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Abstract

In this paper, we establish some methods and propositions that allows a study of the Riemann Hypothesis.
The main idea is to divide a sum (finite or infinite), so that the two parts are not equivalent in some sense
and hence lead to a non-zero point. Particularly so, we suggest methods to establish how different sub-regions
(subsets) may correspond to non-zeroes.
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1 Introduction

In this paper, we study the Riemann zeta function ([1], [2], [3]) from the point of view of establishing a method
to determine whether a point would qualify as a non-zero point. This is based on prior perspectives as presented
in [4]. The results perhaps might be viewed as complementary to theorems in [5], [6] and [7]. As noted in [4],
the previous papers and theorems related to the Riemann Hypothesis may be found in [8],[9],[10],[11] and [12].

*Corresponding author: E-mail: pathikritbasu@gmail.com;

Asian J. Prob. Stat., vol. 21, no. 2, pp. 16-21, 2023

https://www.sdiarticle5.com/review-history/96047


Basu; Asian J. Prob. Stat., vol. 21, no. 2, pp. 16-21, 2023; Article no.AJPAS.96047

2 Propositions and the Expectation Representation

The Riemann zeta function is defined as follows in this paper. Let us first define the region of interest explicitly
as a subset of R2 as

S = {(σ, t) ∈ R2 : σ ∈ (0, 1); t 6= 0}. (2.1)

The riemann zeta function is defined for each s ∈ S as

ζ(s) :=

∞∑
n=1

(1− 1

21−s )× (−1)n+1

ns
, (2.2)

where in the infinite sum, we have the vector

1

ns
= e−σ ln(n)(cos(−t ln(n)), sin(−t ln(n))), (2.3)

obtained using Euler’s formula [3],[13], multiplied by the vector 1 − 1
21−s as defined by the binary operation

of multiplication of complex numbers i.e. R2. This is defined for points s = (σ, t) and s′ = (σ′, t′) in R2 as
s + s′ = (σ + σ′, t + t′) and s × s′ := (σσ′ − tt′, σt′ + tσ′). Since for each s ∈ S, we have that 1 − 1

21−s 6= 0,
it follows that the zeroes of ζ coincide exactly with the zeroes of the function ζ∗ given only by the alternating
Dirichlet sum [3],[13] i.e.

ζ∗(s) =

∞∑
n=1

(−1)n+1

ns
. (2.4)

We now make a digression and prove a preliminary proposition that will be needed.

Proposition 2.1. For each σ ∈ (0, 1),

sup
x∈(0,1)

x

eσx − 1
=

1

σ
. (2.5)

Proof. We note that by applying the fundamental theorem of calculus, for any differentiable f, g on [0, 1) such
that g(x) 6= 0 for each x and f(0) = g(0) = 0, we have that for each x > 0,

f(x)

g(x)
=

∫
(0,x)

f ′(y)dy∫
(0,x)

g′(y)dy
. (2.6)

Now we define f(x) = x and g(x) = eσx − 1. Since, f ′(x) ≤ g′(x)
σ

, from 2.6, we have that

f(x)

g(x)
≤ 1

σ
. (2.7)

Further, by applying L’Hospital’s rule, it follows that limx→0
f(x)
g(x)

= 1
σ

. Hence, we obtain 2.5.

We now study the defined function ζ∗. Suppose we define the vector Z0 and for each s ∈ S, we define the
sequence {Z(s)n}n∈Z+ as follows

Z0 = (1, 0); (2.8)

Zn(s) =
1

(2n+ 1)s
− 1

(2n)s
; for each n ∈ Z+. (2.9)

Hence, the function ζ∗ may expressed as

ζ∗(s) = Z0 +

∞∑
n=1

Zn(s). (2.10)

We may now prove the following proposition.
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Proposition 2.2. The series in 2.10 converges absolutely.

Proof. Let s = (σ, t) ∈ S. Given the nature and symmetry of the cos and sine functions, we may assume without
loss of generality that t > 0. Let n0 ∈ Z+ such that for each n ≥ n0, we have that (ln(2n + 1)− ln(2n))t ≤ π

2
.

This means that beyond the point n0, the angle in radians traversed in R2 between the vectors 1
(2n+1)s

and 1
(2n)s

which is the value (ln(2n+ 1)− ln(2n))t is at most π
2

and is hence, an acute angle.

Now, define the angle

θn = (ln(2n+ 1)− ln(2n))t. (2.11)

Geometrically, we may prove using trignometric relations, that

||Zn(s)|| = || 1

(2n+ 1)s
− 1

(2n)s
|| (2.12)

=

√( 1

(2n)σ
− 1

(2n+ 1)σ

)2
+

2

(2n+ 1)σ(2n)σ
(1− cos(θn)). (2.13)

Again, geometrically we may prove that distance || 1
(2n+1)s

− 1
(2n)s

|| is at most the difference
(

1
(2n)σ

− 1
(2n+1)σ

)
plus the arc length θn

1
(2n+1)σ

, which corresponds to the circle centered at zero and has radius 1
(2n+1)σ

. This is

obtained using the triangular inequality. The arc length is greater than the distance between the vector 1
(2n+1)s

and the unique point z on the line segment conv{0, 1
(2n)s

} such that ||z|| = 1
(2n+1)σ

. Note that ||z − 1
(2n)s

|| =(
1

(2n)σ
− 1

(2n+1)σ

)
. Then, we apply the triangular inequality with the vectors 1

(2n+1)s
, 1

(2n)s
and z. Hence, we

obtain that for each n ≥ n0,

||Zn(s)|| ≤
( 1

(2n)σ
− 1

(2n+ 1)σ

)
+ θn

1

(2n+ 1)σ
. (2.14)

We now apply proposition 2.1, by setting x = (ln(2n+ 1)− ln(2n)), we obtain the inequality

θn
1

(2n+ 1)σ
≤ t

σ

( 1

(2n)σ
− 1

(2n+ 1)σ

)
(2.15)

Hence, for each n ≥ n0, we have that

||Zn(s)|| ≤
(

1 +
t

σ

)( 1

(2n)σ
− 1

(2n+ 1)σ

)
. (2.16)

Since the series
∑
n≥1

(
1

(2n)σ
− 1

(2n+1)σ

)
converges absolutely, it follows from 2.16 that the series in 2.10 converges

absolutely.

Based on the proof of the above proposition, we define the function

F (σ) :=
∑
n≥1

( 1

(2n)σ
− 1

(2n+ 1)σ

)
. (2.17)

We prove the following proposition.

Proposition 2.3. Suppose that s = (σ, t) ∈ S such that t ∈ [− π
2 ln(3/2)

, π
2 ln(3/2)

]. If(
1 +
|t|
σ

)
F (σ) < 1, (2.18)

then ζ(s) 6= 0.
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Proof. The proof follows from the proof of proposition 2.2. Assume, without any loss of generality that t > 0.
Since t ≤ π

2 ln(3/2)
, this means that for each n ≥ 1, the angle θn is acute. Hence, the upper bound in 2.16 applies.

Hence, we have that ∑
n≥1

||Zn(s)|| ≤
(

1 +
t

σ

)
F (σ) < 1. (2.19)

Suppose for contradiction ζ(s) = 0. Then, we get that ||Z0|| = ||
∑
n≥1 Zn(s)|| = 1. Hence, we get from 2.19

that 1 >
∑
n≥1 ||Zn(s)|| ≥ ||

∑
n≥1 Zn(s)|| = 1, which is a contradiction.

This implies the following proposition.

Proposition 2.4. If s = (σ, t) ∈ [ 1
2
, 1)×

(
1−
√
2

2
,
√
2−1
2

)
, then ζ(s) 6= 0.

Proof. Follows from proposition 2.3 since F (σ) ≤ 1
2σ

.

The expectations representation: In [4], it was shown that identifying zeroes of the riemann zeta
function may be interpretated as a problem of identifying a zero expectation random vector. This may be
expressed as follows. If a series

∑
n≥1 zn is absolutely convergent, then we define on the set of positive integers

Z+, a probability measure µ({n}) := ||zn||∑
m≥1 ||zm||

and random vector X(n) := zn/||zn||. Then, we have that the

expectation Eµ[X] = 0 if and only if
∑
n≥1 zn = 0. In this paper, we are interested in the sequence pertaining

to 2.9 i.e z1 := Z0 and zn := Zn−1(s) for each n ≥ 2. The vector Zn(s) may be conveniently represented via
geometry in polar form (see [3],[13]) when θn is acute, as for the defined angle

θ̂n := tan−1
( 1

(2n+1)σ
sin(θn)

1
(2n)σ

− 1
(2n+1)σ

cos(θn)

)
, (2.20)

we have that

Zn(s) = ||Zn(s)||(cos(− ln(n)t+ θ̂n), sin(− ln(n)t+ θ̂n)). (2.21)

Proposition 2.3 in this paper and Proposition 2.4 from [4] hence can be obtained by an application of a more
general proposition, which we next prove. For any z ∈ R2, denote as θ(z) ∈ [0, 2π], the angle in radians, traversed
by the vector z in its polar form.

Proposition 2.5. Let µ be a probability measure on the unit circle S1. Then,

Eµ[z] 6= 0 if there exist numbers 0 ≤ θ′ ≤ θ′′ ≤ 2π such that θ′ − θ ≤ π

2
and

µ({z : θ′ ≤ θ(z) ≤ θ′′}) > 1

1 + cos
(
θ′′−θ′

2

) . (2.22)

Proof. Suppose that 2.22 holds. Then, by geometry, essentially there is enough weight on the arc A = {z :
θ′ ≤ θ(z) ≤ θ′′} so that the expectation is non-zero. The conditional expectation Eµ[z|A] is at least distance

cos
(
θ′′−θ′

2

)
away from 0 and the conditional expectation Eµ[z|S1\A] is at most distance 1 away from 0.

The above proposition may be applied to obtaining concentration bounds by computing the expected angle
Eµ[θ(z)] traversed. One may be able to obtain probability lower bounds such as 2.22 possibly by redefining the
angle as traversed from an origin other than (1, 0) (see also [14] for a similar problem).

The main idea here is to divide an absolutely convergent infinite sum
∑
n≥1 zn into two parts

∑
n∈E zn and∑

n/∈E zn and show that the two parts don’t add up in some sense i.e. either the absolute values of the two parts
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are different; they are aligned at different angles; or one part bears higher weight on one half of a hyperplane
than the other [15, 16, 17, 18, 19, 20]. We demonstrate this last idea as follows.

Suppose
∑
j∈J zj is a finite sum of vectors and suppose q 6= 0 is a hyperplane. Define J+ = {j ∈ J : q.zj > 0}

and J− = {j ∈ J : q.zj < 0}. Suppose that there exist sequences of pairwise disjoint sets {J+
k }

K
k=1 ⊆ J+ and

{J−k }
K
k=1 ⊆ J− such that ∪Kk=1J

−
k = J− and q.(

∑
j∈J+

k
zj +

∑
j∈J−

k
zj) > 0 for each k ∈ {1, ...,K}. Then,∑

j∈J zj 6= 0 since q.(
∑
j∈J zj) > 0.

We prove the next proposition.

Proposition 2.6. Let σ′ ∈ (0, 1) be such that

(1/2)σ > (1/4)σ + (1/7)σ and
1 + π

σ ln(2)

8σ
< 1. (2.23)

for each σ ∈ (σ′, 1). Let t = −π
ln(2)

. Then, for each σ ∈ (σ′, 1), we have that ζ(σ, t) 6= 0.

Proof. Let s = (σ, t), where σ ∈ (σ′, 1). Define the following vectors in R2 : zn := (−1)n+1

ns
for n ≤ 7 and define

z8 :=
∑
n≥4 Zn(s). Hence, ζ∗(s) = (

∑7
n=1 zn) + z8.

Now define the hyperplane q = (1, 0). Then, we have as strictly positive the values q.z1, q.z2, q.z3, q.z5, q.z6 > 0.
We also have q.z4, q.z7 < 0. Suppose that q.z8 < 0. Now define J = {1, 2, ..., 8} and the collections {{1, 2}} in
J+ and {{4, 7, 8}} in J−. Since ||z8|| ≤ 1 (by applying the upper bound in proposition 2.3 and 2.23) we may
then show that q.(z1 + z2 + z4 + z7 + z8) > 0 by applying 2.23. If on the other hand we have q.z8 ≥ 0, then we
may define the collections {{2}} in J+ and {{4, 7}} in J− and applying 2.23 show that q.(z2 + z4 + z7) > 0.
These facts may be proved geometrically by studying the defined points in R2 and the unit circle S1.

3 Conclusion

In this paper, the methods presented establish non-trivial results, relative to the problem of resolving the
Riemann Hypothesis. These correspond to the propositions 2.5 and the ideas presented prior to proposition 2.6.
Such perspectives may allow us to prove further results pertaining to the Riemann Hypothesis.
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