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Abstract 

 
In the fields of operations research and computer science, the traveling salesman problem (also known as 

TSP) is a classic algorithmic issue. One method for solving TSP is dynamic programming, which identifies 

the optimal path at the lowest possible cost. It starts by determining the shortest path between two points, and 

then it expands to identify routes to other sites. In order to solve the Travel salesman Problem, Dynamic 

Programming was used in this study as a a solution technique. In addition to a real-world application from 

AM-EXPRESS NIGERIA LIMITED, illustrative examples of travel salesman difficulties were taken into 

consideration and handled utilizing the dynamic programming technique. The finding's outcome showed that 

the least amount of money needed to provide logistical services is ₦6500, and the shortest possible paths or 

routes were found.  
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1 Introduction 
 

In computer science and operations research, the traveling salesman problem, or TSP for short, is a traditional 

algorithmic problem. In this case, a quicker, shorter, or less expensive alternative is frequently considered better. 

The salesman in this problem has to go between N cities. As long as he stays at his starting location and doesn't 

visit a city more than once while traveling, the order in which he goes is irrelevant. Finding the quickest or least 

expensive path for a salesperson to travel in order to visit a number of places in one trip and then return to the 

beginning point is the main goal of the challenge [1-3]. 

 

There is pressure on a salesperson to locate the best and shortest route when they are out in the field visiting 

different client sites. Nowadays, there are other factors besides distance that determine efficiency. Efficiency is 

determined by a number of elements taken together, including capacity, fuel usage, time, and others.  

But resolving the issues with traveling salesmen also means lessening some of the inevitable obstacles that field 

agents must overcome [4-6]. 

 

One method for resolving TSP is dynamic programming, which is similar to taking a jigsaw and gradually 

putting it together piece by piece. It determines the most efficient path to visit every place in TSP tasks. Finding 

the shortest path between two locations is the first step, and it then expands to identify routes to more locations. 

It's a clever TSP solution for little situations, but for bigger and more complicated issues, it could need a lot of 

RAM [7-9]. 

 

Numerous studies on travel salesmen have been conducted. A dynamic programming technique was used by 

Arifin and Yusuf [10] to develop a replacement model for city bus vehicles used in Bandung. Cases that Damri 

Company experienced while attempting to enhance public services served as the impetus for their investigation. 

Their replacement model offered two options for policy: either keep the current vehicles or replace them with 

new ones while accounting for new car purchase expenses, salvage value, and operational costs. The findings 

indicated that a bus's economic life is only nine years old, while its technical life is roughly twenty years. 

 

The heterogenous selection evolutionary algorithm (HeSEA), proposed by Long et al. in 2004, is an 

evolutionary method designed to solve huge TSPs. They initially examined the advantages and disadvantages of 

several popular genetic operators, as well as local search techniques for TSPs based on the characteristics of 

their solutions and edge-preserving and edge-adding mechanisms. Based on that research, they developed the 

HeSEA method, which combines heterogeneous pairing selection and family competition to incorporate Edge 

Assembly Crossover (EAX) and Lin-Kernighan (LK) local search. 

 

For the solution of TSP, Rajan and Anilkumar [11] suggested a novel search algorithm inspired by the 

evolutionary optimization technique. With the availability of quick computer resources, they presented novel 

crossover and mutation operators that are appropriate for using genetic algorithms to solve TSPs. This search 

method can be applied to solve TSPs with a lot of dimensions. 

 

An algorithm combining a candidate list approach with dynamic heuristic parameter upgrading for local search 

solution was proposed by Zar and May [12]. A static list contains a number of favored nodes that are kept in the 

dynamic candidate list. An ant chooses the node that is listed in the favored list as it goes from one node to the 

next. This approach is used to implement an ant colony search algorithm on larger datasets. The upgrading was 

predicated on the emergence of solutions and entropy. Their proposed approach is significantly more effective 

in terms of speed and capacity to find superior answers, based on the outcomes of their experiments.  

 

In order to solve the shortest path problem, Alwan [13] suggested a systolic parallel system that used 

simultaneous forward and backward dynamic programming. In applications, the systolic solution's speed 

advantage was crucial, particularly for shortest path routing in wireless networks. The approach was valued in 

cases where the directed acyclic graph (DAG) with an odd number of stages—though the case with an even 

number of stages was also taken into consideration. 

 

In 2013, Saloni and Poonam introduced the idea of using genetic algorithms to solve the traveling salesman 

problem. The effectiveness of these algorithms relies heavily on the encoding of the problem as well as the 
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crossover and mutation techniques applied. Several genetic algorithm techniques have been examined and 

evaluated in order to solve TSP. Further investigation into alternative hybrid selection, crossover, and mutation 

operators is possible. Numerous advanced network models, including logistic networks, job scheduling models, 

and vehicle navigation routing models, can be used with the suggested methodology. The distribution of 

frequencies among cellular network cells can likewise be accomplished using the same methodology. 

 

In their research, Sonam and Puneet (2014) came to the conclusion that the traveling salesman problem can be 

resolved using genetic algorithms. Depending on the encoding of the issue and the kinds of crossover and 

mutation techniques applied, a genetic algorithm can determine an optimal solution for the TSP. Many genetic 

algorithm methods for resolving TSP have been examined and analyzed. 

 

Wu [14] investigated how production planning uses dynamic programming. According to him, dynamic 

programming is a technique that breaks down a big problem into a number of smaller, more manageable 

subproblems, solves each of the smaller problems just once, and then stores the solutions. According to him, the 

optimal sub-structure, the non-after effect property, and the overlapping subproblems are the three key 

characteristics of the problems that determine how effective the dynamic programming technique is. He came to 

the conclusion that, when compared to other methodologies, the dynamic programming technique is particularly 

effective in reducing computational complexity and improving computational outcomes. He created a 

production planning problem model using dynamic programming. 

 

As a result, the researchers want to use dynamic programming to solve the travel salesman problem with an 

exemplary case. Their goals are to: Create a recursive tree, Utilizing the traveling salesman problem's generic 

formula, Determine the best price, and then determine the best routes. 

 

In their study, Souhail et al. [15] presented a novel greedy technique, named Dhouib-Matrix-TSP1, as the first 

resolution of TSP to obtain the optimal solution with multiple numerical examples utilizing single valued 

trapezoidal neutrosophic numbers. Graphical solutions were also used for analysis of the outcomes. 

 

In their article, Souhail [16] introduced a novel metaheuristic called Far-to-Near (FtN) for the purpose of 

maximizing the shortest path for drilling holes in printed circuit boards (PCBs). The produced solution served as 

the robotic arm's CNCM execution plan. The effectiveness of the suggested metaheuristic FtN in generating the 

shortest drilling route and determining the best circuit when adjusting the robotic arm's initial starting point was 

demonstrated by a number of numerical examples. 

 

In their research, Souhail and Zouari [17] proposed a novel method for drilling a hole series while optimizing 

non-productive tool paths. The iterated stochastic Dhouib-Matrix-3 (DM3) was combined with a tabu memory 

that was influenced by the Tabu Search (TS) metaheuristic to form their suggested method, which they called 

Adaptive-Dhouib-Matrix-3 (A-DM3). Six real-world case studies involving a rectangular matrix of holes were 

used to test their methodology. Their approach was compared to a few widely used algorithms, including the 

hybrid Cuckoo Search Genetic Algorithm (CS-GA), modified Shuffled Frog Leaping Algorithm (mSFLA), Ant 

Colony Optimization (ACO) and some of its derivatives, Genetic Algorithm (GA), and Cuckoo Search (CS). 

Their suggested A-DM3 outperformed these well-known metaheuristics in the literature, especially in a medium 

and large number of holes, as demonstrated by computational data. As a result, A-DM3 beat rival algorithms to 

produce a new record for the shortest path length, often improving upon it by almost 100%. 

 

The goal of Souhail et al.'s [18] study was to identify a collection of effective solutions for the multi-objective 

Traveling Salesman Problem. A novel metaheuristic called DM4-PMO was proposed to obtain the solutions of 

the Pareto set. The two steps of the DM4-PMO are as follows: First, the first non-dominated pareto frontier 

solutions were found using a weighted sum function with many variations of weights. To create the final Pareto 

frontier solutions, a lexicographical resolution was used on a few non-dominated solutions from the initial 

Pareto frontier. An experiment using two-objective problems from the TSP-LIB and DIMACS datasets proved 

the effectiveness of the suggested method [19,20]. 

 

The test results demonstrated the robustness, speed, and simplicity of structure of the suggested DM4-PMO, 

which can quickly compute a Pareto non-dominated set solution with a minimal number of user-defined 

parameters [21]. 
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2 Scope of the Study 
 

The Traveling Salesman Problem (TSP) can be solved with a thorough understanding of the dynamic 

programming technique provided by this paper. It offers AMEXPRRESS NIGERIA LIMITED, a small logistics 

company with its headquarters in Lagos, Nigeria, a solution to its transportation cost problems. 

 

The real-world example's data set came from five (5) different delivery destinations that were managed by 

AMEXPRESS NIG. LTD. Ikeja serves as the source city while the other four cities are Apapa, Surulere, 

Oshodi, Ikorodu, and Ikeja. 

 

3 Methodology  
 

3.1 Terminology in DPP 
 

Terminology commonly used in dynamic programming are given below: 

 

Stage: A stage is the moment at which a choice is made. A stage ends and the next one that follows immediately 

begins. A stage ends and the next one that follows immediately begins. For example, in the resource allocation 

to shops problem, each shop represents a stage; in the salesman allocation problem, each territory represents a 

stage. 

 

State: A state variable is the variable that connects two stages of a multistage decision issue. The problem's 

current state is described by the values that state variables can have at any given time. We refer to these values 

as states. For example, resource is a state variable when it comes to resource allocation to shops. 

 

Stage decision: Every stage has several options; the process of choosing one of the best and most workable 

options is known as the stage decision. 

 

Principle of optimality: The principle of optimality state that that the optimal decision from any state in a stage 

to the end, is independent of how one actually arrives at that state. 

 

Optimal policy: A policy which optimizes the value of an objective function. 

 

Return function: Every step involves making a decision that can impact the system's condition in the following 

step and aid in finding the best solution for the situation at hand. Each choice has a benefit that may be 

expressed as an algebraic equation. We refer to the equation as a return function. 

 

3.2 Dynamic programming  
 

Using this method, one can resolve a multi-stage decision problem where choices must be made at each level. It 

lacks a universally applicable formulation. In other words, a recursive equation that fits the circumstances must 

be created. Richard Bellman invented this method in 1957. Bellman's principle is the basis for this model's 

development.  

 

The following is an explanation of this principle: An optimal policy has the property that all subsequent 

decisions must be optimal in relation to the state that results from the initial decision, regardless of the original 

state and decisions made. 

 

The foundation of the dynamic programming technique is the aforementioned principle. When creating a 

recursive equation, the Bellman's principle must be taken into account. Recursive equations are founded on the 

idea that a strategy is "optimal" if decisions taken at each step lead to overall optimality over all stages, not just 

the current one. They express subsequent state conditions in terms of the processed state circumstances. 

 

By saving and reusing the solutions to subproblems, dynamic programming aims to prevent repeatedly 

computing the same problems. In this approach, dynamic programming can frequently identify the best solution 
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to a problem while lowering the time and space complexity of recursive methods.  

The traveling salesman problem's weighted graph G is shown below; 

 

𝐺 = (𝑉, 𝐸), 
 

Where v implies a vertex set (cities) and E implies set of edges fully connected with the nodes. Each edge 

(𝑖, 𝑗) ∈ 𝐸  is assigned to a weight 𝑑𝑖,𝑗 which represents the distance between i and j. 

 

𝑐𝑜𝑠𝑡, 𝐶(𝑖, 𝑗) = {

0  𝑖𝑓 𝑖 = 𝑗
𝑐𝑜𝑠𝑡   𝑖𝑓 (𝑖, 𝑗) ∈

∞    𝑖𝑓 (𝑖, 𝑗)  Ɇ  𝐸
 E 

 

3.2.1 Constraints for TSP 

 

Time constraints: sales agent often have a tight schedule with multiple deliveries to make with a short TAT. 

Similarly, in TSP, optimizing routes to minimize travel time is a fundamental challenge. 

 

Resource efficiency: Just as salesperson aim at reducing costs and ensuring on-time deliveries, TSP solutions 

must stive for resource optimization by reducing travel distances and delivery TAT. 

 

Objective Diversification: While solving the travelling salesman problem (TSP), optimizing multiple 

objectives such as cost, time and environmental factors adds complexity as solutions need balance conflicting 

goals. 

 

3.3 Rules of thumb with dynamic programming 
 

Subproblems overlap: Subproblems are smaller variations of an original, larger problem. for example, in the 

Fibonacci sequence, each number in the series is the sum of its two preceding numbers (0,1,1,2,3,5,8, 13…). If 

you want to calculate the nth Fibonacci value in the sequence, you can break down the entire problems into 

subproblems that overlap with one another as you find solutions by solving same subproblems repeatedly. 

 

Substructure has optimal property: When you can construct an optimal solution after constructing all other 

solutions that resulted from every subproblem you addressed, the optimal substructure property materializes. 

Each overlap's solution is applicable to the entire issue in order to maximize recursion. Each subproblem in the 

Fibonacci sequence example has a solution that can be applied to the next subproblem to determine the number 

in the series, giving the problem as a whole the best substructure property.  
 

3.4 General characteristics of dynamic programming 
 

 The problem is divided into stages 

 Each stage has a number of states associated with it. 

 Making decisions at one stage transforms one state of the current stage into a state in the next stage. 

 Given the current state, the optimal decision for each of the remaining states does not depend on the 

previous states or decisions. This is known as the principle of optimality for dynamic programming. 

 The principle of optimality allows to solve the problems stage by stage recursively. 

 Construct a recursive equation to make a decision based on the optimum policy at each stage. 

 After the construction of the recursive equation, regardless the solution, either we can move forward or 

backward. 

 Dynamic programming allows for both forward and backward recursion for computation, with the best 

answer to one subproblem being utilized as an input for the next. By the time the final subproblem is 

resolved, the ideal solution for the whole issue is nearly attained.  
 

3.5 Dynamic programming algorithm 
 

1. Identify the decision variables and specify objective function to be optimized under certain limitations if 

any  
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2. Divide the given sub problem into a number of stages 

3. Identify the state variables at each stage and write down the transformation function as a function of state 

variable and decision variable at the next stage. 

4. Decide whether forward or backward method is to be followed to solve the problem 

5. Determine the overall optimal policy or decisions and its value at each stage. 

 

The dynamic programming cost function in relation to TPP is given below;  

 

𝒈(𝒊, 𝒋) = 𝐦𝐢𝐧
𝒋∈𝑺

{𝑪𝒊𝒋 + 𝒈(𝒋, 𝒔 − {𝒋}) 

 

Where i is the starting vertex, j is the current vertex travelled to, and S is the set of remaining vertices. 

 

3.6 Real-life application  
 

The following table represents the Pick-up points and travel cost (Naira) incurred by AM-EXPRESS NIGERIA 

LIMITED in its operations. 

 

We desire the determine the paths of least cost and the least cost in carrying out her operations.  

 

Table 1. The pick-up points and travel cost (Naira) incurred by AM-EXPRESS Nigeria Limited 

 

 Ikeja Surulere Oshodi Apapa Ikorodu 

Ikeja 0 1000 700 1200 1800 

Surulere 1000 0 800 1500 2500 

Oshodi 700 800 0 1000 1200 

Apapa 1200 1500 1000 0 3000 

Ikorodu 1800 2500 1200 3000 0 

 

3.7 Analyses 
 

Table 2: The cost adjacency matrix  from Table1.  

The cost adjacency matrix  is given below; 

      

 
 

For |S| = 0 

𝑔(𝑥, 𝑦) 
  𝑔(1, ∅) = 0 

  𝑔(2, ∅) = 1000 

  𝑔(3, ∅) = 700 

  𝑔(4, ∅) = 1200 

  𝑔(5, ∅) = 1800 

For |S| = 1 

  𝑔(2, {3}) = 𝑐23 + 𝑔(3, ∅) = 800 + 700 = 1500 

  𝑔(2, {4}) = 𝑐24 + 𝑔(4, ∅) = 1500 + 1200 = 2700 

  𝑔(2, {5}) = 𝑐25 + 𝑔(5, ∅) = 2500 + 1800 = 4300 

  𝑔(3, {2}) = 𝑐32 + 𝑔(2, ∅) = 800 + 1000 = 1800 



 
 

 

 
Ugonna et al.; Asian J. Prob. Stat., vol. 26, no. 6, pp. 63-72, 2024; Article no.AJPAS.118144 

 

 

 
69 

 

  𝑔(3, {4}) = 𝑐34 + 𝑔(4, ∅) = 1000 + 1200 = 2200 

  𝑔(3, {5}) = 𝑐35 + 𝑔(5, ∅) = 1200 + 1800 = 3000 

  𝑔(4, {2}) = 𝑐42 + 𝑔(2, ∅) = 1500 + 1000 = 2500 

  𝑔(4, {3}) = 𝑐43 + 𝑔(3, ∅) = 1000 + 700 = 1700 

  𝑔(4, {5}) = 𝑐45 + 𝑔(5, ∅) = 3000 + 1800 = 4800 

  𝑔(5, {2}) = 𝑐52 + 𝑔(2, ∅) = 2500 + 1000 = 3500 

  𝑔(5, {3}) = 𝑐53 + 𝑔(3, ∅) = 1200 + 700 = 1900 

  𝑔(5, {4}) = 𝑐54 + 𝑔(4, ∅) = 3000 + 1200 = 4200 

 

For |S| = 2 

  𝑔(2, {3, 4}) = 𝑚𝑖𝑛 {
𝑐23 + 𝑔(3, {4}) = 800 + 2200 = 3000

𝑐24 + 𝑔(4, {3}) = 1500 + 1700 = 3200
   = 3000 

 

 𝑔(2, {3, 5}) = 𝑚𝑖𝑛 {
𝑐23 + 𝑔(3, {5}) = 800 + 3000 = 3800

𝑐25 + 𝑔(5, {3}) = 2500 + 1900 = 4400
     = 3800 

 

 𝑔(2, {4, 5}) = 𝑚𝑖𝑛 {
𝑐24 + 𝑔(4, {5}) = 1500 + 4800 = 6300

𝑐25 + 𝑔(5, {4}) = 2500 + 4200 = 6700
     = 6300 

  

𝑔(3, {2, 4}) = 𝑚𝑖𝑛 {
𝑐32 + 𝑔(2, {4}) = 800 + 2700 = 3500

𝑐34 + 𝑔(4, {2}) = 1000 + 2500 = 3500
     = 3500 

 

𝑔(3, {2, 5}) = 𝑚𝑖𝑛 {
𝑐32 + 𝑔(2, {5}) = 800 + 4300 = 5100

𝑐35 + 𝑔(5, {2}) = 1200 + 3500 = 4700
     = 4700 

 

𝑔(3, {4, 5}) = 𝑚𝑖𝑛 {
𝑐34 + 𝑔(4, {5}) = 1000 + 4800 = 5800

𝑐35 + 𝑔(5, {4}) = 1200 + 4200 = 5400
     = 5400 

 

𝑔(4, {2, 3}) = 𝑚𝑖𝑛 {
𝑐42 + 𝑔(2, {3}) = 1500 + 1500 = 3000

𝑐43 + 𝑔(3, {2}) = 1000 + 1800 = 2800
     = 2800 

 

𝑔(4, {2, 5}) = 𝑚𝑖𝑛 {
𝑐42 + 𝑔(2, {5}) = 1500 + 4300 = 5800

𝑐45 + 𝑔(5, {2}) = 3000 + 3500 = 6500
     = 5800 

 

𝑔(4, {3, 5}) = 𝑚𝑖𝑛 {
𝑐43 + 𝑔(3, {5}) = 1000 + 3000 = 4000

𝑐45 + 𝑔(5, {3}) = 3000 + 1900 = 4900
     = 4000 

 

𝑔(5, {2, 3}) = 𝑚𝑖𝑛 {
𝑐52 + 𝑔(2, {3}) = 2500 + 1500 = 4000

𝑐53 + 𝑔(3, {2}) = 1200 + 1800 = 3000
     = 3000 

 

𝑔(5, {2, 4}) = 𝑚𝑖𝑛 {
𝑐52 + 𝑔(2, {4}) = 2500 + 2700 = 5200

𝑐54 + 𝑔(4, {2}) = 3000 + 2500 = 5500
     = 5200 

 

𝑔(5, {3, 4}) = 𝑚𝑖𝑛 {
𝑐53 + 𝑔(3, {4}) = 1200 + 2200 = 3400

𝑐54 + 𝑔(4, {3}) = 3000 + 1700 = 4700
     = 3400 

 

For |S| = 3 

 𝑔(2, {3, 4, 5}) = 𝑚𝑖𝑛 {

𝑐23 + 𝑔(3, {4, 5}) = 800 + 5400 = 6200

𝑐24 + 𝑔(4, {3, 5}) = 1500 + 4000 = 5500

𝑐25 + 𝑔(5, {3, 4}}) = 2500 + 3400 = 5900

  = 5500 

 

 𝑔(3, {2, 4, 5}) = 𝑚𝑖𝑛 {

𝑐32 + 𝑔(2, {4, 5}) = 800 + 6300 = 7100

𝑐34 + 𝑔(4, {2, 5}) = 1000 + 5800 = 6800

𝑐35 + 𝑔(5, {2, 4}}) = 1200 + 5200 = 6400

  = 6400 
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 𝑔(4, {2, 3, 5}) = 𝑚𝑖𝑛 {

𝑐42 + 𝑔(2, {3, 5}) = 1500 + 3800 = 5300

𝑐43 + 𝑔(3, {2, 5}) = 1000 + 4700 = 5700

𝑐45 + 𝑔(5, {2, 3}}) = 3000 + 3000 = 6000

  = 5300 

   

 𝑔(5, {2, 3, 4}) = 𝑚𝑖𝑛 {

𝑐52 + 𝑔(2, {3, 4}) = 2500 + 3000 = 5500

𝑐53 + 𝑔(3, {2, 4}) = 1200 + 3500 = 4700

𝑐54 + 𝑔(4, {2, 3}}) = 3000 + 2800 = 5800

  = 5500 

 

For |S| = 4 

 𝑔(1, {2, 3, 4, 5}) = 𝑚𝑖𝑛

{
 

 
𝑐12 + 𝑔(2, {3, 4, 5}) = 1000 + 5500 = 6500

𝑐13 + 𝑔(3, {2, 4, 5}) = 700 + 6400 = 7100

𝑐14 + 𝑔(4, {2, 3, 5}) = 1200 + 5300 = 6500

𝑐15 + 𝑔(5, {2, 3, 4}) = 1800 + 4700 = 6500

  = 6500 

 

Minimum cost = ₦6500 

 

Paths:  1→2→4→3→5→1 (Ikeja to Surulere to Apapa to Oshodi to Ikorodu) 

 OR 

           1→4→2→3→5→1(Ikeja to Apapa to Surulere to Oshodi to Ikorodu) 

                       OR 

           1→5→3→2→4→1(Ikeja to Ikorodu to Oshodi to Surulere to Apapa) 

                       OR 

           1→5→3→4→2→1(Ikeja to Ikorodu to Oshodi to Apapa to Surulere) 

    

 
 

Fig. 1. Recursive tree 

 

4 Summary and Conclusion 
 

In this paper, the travel salesman problem was investigated and solved through the use of dynamic 

programming. After the real-world application was resolved, it was discovered that the lowest cost of providing 

logistical services is ₦6500, and the shortest path or route was determined to be as follows: 
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 Ikeja (1) to Surulere (2) to Apapa (4) to Oshodi (3) to Ikorodu (5) and back to Ikeja  

 Ikeja (1) to Apapa (4) to Surulere (2) to Oshodi (3) to Ikorodu (5) and back to Ikeja 

 Ikeja (1) to Ikorodu (5) to Oshodi (3) to Surulere (2) to Apapa (4) 

 Ikeja (1) to Ikorodu (5) to Oshodi (3) to Apapa (4) to Surulere (3)  
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