}_{u,T} - 2C (M_{u,T} M^{*}_{u,T})^{k} + C^{2} M^{*k}_{u,T} M^{k}_{u,T}) f, f \right\rangle \ge 0 \text{ for all } f \in L^{2}(\mu)$$

Since $M_{u,T}(f) = C_T M_u(f) = u \circ T f \circ T$

$$\mathbf{M}^*_{\mathbf{u},\mathbf{T}} \mathbf{f} = \mathbf{u} \mathbf{f}_0 \cdot \mathbf{E}(\mathbf{f}) \circ \mathbf{T}^{-1}$$

$${M^*}^{u}_{u,T} M^{k}_{u,T} (f) = u f_0 \cdot E(u f_0) \circ T^{-(k-1)} \cdot E(u_k) \circ T^{-k} f_0$$

and we have

$$M_{u,T} M_{u,T}^* f = u^2 \circ T \cdot f_0 \circ T \cdot E(f)$$

$$\int_{E} \left[u f_0 \cdot E(u f_0) \circ T^{-(k-1)} E(u_k) \circ T^{-k} f - 2C u^{2k} \circ T \cdot f_0^{-k} \circ T \cdot E(f) + C^2 u f_0 \cdot E(u f_0) \circ T^{-(k-1)} E(u_k) \circ T^{-k} f \right] d\mu \ge 0$$
 for every $E \in \Sigma$.

$$\Leftrightarrow u f_0 \cdot E(u f_0) \circ T^{-(k-1)} E(u_k) \circ T^{-k} f - 2C u^{2k} \circ T \cdot f_0^{-k} \circ T \cdot E(f) + C^2 u f_0 \cdot E(u f_0) \circ T^{-(k-1)} E(u_k) \circ T^{-k} f \ge 0$$

almost everywhere, for all $C \ge 0$.

Corollary 3.9

If the composition operator $C_T^{\ k}$ is in $B(L^2(\mu))$ and $k \ge 1$, then $C_T^{\ k}$ is of class $(M, k)^*$ operator if and only if

$$f_0 \cdot E(f_0) \circ T^{-(k-1)} - 2Cf_0^{-k} \circ T \cdot E(f) + C^2 f_0 \cdot E(f_0) \circ T^{-(k-1)} f \ge 0 \text{ almost everywhere, for all } C \ge 0$$

Proof:

The proof is obtained from theorem 3.8 by putting u = 1.

Corollary 3.10

If the composite multiplication operator $M_{u,T}$ is in $B(L^2(\mu))$ and $k \ge 1$, then $M_{u,T}$ is of class $(M,k)^*$ operator if and only if $u^4 \circ T \cdot f_0^2 \circ T \cdot E(f) \le u^2 f_0^2 \cdot (E(u f_0))^2 \circ T^{-(k-1)} \cdot (E(u_k))^2 \circ T^{-k} f$ almost everywhere.

Proof:

Suppose $M_{u,T}$ is of class $(M,k)^*$ operator on $B(L^2(\mu))$ and $k \ge 1$. Then by theorem 3.8, $u f_0 \cdot E(u f_0) \circ T^{-(k-1)}E(u_k) \circ T^{-k} f - 2Cu^{2k} \circ T \cdot f_0^{-k} \circ T \cdot E(f) + C^2 u f_0 \cdot E(u f_0) \circ T^{-(k-1)}E(u_k) \circ T^{-k} f \ge 0$ almost everywhere, for all $C \ge 0$.

We know that, by elementary properties of real quadratic form, if a > 0, b, c are real numbers, then $at^2 + bt + c \ge 0$ for every real t if and only if $b^2 - 4ac \le 0$.

Hence we get,

$$\mathbf{u}^4 \circ \mathbf{T} \cdot \mathbf{f_0}^2 \circ \mathbf{T} \cdot \mathbf{E}(\mathbf{f}) \leq \mathbf{u}^2 \mathbf{f_0}^2 \cdot (\mathbf{E}(\mathbf{u} \mathbf{f_0}))^2 \circ \mathbf{T}^{-(k-l)} \cdot (\mathbf{E}(\mathbf{u}_k))^2 \circ \mathbf{T}^{-k} \mathbf{f}$$

almost everywhere.

Corollary 3.11

If the composition operator C_T^{k} is in $B(L^2(\mu))$ and $k \ge 1$, then C_T is of class $(M, k)^*$ operator if and only if $f_0^2 \circ T \cdot E(f) \le f_0^2 \cdot (E(f_0))^2 \circ T^{-(k-1)}f$ almost everywhere.

Proof:

The proof is obtained from corollary 3.10 by putting u = 1.

4 k-quasi-*Paranormal Composite Multiplication Operator

Ilmi Hoxha and Naim L Braha [13] have proved that, an operator A is k-quasi-*paranormal if and only if $A^{*k+2}A^{k+2} - 2CA^{*k}AA^*A^k + C^2A^{*k}A^k \ge 0$ for all $C \ge 0$. In an analogous manner, we derive the characterization of k-quasi-*paranormal composite multiplication operator on L^2 -spaces.

Theorem 4.1

Let the composite multiplication operator $M_{u,T} \in B(L^2(\mu))$. Then $M_{u,T}$ is quasi-*paranormal if and only if $u^2 f_0 \cdot E(u^2 f_0) \circ T^{-1} \cdot E(u^2 f_0) \circ T^{-2} f - 2C u^4 \circ T \cdot f_0^2 \circ T \cdot E(f) + C^2 u^2 f_0 f \ge 0$ almost everywhere, for all $C \ge 0$.

Proof:

Suppose M_{u,T} is quasi-*paranormal. Then

$$M^{*^{3}}_{u,T} M^{3}_{u,T} - 2C (M_{u,T} M^{*}_{u,T})^{2} + C^{2} M^{*}_{u,T} M_{u,T} \ge 0 \text{ for all } C \ge 0.$$

This implies that

$$\left\langle (M^{*^{3}}{}_{u,T} M^{3}{}_{u,T} - 2C (M_{u,T} M^{*}{}_{u,T})^{2} + C^{2} M^{*}{}_{u,T} M_{u,T}) f, f \right\rangle \geq 0 \text{ for all } f \in L^{2}(\mu)$$

Since

$$M_{u,T}(f) = C_T M_u(f) = u \circ T \quad f \circ T$$

$$M^*_{u,T} f = u f_0 \cdot E(f) \circ T^{-1}$$

$$M^{*3}_{u,T} M^3_{u,T}(f) = u^2 f_0 \cdot E(u^2 f_0) \circ T^{-1} \cdot E(u^2 f_0) \circ T^{-2} f$$

and we have

almost everywhere, for all $C \ge 0$

Corollary 4.2

If the composite multiplication operator $M_{u,T}$ is in $B(L^2(\mu))$ then $M_{u,T}$ is quasi-*paranormal if and only if $u^8 \circ T \cdot f_0^4 \circ T \cdot E(f) \le u^4 f_0 \cdot E(u^2 f_0) \circ T^{-1} \cdot E(u^2 f_0) \circ T^{-2} f$ almost everywhere.

Proof:

Suppose $\,M_{\,u,T}\,$ is quasi-*paranormal is in $\,B\,(L^2\,(\mu)\,)\,$. Then by theorem 4.1,

 $u^{2}f_{0} \cdot E(u^{2}f_{0}) \circ T^{-1} \cdot E(u^{2}f_{0}) \circ T^{-2}f - 2Cu^{4} \circ T \cdot f_{0}^{-2} \circ T \cdot E(f) + C^{2}u^{2}f_{0}f \ge 0 \text{ almost everywhere, for all } C \ge 0$

We know that, by elementary properties of real quadratic form, if a > 0, b, c are real numbers, then $at^2 + bt + c \ge 0$ for every real t if and only if $b^2 - 4ac \le 0$.

Hence we get,

$$\mathbf{u}^8 \circ \mathbf{T} \cdot \mathbf{f_0}^4 \circ \mathbf{T} \cdot \mathbf{E}(\mathbf{f}) \leq \mathbf{u}^4 \mathbf{f_0} \cdot \mathbf{E}(\mathbf{u}^2 \mathbf{f_0}) \circ \mathbf{T}^{-1} \cdot \mathbf{E}(\mathbf{u}^2 \mathbf{f_0}) \circ \mathbf{T}^{-2} \mathbf{f}$$

almost everywhere.

4.3 Example

Let $T: R \to R$ be defined by T(x) = 1 - x for all $x \in R$. Then $f_0(x) = \frac{d \mu T^{-1}(x)}{d \mu(x)} = 1$ and $T = T^{-1}$.

Define $u: R \to R$ as u(x) = 2x for all $x \in R$ and E(f) = f.

Now, $M_{u,T}$ is quasi-*paranormal if and only if $x^6 (1-x)^2 - (1-x)^8 \ge 0$.

Corollary 4.4

If the composition operator C_T on $B(L^2(\mu))$, then C_T is quasi-*paranormal if and only if

$$\mathbf{f_0}^4 \circ \mathbf{T} \cdot \mathbf{E}(\mathbf{f}) \leq \mathbf{f_0} \cdot \mathbf{E}(\mathbf{f_0}) \circ \mathbf{T}^{-1} \cdot \mathbf{E}(\mathbf{f_0}) \circ \mathbf{T}^{-2} \mathbf{f}$$
.

Proof:

The proof is obtained from corollary 4.2 by putting u = 1.

Corollary 4.5

If the composition operator C_T on $B(L^2(\mu))$, then C_T is quasi-*paranormal if and only if

$$f_0 \cdot E(f_0) \circ T^{-1} \cdot E(f_0) \circ T^{-2}f - 2Cf_0^2 \circ T \cdot E(f) + C^2 f_0 f \ge 0.$$

Proof:

The proof is obtained from theorem 4.1 by putting u = 1.

Theorem 4.6

Let the composite multiplication operator $M_{u,T} \in B(L^2(\mu))$. Then $M_{u,T}$ is k-quasi-*paranormal if and only if

$$\begin{split} & u \, f_0 \cdot E(u \, f_0) \circ T^{-(k+1)} \cdot E(u_{k+2}) \circ T^{-(k+2)} f - 2C \, u \cdot u^2 \circ T^{-(k-1)} \cdot f_0 \cdot f_0^{-2} \circ T^{-(k-1)} \\ & \quad \cdot E(u \, f_0) \circ T^{-(k-1)} \cdot E(E(u_k)) \circ T^{-k} f + C^2 \, u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-1)} \cdot E(u_k) \circ T^{-k} f \geq 0 \end{split}$$

almost everywhere, for all $C \ge 0$

Proof:

Suppose $M_{u,T}$ is k-quasi-*paranormal. Then

$$M^{*k+2}_{u,T} M^{k+2}_{u,T} - 2C M^{*k}_{u,T} M_{u,T} M^{*}_{u,T} M^{k}_{u,T} + C^{2} M^{*k}_{u,T} M^{k}_{u,T} \ge 0 \text{ for all } C \ge 0.$$

This implies that

$$\left\langle (M^{*^{k+2}}_{u,T} M^{k+2}_{u,T} - 2C M^{*^{k}}_{u,T} M_{u,T} M^{*}_{u,T} M^{k}_{u,T} + C^{2} M^{*^{k}}_{u,T} M^{k}_{u,T}) f, f \right\rangle \geq 0 \text{ for all } f \in L^{2}(\mu)$$

Since

$$\begin{split} & \mathsf{M}_{u,T}(f) = \mathsf{C}_{T}\mathsf{M}_{u}(f) = u \circ T \quad f \circ T \\ & \mathsf{M}^{*}{}_{u,T} f = u f_{0} \cdot \mathsf{E}(f) \circ T^{-1} \\ & \mathsf{M}^{*k+2}{}_{u,T} \mathsf{M}^{k+2}{}_{u,T}(f) = u f_{0} \cdot \mathsf{E}(u f_{0}) \circ T^{-(k+1)} \cdot \mathsf{E}(u_{k+2}) \circ T^{-(k+2)} f \\ & \mathsf{M}^{*k}{}_{u,T} \mathsf{M}^{k}{}_{u,T}(f) = u f_{0} \cdot \mathsf{E}(u f_{0}) \circ T^{-(k-1)} \cdot \mathsf{E}(u_{k}) \circ T^{-k} f \\ & \mathsf{M}^{*k}{}_{u,T}\mathsf{M}_{u,T} \mathsf{M}^{*}{}_{u,T}\mathsf{M}^{k}{}_{u,T} f = u \cdot u^{2} \circ T^{-(k-1)} \cdot f_{0} \cdot f_{0}^{2} \circ T^{-(k-1)} \\ & \quad \cdot \mathsf{E}(u f_{0}) \circ T^{-(k-1)} \cdot \mathsf{E}(\mathsf{E}(u_{k})) \circ T^{-k} f \end{split}$$

and we have

$$\begin{split} & M_{u,T} \, M^*{}_{u,T} \, f = u^2 \circ T \cdot f_0 \circ T \cdot E(f) \\ & M^*{}_{u,T} \, M_{u,T} f = u^2 \, f_0 \, f \\ & \int_E & \left\{ u \, f_0 \cdot E(u \, f_0) \circ T^{-(k+1)} \cdot E(u_{k+2}) \circ T^{-(k+2)} f - 2C \, u \cdot u^2 \circ T^{-(k-1)} \cdot f_0 \cdot f_0^{-2} \circ T^{-(k-1)} \\ & \cdot E(u \, f_0) \circ T^{-(k-1)} \cdot E(E(u_k)) \circ T^{-k} f + C^2 \, u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-1)} \cdot E(u_k) \circ T^{-k} f \right\} d\mu \ge 0 \end{split}$$

for every $E \in \Sigma$.

$$\label{eq:constraint} \begin{split} &\Leftrightarrow \\ u\,f_0\cdot E(u\,f_0)\circ T^{-(k+l)}\cdot E(u_{k+2})\circ T^{-(k+2)}f - 2C\,\,u\cdot u^2\circ T^{-(k-l)}\cdot f_0\cdot f_0^{-2}\circ T^{-(k-l)} \\ &\quad \cdot E(u\,f_0)\circ T^{-(k-l)}\cdot E(E(u_k))\circ T^{-k}f + C^2\,u\,f_0\cdot E(u\,f_0)\circ T^{-(k-l)}\cdot E(u_k)\circ T^{-k}f \geq 0 \end{split}$$

almost everywhere, for all $C \ge 0$

Corollary 4.7

Proof:

The proof is obtained from theorem 4.6 by putting u = 1.

Corollary 4.8

If the composition operator $C_T^{\ k}$ on $B(L^2(\mu))$ then $C_T^{\ k}$ is k-quasi-*paranormal if and only if

$${f_0}^2 \cdot {f_0}^4 \circ T^{-(k-1)} \cdot E(f_0) \circ T^{-(k-1)} f \le {f_0}^2 \cdot E(f_0) \circ T^{-(k-1)} f$$

almost everywhere.

5 (n,k) -quasi-*Paranormal Composite Multiplication Operator

Qingping Zeng and Huaijie Zhong [1] have proved that, an operator A is (n, k) - quasi-*paranormal if and only if

$$A^{*k}A^{*l+n}A^{l+n}A^{k} - (l+n)C^{n}A^{*k}AA^{*}A^{k} + nC^{l+n}A^{*k}A^{k} \ge 0$$

for all $C \ge 0$. In an analogous manner, we derive the characterization (n, k) - quasi-*paranormal composite multiplication operator on L^2 -spaces.

Theorem 5.1

Let the composite multiplication operator $M_{u,T} \in B(L^2(\mu))$. Then $M_{u,T}$ is (n, k) - quasi-*paranormal if and only if $m^{-k} = m^{-(n+k)} = m^{-(n+k+1)}$.

$$\begin{split} & u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-l)} \cdot E(u \cdot u_k f_0) \circ T^{-k} \cdot E(u \, f_0) \circ T^{-(n+k)} \cdot E(u_{n+l}) \circ T^{-(n+k+l)} \\ & -(1+n) C^n u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-l)} \cdot E(E(u_k)) \circ T^{-k} \cdot u^2 \circ T^{-(k-l)} \cdot f_0 \circ T^{-(k-l)} \\ & + n \, C^{1+n} u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-l)} \cdot E(u_k) \circ T^{-k} \ge 0 \\ & \text{almost everywhere, for all } C \ge 0 \, . \end{split}$$

Proof:

Suppose $M_{u,T}$ is (n,k) -quasi-*paranormal. Then

$$M_{u,T}^{*^{k}}M_{u,T}^{*^{l+n}}M_{u,T}^{1+n}M_{u,T}^{k} - (l+n)C^{n}M_{u,T}^{*^{k}}M_{u,T}M_{u,T}^{*}M_{u,T}^{k} + nC^{l+n}M_{u,T}^{*^{k}}M_{u,T}^{k} \ge 0 \quad \text{for all } C \ge 0 \, .$$

This implies that

$$\left\langle \left(M_{u,T}^{*^{k}} M_{u,T}^{*^{l+n}} M_{u,T}^{l+n} M_{u,T}^{k} - (l+n) C^{n} M_{u,T}^{*^{k}} M_{u,T} M_{u,T}^{*} M_{u,T}^{k} \right) \right\rangle \ge 0$$

+ $n C^{l+n} M_{u,T}^{*^{k}} M_{u,T}^{k}$) f, f

for all $f \in L^2(\mu)$

Since $M_{u,T}(f) = C_T M_u(f) = u \circ T f \circ T$

$$\begin{split} M^{*}{}_{u,T} f &= u f_{0} \cdot E(f) \circ T^{-1} \\ M_{u,T}{}^{*k} M_{u,T}{}^{*l+n} M_{u,T}{}^{l+n} M_{u,T}{}^{k} f &= u f_{0} \cdot E(u f_{0}) \circ T^{-(k-1)} \cdot E(u \cdot u_{k} f_{0}) \circ T^{-k} \\ & \cdot E(u f_{0}) \circ T^{-(n+k)} \cdot E(u_{n+1}) \circ T^{-(n+k+1)} f \end{split}$$

$$\begin{split} \mathbf{M_{u,T}}^{*^{k}} \mathbf{M_{u,T}} \mathbf{M_{u,T}}^{*} \mathbf{M_{u,T}}^{k} \mathbf{f} &= u \mathbf{f_{0}} \cdot \mathbf{E}(u \mathbf{f_{0}}) \circ \mathbf{T}^{-(k-1)} \cdot \mathbf{E}(\mathbf{E}(u_{k})) \circ \mathbf{T}^{-k} \\ &\cdot u^{2} \circ \mathbf{T}^{-(k-1)} \cdot \mathbf{f_{0}} \circ \mathbf{T}^{-(k-1)} \mathbf{f} \end{split}$$

and we have

$$\begin{split} M^{*k}{}^{u}{}_{u,T} M^{k}{}_{u,T}(f) &= u f_{0} \cdot E(u f_{0}) \circ T^{-(k-1)} \cdot E(u_{k}) \circ T^{-k} f \\ M_{u,T} M^{*}{}_{u,T} f &= u^{2} \circ T \cdot f_{0} \circ T \cdot E(f) \\ M^{*}{}_{u,T} M_{u,T} f &= u^{2} f_{0} f \\ &\int \left\{ u f_{0} \cdot E(u f_{0}) \circ T^{-(k-1)} \cdot E(u \cdot u_{k} f_{0}) \circ T^{-k} \cdot E(u f_{0}) \circ T^{-(n+k)} \cdot E(u_{n+1}) \circ T^{-(n+k+1)} \\ -(1+n) C^{n} u f_{0} \cdot E(u f_{0}) \circ T^{-(k-1)} \cdot E(E(u_{k})) \circ T^{-k} \cdot u^{2} \circ T^{-(k-1)} \cdot f_{0} \circ T^{-(k-1)} \\ &+ n C^{1+n} u f_{0} \cdot E(u f_{0}) \circ T^{-(k-1)} \cdot E(u_{k}) \circ T^{-k} \end{split} \right\} d\mu \ge 0 \end{split}$$

for every $E \in \Sigma$.

$$\begin{split} &\Leftrightarrow \\ & u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-1)} \cdot E(u \cdot u_k f_0) \circ T^{-k} \cdot E(u \, f_0) \circ T^{-(n+k)} \cdot E(u_{n+1}) \circ T^{-(n+k+1)} \\ & -(1+n) C^n u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-1)} \cdot E(E(u_k)) \circ T^{-k} \cdot u^2 \circ T^{-(k-1)} \cdot f_0 \circ T^{-(k-1)} \\ & + n \, C^{1+n} u \, f_0 \cdot E(u \, f_0) \circ T^{-(k-1)} \cdot E(u_k) \circ T^{-k} \ge 0 \end{split}$$

almost everywhere, for all $C \ge 0$

Corollary 5.2

 $\text{If the composition operator } C_{T}^{(n,k)} \ \text{ on } \ B(L^{2}(\mu)) \text{ , then } C_{T}^{(n,k)} \text{ is } (n,k) \text{ -quasi-*paranormal if and only if } \\$

$$\begin{split} & f_0 \cdot E(f_0) \circ T^{-(k-1)} \cdot E(f_0) \circ T^{-k} \cdot E(f_0) \circ T^{-(n+k)} - (1+n)C^n f_0 \cdot E(f_0) \circ T^{-(k-1)} \cdot f_0 \circ T^{-(k-1)} \\ & + n C^{1+n} f_0 \cdot E(f_0) \circ T^{-(k-1)} \ge 0 \\ & \text{almost everywhere, for all } C \ge 0 \,. \end{split}$$

Proof:

The proof is obtained from theorem 5.1 by putting u = 1.

Competing Interests

Authors have declared that no competing interests exist.

References

- Qingping Zeng, Huaijie Zhong. On (n,k) -quasi-*paranormal operators. International Journal of Math, F. A, 209.5050v; 2012.
- [2] Singh RK, Kumar DC. Weighted composition operators. Ph.D. Thesis, Univ. of Jammu; 1985.
- [3] Campbell J, Jamison J. On some classes of weighted composition operators. Glasgow Math. J. No. 32, 82-94; 1990.
- [4] Embry Wardrop M, Lambert A. Measurable transformations and centred composition operators. Proc. Royal Irish Acad. 2009;2(1):23-25.
- [5] Senthil S, Thangaraju P, Kumar DC. n-normal and n-quasi-normal composite multiplication operator on L² -spaces. Journal of Scientific Research & Reports. 2015;8(4):1-9.
- [6] Arora SC, Thukral JK. on a class of operators. Glas. Math. Ser. 1987;3(42):1.
- [7] Arora SC, Thukral JK. Invariant subspaces and allied topics. Narosa Publishing House. 1987;79-86.
- [8] Chennappan N, Karthikeyan S. *paranormal composition operators. Indian J. Pure Appli. Math. 2000;36(6):591-600.
- [9] Mecheri S. Bishop's property β and Riesz idempotent for k-quasi-paranormal operators. Banach J. Math. Anal. 2012;6(1):147-154.
- [10] Anuradha Gupta, Neha Bhatia. On (n,k) -quasi-paranormal weighted composition operators. International Journal of Pure and Applied Mathematics. 2014;91(1):23-32.
- [11] Anuradha Gupta, Pooja Sharma. on k-*paranormal composition operators. International Journal of Mathematical Forum. 2013;8(9):433-441.

- [12] Fahri Marevci, Muhib Lohaj. Some properties of operator classes (M, k)^{*}, A^{*}(k) and *paranormal operator. International Journal of Mathematical Forum. 2012;(45):2239-2252.
- [13] Ilmi Hoxha, Naim L Braha. A note on k-quasi-*paranormal operators. International Hoxha and Braha Journal of Inequalities and Applications. 2013;350.

© 2015 Senthil et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/11418