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Abstract 
 

In this work, the second order nonlinear ordinary differential equation is implemented as an auxiliary 
equation. For illustration, the generalized Hirota-Satsuma coupled KdV equations are considered for 

constructing traveling wave solutions by applying a new extension of so called ( )'/G G  method. As a 

result, many new traveling wave solutions have been generated with many arbitrary parameters. The 
obtained solutions also show the wider applicability of this new extended method for handling nonlinear 
evolution equations.  The numerical results are also described in the figures. 

 

Keywords: New extension of ( )'/G G -expansion method; exact solutions; the hirota-satsuma coupled KdV 

equations; auxiliary equation; nonlinear ordinary differential equation; traveling wave 
solutions. 

 

1 Introduction 
 
The study of coupled nonlinear partial differential equations (PDEs) is one of the main themes in nonlinear 
science. Due to important applications of nonlinear evolution equations (NLEEs) in real world problems, it 
is required to construct new analytical solutions. In particular, the construction of analytical solutions for 
coupled nonlinear equations play an important role in knowing facts that are not simply understand by 
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common observations. In the past several decades, a variety of powerful methods have been introduced, such 
as the Bӓcklund transformation method [1], the Hirota’s bilinear method [2], the inverse scattering method 
[3], the Jacobi elliptic function method [4,5], the tanh-coth method [6], the F-expansion method [7], the exp-
function method [8,9] the modified simple equation method [10,11], the homogeneous balance method [12], 
Adomian decomposition method [13,14] and so on.  
 

Recently, Wang et al. [15] introduced basic ( )/G G′ -expansion method and has become widely used to 

generate exact solutions of NLEEs. This method is based on second order linear ordinary differential 
equation (ODE). Afterwards, a group of scientists applied this method to investigate various nonlinear PDEs 
for constructing traveling wave solutions. Bekir [16] applied this method to the Boussinesq equation, the 
modified Zakharov-Kuznetsov equation and the Konopelchenko-Dubrovsky equations in the same research 
paper. Aslan [17] constructed the analytical solutions by applying this method to the modified Degasperis-
Procesi equation, the Burgers-KdV equation and the modified Benjamin-Bona-Mahony equations while 
Zayed [18] studied higher dimensional some nonlinear evolution equations, such as the (3+1)-dimensional 
YTSF equation, the (3+1)-dimensional shallow water equation, the (3+1)-dimensional Kadomtsev-
Petviashvili equation, the (3+1)-dimensional KdV-Zakharov-Kuznetsov equation and the (3+1)-diemsional 
Jimbo-Miwa equation via the same method to establish exact solutions. Naher et al. [19] constructed 
abundant traveling wave solutions of the higher-order Caudrey-Dodd-Gibon equation via this powerful 
method. 
 

In order to show the effectiveness of the basic ( )/G G′ -expansion method and the use of wider 

applicability, further research is carried out by a rich class of scientists. For instance, Zhang et al. [20] 

extended the ( )/G G′  method as the improved ( )/G G′ -expansion method. Subsequently, many 

researchers studied various nonlinear PDEs to construct traveling wave solutions [21-27]. 
 

Moreover, Akbar et al. [28] introduced the generalized and improved ( )/G G′ -expansion method. 

Consequently, Naher et al. [29] implemented this method to construct traveling wave solutions of the (3+1)-
dimensional nonlinear PDE. Furthermore, Khan et al. [30,31] studied some nonlinear PDEs via the enhanced 

( )/G G′ -expansion method. 

 
The present work is based on the nonlinear ODE as an auxiliary equation with many arbitrary parameters to 
produce many new traveling wave solutions. To illustrate the power of this new extended method, we apply 
to the generalized Hirota-Satsuma coupled KdV equations. 
 

2 Description of the Method 
 
The general nonlinear PDE is considered as below: 
 

( ), , , , , ,... 0,t x tt xt xxQ u u u u u u =
    

                                                        (1) 

 

where ( ),u u x t= is an unknown function, Q is a polynomial in ( ),u x t  and its partial derivatives in 

which the highest order derivatives and nonlinear terms are involved.  
 
The algorithms of new extension with nonlinear ODE as auxiliary equation is as follows:  
 

Step 1: Suppose that the combination of variables x  and t  by a new variable ξ  
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( ) ( ), , ,u x t u x Vtξ ξ= = ±                                                                       (2) 

 

where V  is the speed of the travelling wave. Now using travelling wave transformation Eq. (2), Eq. (1) is 

transformed into ODE for ( )u u ξ= :  

 

( ), ', '', ,... 0,F u u u u′′′ =                                                                                    (3) 

 

where F is a function of ( )u ξ  and its total derivatives.  

 
Step 2: Integrating Eq. (3) (whenever possible). For simplicity, the integral constant may be zero. 
 
Step 3. Suppose that the travelling wave solution of Eq. (3) can be expressed as follows:      
 

( ) ( )
0

'/ ,
m

j

j
j

u a d G Gξ
=

= +∑                                                                                     (4) 

 

where  0ma ≠ , and ( )G G ξ=  satisfies new second order nonlinear ODE:      

 

( )22 ,GG AG BGG C G′′ ′ ′= + +                                                          (5) 

 
where prime denotes the derivative with respect to ξ ; ,A B and C  are real parameters. 

 
Step 4. The positive integer m can be determined as considering the homogeneous balance between the 
highest order derivatives and the nonlinear terms appearing in Eq. (3).  
 
Step 5. Substituting Eq. (4) along with Eq. (5) into Eq. (3) with the value of m which obtained in step 4, we 

obtain polynomials in ( ) ( )( )' /
m

d G Gξ ξ+  ( )0,1,2,...m= . Then collecting each coefficient of the 

resulted polynomials to zero, yields a set of algebraic equations for ( )0,1,2,..., ,ja j m=  , , ,d A B C  

and .V   
 
Step 6. Solving the system of algebraic equations which were obtained in step 5. Suppose that the value of 

constants ( )0,1,2,..., ,ja j m d=  and V  can be obtained by solving the algebraic equations obtained in 

step 5. Then, substituting the values of constants together with general solutions of Eq. (5) into Eq. (4), we 
obtain new travelling wave solutions of the nonlinear Eq. (1).  
 

The difference between basic ( )'/G G  method and this new extension of the ( )'/G G  method with a 

particular nonlinear ODE (Eq. 5) is used as an auxiliary equation instead of linear ODE.  
 

It is significant to point out that the solutions of Eq. (5) for ( )/G G′  in the forms of the hyperbolic 

function, the trigonometric function and the rational forms as given below:  
 

Family 1: Hyperbolic Function Solutions, when 0,B ≠ ( )2 4 1 0,B A CΩ = + − >  1 CΨ = − , 



 
 
 

Naher; BJMCS, 11(6): 1-13, 2015; Article no.BJMCS.20552 
 
 
 

4 
 
 

1 2

1 2

sinh cosh
2 2'

,
2 2

cosh sinh
2 2

C C
G B

G
C C

ξ ξ

ξ ξ

   Ω Ω+   Ψ ΨΩ     = +  Ψ Ψ      Ω Ω+   Ψ Ψ   

                                                        (6) 

 

where 1C  and 2C  are arbitrary constants. 

 

When  and 0,A∆ = Ψ >  
0, 1B C= Ψ = −  

1 2

1 2

sinh cosh
'

,

cosh sinh

C C
G

G
C C

ξ ξ

ξ ξ

   ∆ ∆+   Ψ Ψ∆     =  Ψ      ∆ ∆+   Ψ Ψ   

                                                            (7) 

 

where 1C  and 2C  are arbitrary constants. 

 

Family 2. Trigonometric Function Solutions, when 0,B ≠ ( )2 4 1 0,B A CΩ = + − <
 

 

1 CΨ = − ,   
1 2

1 2

sin cos
2 2'

,
2 2

cos sin
2 2

C C
G B

G
C C

ξ ξ

ξ ξ

   −Ω −Ω− +   Ψ Ψ−Ω     = +  Ψ Ψ      −Ω −Ω+   Ψ Ψ   

                           (8) 

 

where 1C  and 2C  are arbitrary constants. 
 

When 0, 1B C= Ψ = −  and 0,A∆ = Ψ <  
 

1 2

1 2

sin cos
'

,

cos sin

C C
G

G
C C

ξ ξ

ξ ξ

   −∆ −∆− +   Ψ Ψ−∆     =  Ψ      −∆ −∆+   Ψ Ψ   

                                            (9) 

 

where 1C  and 2C  are arbitrary constants. 
 

Family 3. Rational Form Solution, when 0,B ≠ ( )2 4 1 0,B A CΩ = + − = 1 CΨ = −  
 

2

1 2

'
,

2

CG B

G C Cξ
  = +  Ψ + 

                                                           (10) 

 

where 1C  and 2C  are arbitrary constants. 
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3 Application of the Method 
 
In this section, we propose to illustrate new extension of the ( )/G G′  method by implementing it to the 

Hirota-Satsuma coupled KdV equations.  
 
The Hirota-Satsuma coupled KdV equations are [32]: 

 

( )1
3 3 0,

2t xxx x x
u u uu vw− + − =                                                                    (11) 

 

3 0,t xxx xv v uv+ − =                                                                             (12) 

 

3 0.t xxx xw w uw+ − =                                                                                             (13) 

 
Now using the travelling wave transformation Eq. (2) into Eq. (11) to Eq. (13), yield:  
 

( )1
3 3 0,

2
V u u uu vw′′ ′′′ ′− − + − =                                                                    (14) 

 

3 0,V v v uv′ ′′′ ′− + − =                                                                             (15) 

 

3 0.V w w uw′ ′′′ ′− + − =                                                                    (16) 

 

Taking the homogeneous balance between uu′ and u′′′  in Eq. (14); uv′ and v′′′  in Eq. (15); and uw′ and 

w′′′  in Eq. (16); yield 1 2m = , 2 2m =  and 3 2m = . Thus the solutions take the form: 

 

( )( ) ( )( )2

0 1 2/ /u a a d G G a d G G′ ′= + + + + ,                                                            (17) 

 

( )( ) ( )( )2

0 1 2/ /v b b d G G b d G G′ ′= + + + + ,                                                      (18) 

 

( )( ) ( )( )2

0 1 2/ /w c c d G G c d G G′ ′= + + + + ,                                                      (19) 

 

where  2 1 0 2 1 0 2 1, , , , , , ,a a a b b b c c, 0c  and d  are arbitrary constants to be determined. Substituting Eq. 

(17) to Eq. (19) together with Eq. (5) into Eq. (14) to Eq. (16), the left-hand side is converted into 

polynomials in ( ) ( )( )/
m

d G Gξ ξ′+ ( )0,1,2,...m= . Collecting the coefficients of like power of these 

polynomials to zero; yield a set of algebraic equations for 2 1 0 2 1 0 2 1 0, , , , , , , , , , , ,a a a b b b c c c d A B Cand V . 

The above systems of algebraic equations have been solved and yields one set of solutions with many 
parameters. 
 
 
 
 
 
 



 
 
 

Naher; BJMCS, 11(6): 1-13, 2015; Article no.BJMCS.20552 
 
 
 

6 
 
 

Set 1: 

                             (20) 

 

where 0 0 2 01 , , , , , , ,C a b c c d A BΨ = − and C  are free parameters. 

 

Hyperbolic Function Solutions: When 0,B ≠  ( )2 4 1 0,B A CΩ = + − >  1 ,CΨ = −  substituting Eq. 

(20) together with Eq. (6) into Eq. (17) to Eq. (19) and after simplifying the solutions become (if 1 0C = but 

2 0C ≠ ) respectively: 

 

( ) ( )( ) ( ){ }2 2
1 0, coth / 2 4 ,u x t a B d B dξ= − − Ω Ω Ψ + Ψ + Ψ

 
 

( )
2

1 0 1 2

1 1
, coth coth

2 2 2 2
v x t b b d B b d Bξ ξ

         Ω Ω   = + + + Ω + + + Ω               Ψ Ψ Ψ Ψ              

 

( ) ( )( )( )2 2
1 0 2 2

1
, coth / 2 ,

4

B
w x t c c B d dξ  = − − Ω Ω Ψ + +  Ψ Ψ    
 

where  
2 4 2 2 2 2

2 2 2 2 2

2 3 3 2
2 0 0 0 0 2 0

24 16 24 24 21

8 12 12 36 3 12

c d c A c dB c dBC c B
x t

c c C c C c C b c c
ξ

 Ψ − Ψ + Ψ − Ψ + Ψ = −  Ψ + Ψ + + Ψ − −  
. 

 
Moreover, substituting Eq. (20) together with Eq. (6) into Eq. (17) to Eq. (19) and simplifying, the travelling 

wave solutions become (if 2 0C = but 1 0C ≠ ) respectively: 
 

( ) ( )( ) ( ){ }2 2
2 0, tanh / 2 4 ,u x t a B d B dξ= − − Ω Ω Ψ + Ψ + Ψ

 
 

( )
2

2 0 1 2

1 1
, tanh tanh

2 2 2 2
v x t b b d B b d Bξ ξ

         Ω Ω   = + + + Ω + + + Ω               Ψ Ψ Ψ Ψ              
 

( )
( ) ( )( ) ( ){ }2 22

2 0 2, tanh / 2 4 ,
2

c
w x t c B d B dξ= − − Ω Ω Ψ + Ψ + Ψ

Ψ
 

 

When 0, 1 , 0,B C A= Ψ = − ∆ = Ψ >  substituting Eq. (20) together with Eq. (7) into Eq. (17) to Eq. (19) 

and simplifying, the generated solutions become (if 1 0C = but 2 0C ≠ ) respectively: 

( ) ( )

( )

2 4
2

2 1 1 2
2 2

2
1

2 4 2 2 2 2
2 2 2 2 2

2 3 3 2
2 0 0 0 0 2 0

4 4
4 , 4 2 , 8 2 , ,

2 , ,

24 16 24 24 21
,

8 12 12 36 3 12

a a B d b dC B d b
c c

c
c B d d d

c d c A c dB c dBC c B
V

c c C c C c C b c c

Ψ Ψ= Ψ = − Ψ + Ψ = − Ψ − =

−= + Ψ =
Ψ

 Ψ − Ψ + Ψ − Ψ + Ψ =  Ψ + Ψ + + Ψ − −  
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( ) ( )( ) ( )( )( ) ( ){ }3 0, 4 coth / coth / ,u x t a B d B dξ ξ= − ∆ ∆ Ψ − ∆ ∆ Ψ + Ψ + Ψ
 

 

( )
2

3 0 1 2, coth coth ,v x t b b d b dξ ξ
      ∆ ∆ ∆ ∆   = + + + +         Ψ Ψ Ψ Ψ           

 

( )
( )( ) ( )( )( )3 0 2 2

coth /
, coth / .

B
w x t c c B d d

ξ
ξ

 ∆ ∆ Ψ  = − − ∆ ∆ Ψ + +  Ψ Ψ  
   

 
Furthermore, substituting Eq. (20) together with Eq. (17) into Eq. (17) to Eq. (19) and simplifying, the 

generated solutions become (if 2 0C = but 1 0C ≠ ) respectively: 

 

( ) ( ) ( )( ) ( )( )( ){ }2
4 0, 4 4 tanh / 1 sech / ,u x t a d B d B ξ ξ= − Ψ + Ψ − ∆ ∆ Ψ + ∆ − ∆ Ψ

 
 

( )
2

4 0 1 2, tanh tanh ,v x t b b d b dξ ξ
      ∆ ∆ ∆ ∆   = + + + +         Ψ Ψ Ψ Ψ           

 

( ) ( ) ( )( ) ( )( )( ){ }22 2
4 0 2

, tanh / 1 sech / .
dc c

w x t c B d B ξ ξ= − + Ψ − ∆ ∆ Ψ − ∆ − ∆ Ψ
Ψ Ψ  

 

Trigonometric Function Solutions: When ( )20, 4 1 0, 1 ,B B A C C≠ Ω = + − < Ψ = −  substituting 

Eq. (20) together with Eq. (8) into Eq. (17) to Eq. (19) and simplifying, the solutions become (if 1 0C = but 

2 0C ≠ ) respectively: 

 

( ) ( )( ) ( ){ }2 2
5 0, cot / 2 4 ,u x t a B d B dξ= − + Ω −Ω Ψ + Ψ + Ψ

 
 

( )
2

5 0 1 2

1 1
, cot cot ,

2 2 2 2
v x t b b d B i b d B iξ ξ

         −Ω −Ω   = + + + Ω + + + Ω               Ψ Ψ Ψ Ψ            
 

( ) ( )( )( ){ }2 22
5 0 22

, csc / 2 1 .
4

c B
w x t c B c d dξ  = − + Ω −Ω Ψ − − + Ψ Ψ   

 
Again, substituting Eq. (20) together with Eq. (8) into Eq. (17) to Eq. (19) and simplifying, the travelling 

wave solutions become (if 2 0C = but 1 0C ≠ ) respectively: 

 

( ) ( )( )( ){ } ( )2 2
6 0, sec / 2 1 4 ,u x t a B d B dξ= − + Ω −Ω Ψ − − Ψ + Ψ  
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( )
2

6 0 1 2

1 1
, tan tan ,

2 2 2 2
v x t b b d B i b d B iξ ξ

         −Ω −Ω   = + + + Ω + + + Ω               Ψ Ψ Ψ Ψ              

 

( ) ( )( ){ }2 22
6 0 22

, tan / 2 .
4

c B
w x t c B c d dξ  = − + Ω −Ω Ψ − + Ψ Ψ 

 

 

When 0, 1 , 0,B C A= Ψ = − ∆ = Ψ <  substituting Eq. (20) together with Eq. (9) into Eq. (17) to Eq. (19) 

and simplifying, the solutions become (if 1 0C = but 2 0C ≠ ) respectively: 

 

( ) ( )( ) ( )( ) ( ){ }2
7 0, 4 cot / cot / ,u x t a iB d B dξ ξ= − ∆ −∆ Ψ − ∆ −∆ Ψ + Ψ + Ψ

 
 

( )
2

7 0 1 2, cot cot ,
i i

v x t b b d b dξ ξ
      ∆ −∆ ∆ −∆   = + + + +         Ψ Ψ Ψ Ψ           

 

( ) ( ) ( )( ) ( )( ){ }2 22
7 0 2

, cot / cot / .
c d B d ic

w x t c B iξ ξ
+ Ψ ∆= − − −∆ Ψ − ∆ −∆ Ψ

Ψ Ψ  
 
 
Further, substituting Eq. (20) together with Eq. (9) into Eq. (17) to Eq. (19) and simplifying, the solutions 

become (if 2 0C = but 1 0C ≠ ) respectively: 

 

( )
( )( )
( )( ) ( )( )( ) ( )2

8 0

sin /
, 4 sec / 1 4 ,

cos /
u x t a i B i d B d

ξ
ξ

ξ

 − ∆ Ψ = + ∆ + ∆ − ∆ Ψ − − Ψ + Ψ 
− ∆ Ψ 

   

 

( )
2

8 0 1 2, tan tan ,
i i

v x t b b d b dξ ξ
      ∆ −∆ ∆ −∆   = + − + −         Ψ Ψ Ψ Ψ           

 

( ) ( )
( )( ) ( )( ) ( )( )

( )( )
2

2 2
8 0 2 2

sin / cos / sin /
, .

cos /

B ic d ic
w x t c B d

ξ ξ ξ

ξ

 −∆ Ψ −∆ Ψ + ∆ −∆ Ψ∆  = − + Ψ +  Ψ Ψ −∆ Ψ 
   

 

Rational Form Solutions: When ( )20, 4 1 0, 1 ,B B A C C≠ Ω = + − = Ψ = −  substituting Eq. (20) 

together with Eq. (10) into Eq. (17) to Eq. (19) and simplifying, the solutions become respectively: 
 

( ) ( )
2

2 2
9 0

1 2

2
, 4 ,

C
u x t a d B d B

C C ξ

  Ψ = − Ψ + Ψ − −  +   
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( )
2

2 2
9 0 1 2

1 2 1 2

, ,
2 2

C CB B
v x t b b d b d

C C C Cξ ξ
   

= + + + + + +   Ψ + Ψ +     
 

( ) ( )
22

2 2
9 0 2

1 2

2
, ,

2

c d CB
w x t c B d c

C C ξ

  Ψ  = − + Ψ − −   Ψ Ψ +       
 

where 1C  and  2C  are arbitrary constants and   

 
2 4 2 2 2 2 3 3 2

2 2 2 2 2 0 0 0 0 2 0
2

2

24 16 24 24 2 12 12 36 3 12
.

8

c d c A c dB c dBC c B c C c C c C b c c
x t

c
ξ Ψ − Ψ + Ψ − Ψ + Ψ + Ψ + + Ψ − −

= −
Ψ

 

 

4 Results and Discussion 
 
4.1 Comparisons 
 
Many researchers studied the Hirota-Satsuma coupled KdV equations by using various approaches. For 
example, Yu et al. [33] solved these equations via the Jacobi elliptic function method. Abbasbandy [34] 
implemted the homotopy analysis method to investigate the same equations whilst Zuo and Zhang [32] 

studied these equations by applying the basic ( )/G G′ -expansion method. Good agreement has been 

noticed between presently generated solutions and published results in the open literature. The newly 
constructed solutions are compared with the solutions of Aslan [17]; Zuo and Zhang [32]; and Aslan and 
Özis [35] as below: 
 

(i) If A  and B  are replaced by ( )µ− and ( )λ−  respectively and 0C =  in Eq. (5), the nonlinear 

ODE coincides with the linear ODE (4) of Aslan [17], 

(ii)  If 0d = , the Eqs. (17), (18) and (19) identical with Eq. (9) of Aslan [17], 

(iii)  If A takes ( )µ−  and B  takes ( )λ−  and 0C =  in Eq. (5), the nonlinear ODE coincide with 

the linear ODE (4) of Aslan and Özis [35], 

(iv) If 0d = , the Eqs. (17), (18) and (19) identical with Eq. (7) of  Aslan and Özis [35], 

(v) If A and B are replaced by ( )µ− and ( )λ−  respectively and 0C =  in Eq. (5), the nonlinear 

ODE coincides with the linear ODE (3.7) of Zuo and Zhang [32]. The similarities are also found 
with Zuo and Zhang [32] as follows: 

 

• If 0d = , the hyperbolic function solutions 1u  and 2u  identical with the solution Eq. (3.36), 

• The solutions 1v  and 2v  coincide with the solution Eq. (3.37) when 0d = , 

• If 0d = , the hyperbolic function solutions 1w  and 2w  identical with the solution Eq. (3.38). 

 
4.2 Numerical Results 
 
Some obtained solutions are visualized in figures as follows: 
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Fig. 1. Kink solution of ( )2 ,v x t  for 12 6
2 0 01 10 , 1, 0.5, 1, 0.1, 1 10 , 1,A B C c c b d− −= × = = = = = × =  

0.96x tξ = −  with 8 , 8.x t− ≤ ≤  
 

 
   

Fig. 2. Solitons of ( )4 ,w x t  for 4 6 4
2 0 00.75, 0, 0.5, 1 10 , 1 10 , 1 10 ,A B C c c b− − −= = = = × = × = ×  

41 10 ,d −= × 1.5x tξ = +  with 3 , 3.x t− ≤ ≤  
 

5 Conclusion 
 
A new extension with a particular nonlinear ODE as auxiliary equation has been successfully applied to the 
generalized Hiroa-Satsuma coupled KdV equations. As a result many new travelling wave solutions are 
obtained and some of the obtained solutions are in good agreement with those obtained by the basic 

( )/G G′ -expansion method based on some values of parameters. Moreover, the constructed solutions show 

that the performance of new extension with a particular nonlinear ODE as auxiliary equation is effective and 
more general and can produce abundant new solutions with many arbitrary parameters.In addition, some of 
the solutions are illustrated in the figures. 
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