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Abstract
Coupled resonators in an assembled structure lose their individuality and in co-operation 
contribute to the generation of structure modes (resonant frequencies). The resonant 
frequencies of these modes are the only measurable quantities. In order to predict structural 
behaviour in a variety of cases, the problem that arises is the extraction of all the parameters 
characterizing the structure from the measurements mentioned here. If all the modes are 
confined in a bandwidth that is small with respect to the central frequency, the total coupled 
resonator system is well represented by a circuit of unknown lumped constants.

The structure modes are the solutions of the equation obtained by equating to zero the 
determinant relevant to the lumped circuit representation. The equation is a polynomial of the 
squared frequency variable, the degree of which is equal to the number M of circuits.

The analysis method described in this paper consists in varying, by an unknown amount, 
the frequency of a single resonator in the chain. This variation will produce a change in the 
frequencies of all structure modes. It is possible to find certain invariants linearly dependent on 
all the unchanged parameters of the circuit. These invariants have an algebraic representation 
that allows the extraction of the structure parameter values with extremely high accuracy. The 
proposed method is quite general and, in the present work, we give an example applying the 
method to the characterization of a side-coupled linac (SCL).

Keywords: coupled circuit, modes, side-coupled linacs

(Some figures may appear in colour only in the online journal)

1.  Introduction

A linear accelerator (generally named linac) is made of single 
cavities, each one characterized by its own resonant frequen-
cies. When cavities are coupled together, the entire structure 
will exhibit modal frequencies distinct from those of each indi-
vidual cavity. Because these frequencies are the only directly 
measurable quantities, it is important to develop a method for 
the extraction of the structure’s parameters in order to predict 
its behaviour.

In the following, we will present a general methodology, 
based on:

	 1)	step variation of the frequency relevant to one single 
cavity in measurements of all the system modes;

	 2)	finding a certain number of appropriate algebraic combi-
nations of the measured frequencies, which is invariant 
with respect to the cavity frequency variation;

	 3)	relating the invariants to the parameters characterizing 
the structure.

In this paper, we will apply this method to a biperiodical 
chain of resonators, and in particular to a side-coupled linac 
(SCL). However, this method can be used for the characteri-
zation of different types of linear accelerators based on the 
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principle of coupling, such as a side-coupled drift tube linac 
(SCDTL) [1] or a coupled cavity linac (CCL), for protons and 
heavy ions as well as for electrons. The method proposed here 
is a generalization of the one described in [1]. Because of the 
novelty of the method, it has not yet been applied by other 
researchers.

An SCL is a biperiodic system of resonators formed by a 
number of accelerating cavities (AC) on axis with the travel-
ling particles coupled with a certain number of off-axis cou-
pling cavities (CC). When the cavities are assembled, the whole 
system will resonate at frequencies, Fn, each one characterized 
by its own field phase advance from cavity to cavity. For a bipe-
riodical system, we define a first-order constant (k1) for adja-
cent cavities, and second-order constants (ka, kc) for coupling 
between AC elements and between CC elements, respectively.

If the coupling constant is sufficiently small all the modes 
are confined in a bandwidth that is small with respect to the 
central frequency. It has been already demonstrated that, in 
this case, a coupled cavity system is well represented by a 
lumped constant circuit [2–6], regardless on the type of 
coupling, capacitive or inductive. As a matter of fact, in our 
example some coupling constants are negative, which indi-
cates a capacitive coupling. The condition on the smallness 
of the bandwidth is necessary to ensure that the fundamental 
modes do not couple with the higher-order ones, therefore 
invalidating the lumped circuit representation. An example 
relevant to five cavities is depicted in figure 1.

This representation is extremely fruitful for describe the 
behaviour of the cavity system since it will allow the extrac-
tion from the modal frequencies Fn of all the parameters char-
acterizing the linac, e.g. the frequencies of each cavity. With 
this information, we may tune those resonators whose fre-
quencies are outside the fixed tolerances.

An SCL for low-energy protons is a standing-wave linac, 
which is fed from the centre of the structure. Typically, all 
the cavities are longitudinally symmetrical in order to assure 
that the coupling coefficients between AC and CC cavities are 
equal, providing an almost uniform accelerating electric field 
along the linac.

The method developed could be used not only for linac 
characterization, but also for an easy optimization of the struc-
ture once some quality indices are fixed.

2.  Analysis of determinant properties

In a real chain of resonators, not all the cavities and coupling 
constants are equal, giving rise to an asymmetric system with 
respect to the central cavity.

Allowing for a more general representation than the one 
reported in figure 1, all the frequencies and the coupling coef-
ficients will be different. The modal frequencies, Fn, will sat-
isfy the following equation:

( ) = = +
≤ ≤ ≤ ≤ ≤ ≤ −
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where DM is the determinant of the circuit, M is the total 
number of resonators, fm are the cavity frequencies, and ki 

and ′kj are respectively the first- and second-order coupling 
constants.

For each pair of cavities (in symmetric positions with 
respect to the central one) we can write:
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An analogous position will be set for the constants ki and ′kj.
We define the polynomial DM
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Because of that invariance, it can be demonstrated that the 
polynomial DM is stationary around the values of symmetrized 

variables. Therefore, the derivative of ( ′ )D f k k F,   ,   ;M m i j
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respect to each symmetrized parameter vanishes and the fol-
lowing expansion holds:
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where Pm, Qi, and R  j are polynomials functions of the symme-
trized parameters only. If the asymmetries in the cavity param-
eters are much smaller than the nominal symmetrized values 
(e.g., 0.1%), as happens in most real cases, higher-order terms 
can be neglected. Therefore, the roots of equation (1) can be 
easily found by solving the following simpler equation

( ′ ) =D f k k F,   ,   ; 0M m i j
0 0 0 0� (4)

In addition to this we consider the lossless case (all the resis-
tances vanishing). In this case, due to the mentioned sym-
metry, one can demonstrate that, for any order of polynomial, 
DM

0  may be factorized as the product of two equations of lower 
order, namely:

( ′ ) = ( ′ )

× ( ′ )+
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Figure 1.  An example of the equivalent circuit.
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where the functions G N2  and +G N2 1 are polynomials of order 
N2  and +N2 1. As a consequence the roots can be found by 

solving two algebraic equations of lower degree. This prop-
erty greatly simplifies the behaviour analysis of SCLs.

2.1.  A particular case: M = 5

In order to illustrate the theory, without loss of generality we 
may allow for a circuit of five resonators, in which the values 
of the resistors are very small in order to be neglected.

The modal frequencies Fn satisfying equation  (1) will be 
solutions of the following equation:

( ) =D f f f k k k F, ,   , , , ; 0e a c a c5
0

1� (6)

where f f,e a, and fc stand for the frequencies of end, accel-
erating, and coupling cavities. The constants k k k, ,a c1  are, 
respectively, the main coupling constant between consecutive 
cavities, the coupling constant between ACs, and the coupling 
constant between CCs. We recall that those constants and the 
frequencies f f,e a, and fc are the unknowns of the system; 
conversely, the mode frequencies Fn are the only measurable 
quantities.

By resorting to symbolic codes, in this case we may fac-
torize equation  (6). The explicit expressions of the polyno-
mials are:

( ) =G f f k k F n,   , , ; ; 2, 4e c c n2 1� (7)

( ) = =G f f f k k k F n, ,   , , , ; 0;   1, 3, 5e a c a c n3 1� (8)

where the label has been ordered according to the increasing 
value of the frequency.

It is apparent that in equation  (7) the central cavity fa 
and the coupling constant ka do not appear. This means that 
there is one set of frequencies, which is independent of those 
two parameters. Its solution is a driving term of the second 
polynomial.

This behaviour simplifies the calculation of the other 
unknowns. Equations (7) and (8) are satisfied by the roots of 
even order and odd order, respectively.

3. The quest for invariants

Given an algebraic equation  of arbitrary degree, its coeffi-
cients can be represented as combinations of their roots. This 
representation depends on the order of the equation and the 
positions of the coefficients. Allowing for equation  (…)G2 , 
this representation gives:
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On the other side, we have from the factorization of 
equation (6):
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By comparing equations  (9) and (10) one may write the 

following two equalities:
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Starting from equation  (11), our method consists in 
extracting an unknown, e.g. fc

2, from one equation  and 
inserting it in the other one. We obtain the following linear 
equation:

⋅ = ( + ) −
( − )

− −
F F f F F

f k

k k

4 2

4 2e
e c

c
2
2

4
2 2

2
2

4
2

4

1
2� (12)

which may be shortened as:

= +y Ax B� (13)

where the variables x and y are defined as

⎧
⎨
⎩

= +
= ⋅

x F F

y F F

 

 
2
2

4
2

2
2

4
2� (14)

Here we have carried out the procedure indicated in step 2 
described in the Introduction: it is apparent that the coefficient 
A as well as the known term B do not change with respect to 
the variation of the frequency fc

2 obtained by means of an ad 
hoc tuner. During this operation the values of y and x move 
along a straight line.

Therefore, we have found two invariants. In principle, it 
could be sufficient to make only two measurements relevant 
to two different values of fc in order to find the values of A and 
B  . However, in order to get the best estimate and the lowest 
error many measurements should be taken at different values 
of the frequency fc.

Likewise, we may proceed by coupling the coefficients 
of equation G3(…) = 0 among themselves and with those of 
equation G2(…) = 0. We may obtain ( − )M M 1  equations sim-
ilar to equation (12); in all of them the angular coefficient A 
has always the dimension of f 2.

Once the value of a certain number of invariants is found, 
we get a set of nonlinear algebraic equations to calculate the 
unknowns f f f k k, ,   , ,e a c a1 , and kc.

The method hereby proposed is a generalization of the one 
described in [1] which allows for simpler circuits character-
ized only by the first-order coupling.

As stressed in the abstract, the coupled resonators in an 
assembled structure lose their individuality and in co-opera-
tion contribute to the generation of the structure modes. One 
these modes is chosen for feeding the structure (π/2 mode in 
[3], p. 105). This frequency has to be known with a precision 
satisfying the following inequality:

Δ ≪ = × −f

f Q

1
1.67  10  4� (15)

where Q is in general of the order of 6000 for normal conducting 
cavities at 3 GHz. In order to satisfy the above inequality, the 
cavity frequencies must be measured and tuned with a preci-
sion smaller than the above value. If one neglects the higher-
order coupling constants, one will never satisfy this constraint.

Meas. Sci. Technol. 26 (2015) 094004
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4.  Measurements

The first module (two tanks) of ACLIP [7] has been conceived 
in such a way that each cavity has two threaded frequency 
tuners, with 0.8 mm pitch. The maximum excursion in fre-
quency for each tuner is about 6 MHz.

In order to measure the linac parameters with high accuracy, 
the analysis has been performed isolating a certain number of 
cavities representative of the whole tank (three ACs plus two 
CCs). This model can be assumed as the device under test for 
virtual (numerical) and real ‘measurements.’

The first goal is to equalize the symmetric cavities. To this end, 
the frequencies of the resonators were measured to within the 
same systematic error (if any). Afterwards, for different values 
of the frequency f c as varied by means of the coupling cavity 
tuners, the five resonant mode frequencies F m were measured.

Resorting to the equation G2(…) = 0 and according to equa-
tions (13) and (14), the pattern shown in figure 2 is obtained 
using the frequencies F 2 and F 4. It is apparent that the points 
match very well with a straight line.

According to equation (13), the angular coefficient gives, 
without intermediate steps, the value of  f e. The constant k1 
can be extracted by combining the angular coefficient and the 
known term of equation (13). The parameter values with their 
errors are reported in table 1 for the case shown in figure 2.

A similar procedure can be adopted for the factorized equa-
tion G3(…) = 0. The same measured spectrum can be used to 
extract the other structure parameters, f a, f c, and k a, resorting 
now to the frequencies F 1, F 3, and F 5. Upon combining the 
coefficients of the second-and third-order equations  among 
themselves, we may obtain all ( − )M M 1  relations. As an 
example we choose the following pairs of variables:
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These two equations give us four invariants which, combined 
ad hoc, may lead to the best estimate of the other unknowns 
f a, f c, k a. All the parameter values are reported in table 2:

It has to be remembered that the results still depend on k c, 
but because of its smallness, we do not expect a real influence. 
The unknown k c is so small that the error is of the same order 
of magnitude as the variable.

In order to check the method, the measured frequency 
spectrum has been compared with the one obtained using the 
circuit simulation, as shown in figure 3.

In the worst case the difference between frequency values 
is roughly 400 kHz, 104 times smaller than the main frequency 
(roughly 3 GHz) and so well inside the acceptable resonance 
bandwidth.

The knowledge of the coupling constants allows series of 
measurements on a sample of cavities in order to validate the 
mechanical machining before the brazing process.

This can be done using a system of nine cavities, with 
three AC, four CC, and two end cavities, which are made 
symmetric. From the measurement of the nine mode fre-
quencies and using the coupling constants previously 
measured, we can extract the value of the central AC cavity, 
by means of a symbolic code. A systematic procedure can 
be implemented with repeated measurements of a single 
cavity.

Figure 2.  The straight line method according to equation (13). Figure 3.  Comparison between measured and circuit simulation 
data.

Table 1.  Results according to equation (13).

 f e (MHz) 3004.392   ±   0.003 σfe/ f e 10−6

k1 (%) 3.39   ±   0.04 σk1/k1 1.2   ×   10−2

Table 2.  Measured structure parameters.

 f e (MHz) 3004.392   ±   0.003
 f a (MHz) 3005.44   ±   0.02
 f c (MHz) 2996.46   ±   0.03
k1 (%) 3.39   ±   0.04
ka (%)   −  0.67   ±   0.15
kc (%)   −  0.04  ±  n.v.

Meas. Sci. Technol. 26 (2015) 094004
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Using the scheme of figure 4, we measure the cavity named 
Y; then one of tile (#3) is removed, shifting the adjacent tile 
(#4) to the left and replacing it with a new one. In this way 
we can measure a new accelerating cavity. Applying the pro-
cedure several times it is possible to measure all the ACs. The 
end cavities remain in their positions in order to properly close 
the chain.

This procedure allows control of the mechanical machining 
and eventual remachining of cavities which are not similar to 
the ideal one obtained from CAD simulation study on nine 
cavities.

In the case reported here, as an example, we got a reference 
AC frequency of 3007.550 MHz. Once measured, the cavities 
can be arranged in order to find an optimal configuration in 
which the central AC has a lower frequency with respect to 
the ideal cavity. The frequency can be always increased by 
means of tuners.

5.  Conclusions

The coupling constants k1 and ka and single-cavity frequen-
cies have been measured with very high accuracy. It is the 
first time that the constant ka has been measured with such 
high accuracy. Even if the method has been applied to a subset 

of cavities, the results are general and can be applied for the 
study of a real linac case.

The constant kc can be evaluated with its error by means of 
a variational method, viable precisely because the error propa-
gation has, as a starting point, precise data (those measured 
and those forced).

The method reported here can be used to characterize the 
coupling and the accelerating cavity tuners as a function of the 
progressive number (or fraction) of turns.

Furthermore, the possibility of controlling the structure 
parameters before the brazing of the linac is also important 
because all the following tests will be easier and more reli-
able: from the check on the working frequency to the acceler-
ating electric field uniformity.

Finally, the accuracy of the frequency evaluation is 
−10 5, more than one order of magnitude smaller than the value 

reported in equation (15).
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