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Abstract

The concept of essential numerical range of an operator was defined and studied by Stampfli
and Williams in 1972. Researchers generalised this idea of essential numerical range to a
group of operators to the joint essential numerical range. In this paper, we consider the joint
essential numerical range and show that the properties of the classical numerical range such as
compactness also hold for the joint essential numerical range. Further, we show that the joint
essential spectrum is contained in the joint essential numerical range by looking at the boundary
of the joint essential spectrum.
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1 Introduction and Preliminaries

Let B(X) denote the algebra of (bounded) linear operators acting on complex Hilbert space X with
inner product ⟨, ⟩. The joint numerical range of an m-tuple operator T = (T1, ..., Tm) ∈ B(X) is
denoted and defined as,
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Wm(T ) =

{(
⟨T1x, x⟩, ..., ⟨Tmx, x⟩

)
: x ∈ X, ⟨x, x⟩ = 1

}
.

This was studied by various researchers who sought to find out how much of the knowledge about
the numerical range in the single operator case carried over to the analogous situation in the case
of an m-tuple of operators. In the case m = 1, it is the usual numerical range of an operator T
which is denoted and defined as

W (T ) = {⟨Tx, x⟩ : x ∈ X, ⟨x, x ⟩ = 1} .

Unlike W (T ), the set Wm(T ) is generally not convex for m-tuple of operators (see [1]). However,
the set Wm(T ) is known to be convex in the following cases;

1. T = (Tφ, ..., Tφ) is an m−tuple of Toeplitz operators.

2. T = (T1, ..., Tm) is an m−tuple of commuting normal operators.

3. T = (T1, ..., Tm) is a commuting m−tuple of operators on a two dimensional Hilbert space.

Theorem 1.1. If T = (T1, ..., Tm) is an m−tuple of commuting normal operators, then Wm(T ) is
a convex subset of Cm.

See Dekker [2] for the proof.

Theorem 1.2. Let φ = (φ1, ..., φm) be an m−tuple of functions in L∞. Then Wm(T ) of commuting
m−tuple T = (Tφ, ..., Tφ) of Toeplitz operators on a classical Hardy space H2 is convex.

See Dash [3] for the proof.

We use the following theorem to show that the joint numerical range is invariant under unitary
equivalence.

Theorem 1.3. Let U be a unitary operator on X. Then Wm(T ) = Wm(U∗TU).

Proof. Since U is a unitary operator, x ∈ X is a unit vector of X if and only if U∗x is a unit vector.
Note that ⟨UTU∗x, x⟩ = ⟨TU∗x, U∗x⟩ = ⟨Tx, x⟩, Also, ∥U∗x∥ = 1 if and only if ∥x∥ = 1. The proof
follows from the definition of joint numerical range.

The study of joint numerical range of an m-tuple operator T = (T1, ..., Tm) ∈ B(X) was generalised

to the study of the joint numerical range of the Aluthge transform T̃ of an m-tuple operator
T = (T1, ..., Tm) in [4]. Here, the Aluthge transform T̃ of the operator T is defined as the operator

T = |T |
1
2U |T |

1
2 where T = U |T | is any polar decomposition of T with U a partial isometry and

|T | = (T ∗T )
1
2 .

Related to the study of numerical range is the notion of essential numerical range for a single
operator which was introduced and studied in [5] by Stampfli and Williams in 1968. It is denoted
and defined as

We(T ) = {r ∈ C : ⟨Txn, xn⟩ → r, xn → 0 weakly}.

In [6], Bonsall and Duncan proved that We(T ) is nonempty, compact and satisfies We(T + β) =
We(T ) + β for any scalar β. Further, they showed that 0 ∈ We(T ) if and only if T is compact. The
concept of the set We(T ) was generalised to a group of operators to the joint essential numerical
range, Wem(T ). Generalising the equivalent definitions of the essential numerical range, Wem(T ) is
also defined as Wem(T ) = {rk ∈ Cm : ⟨Tkxn, xn⟩ → rk, xn → 0 weakly ; 1 ≤ k ≤ m}. Let K(X)
be the ideal of all compact operators in B(X). The joint essential numerical range is related to the
joint numerical range by the formula
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Wem(T ) =
∩{

Wm(T +K) : K = (K1, ...,Km) ∈ K(X)

}
.

Since Wm(T +K) is non convex [7, 1, 6, 8, 9], it is unexpected for the set Wem(T ) to be convex
since it is an intersection of non convex sets. One of the objects of this paper is to show that the
joint essential numerical range is always convex.

Many authors showed the relation between the joint numerical range and the joint spectrum. The
joint spectrum σm(T ) of a commuting m-tuple of elements T = (T1, ..., Tm) ∈ X is defined as
σm(T ) = σl

m(T ) ∪ σr
m(T ) where the left (right) joint spectrum σl

m(T )(σr
m(T )) is the set of all

λ = (λ1, ..., λm) ∈ Cm such that {bi − λi}mi=1 generates a proper left (right) ideal in the Calkin
algebra and bi = π(Ti) is the coset containing Ti ∀i ∈ [1,m] and π the canonical homomorphism
from B(X) to the Calkin algebra B(X)/K(X). Consult Bonsall and Duncan [6] for the notion of
the joint spectrum.

According to Dash [10], the joint essential spectrum σem(T ) of T = (T1, ..., Tm) is defined as
σem(T ) = σl

em(T ) ∪ σr
em(T ) where

σl
em(T ) =

{
λ = (λ1, ..., λm) : B1(T1 − λ1I) + ...+Bm(Tm − λmI) is not a Fredholm operator for

all operators B = (B1, ..., Bm) on X

}
and

σr
em(T ) =

{
λ = (λ1, ..., λm) : (T1 − λ1I)B1 + ...+ (Tm − λmI)Bm is not a Fredholm operator for

all operators B = (B1, ..., Bm) on X

}
.

Recall that an operator T ∈ B(X) is said to be Fredholm if it has a closed range with finite
dimensional null space and its range of finite co-dimension. We shall denote the null space and
range of T by N (T ) and R(T ) respectively. The index of a Fredholm operator T ∈ B(X) is given
by i(T ) = α(T )− β(T ) where α(T ) = dim (N (T )), and β(T ) = codim (R(T )).

Lemma 1.4. (Dash [10]) Let d = (d1, ..., dm) be an m-tuple of elements in a unital C∗-algebra of
X. Then:

(a) (λ1, ..., λm) ∈ σl
m(d1, ..., dm) if and only if 0 ∈ σm

m∑
i=1

(di − λi)
∗(di − λi)

(b) (λ1, ..., λm) ∈ σr
m(d1, ..., dm) if and only if 0 ∈ σm

m∑
i=1

(di − λi)(di − λi)
∗.

See Dash [10] for the proof.

The following proof was then used by Dash to show the relationship between the joint spectrum
and the joint essential spectrum of an m-tuple of operator T = (T1, ..., Tm).

Theorem 1.5. (Dash [3]) Let T = (T1, ..., Tm) be an m−tuple of operators on X. Then:

(a) σl
m(T ) = σl

em(T ) ∪ σp(T )
(b) σr

m(T ) = σr
em(T ) ∪ σp(T

∗)∗,

and hence we have

(c) σm(T ) = σem(T ) ∪ σp(T
∗)∗, where T ∗ = (T ∗

1 , ..., T
∗
m) and star on the right represents

complex conjugates.
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See Dash [3] for the proof.

Here, σp(T ) is a joint eigenvalue (point spectrum) of an operator T = (T1, ..., Tm) defined as a point
λ = (λ1, ..., λm) such that for a nonzero eigenvector x there is Tix = λix, i = (1, ...,m).

Corollary 1.6. For an m-tuple operators T = (T1, ..., Tm) on X;

(a) (λ1, ..., λm) ∈ σl
em(T ) if and only if 0 ∈ σem

( m∑
i=1

(Ti − λi)
∗(Ti − λi)

)
(b) (λ1, ..., λm) ∈ σr

em(T ) if and only if 0 ∈ σem

( m∑
i=1

(Ti − λi)(Ti − λi)
∗
)
.

See Dash [10] for the proof.

2 Joint Essential Numerical Range

The notion of the joint essential numerical range of an m-tuple operator T = (T1, ..., Tm) ∈ B(X)
has been studied by various authors. For instance, Cyprian, Masibayi and Okelo, together studied
the convexity of the joint essential numerical ranges in [11]. Later, Cyprian [12] generalised this
notion to the study of the joint essential numerical range of Aluthge transform and proved various
interesting results. In this section, we examine some of the properties of the set Wem(T ) defined
above. Further, we show the relationship between the joint essential numerical range and the joint
essential spectrum.

Theorem 2.1. Suppose X is an infinite dimensional complex Hilbert space and T = (T1, ..., Tm) ∈
B(X). Let r = (r1, ..., rm) ∈ Cm and k = 1, ...,m. Suppose P is an infinite - dimensional projection
such that

P (Tk − rkI)P ∈ K(X) then r ∈ Wem(T ) =
∩{

Wm(T +K) : K = (K1, ...,Km) ∈ K(X)
}
.

Let K = (K1, ...,Km) ∈ K(X). For any Kk : k ∈ [1,m], PTkP = Kk + rkP and thus ⟨(PTkP −
rkP )xn, xn⟩ = ⟨Kkxn, xn⟩ implying ⟨Tkxn, xn⟩ = rk + ⟨Kkxn, xn⟩ .

From the orthonormality of sequence {xn}, we get Kkxn converging weakly to 0 in norm as n →
∞, k ∈ [1,m]. Therefore, ⟨Tkxn, xn⟩ −→ r as n → ∞ implying r ∈ Wem(T ).

Theorem 2.2. Let X be an infinite dimensional complex Hilbert space and T = (T1, ..., Tm) ∈
B(X). If rk = (r1, ..., rm) ∈ Cm then there exists an orthonormal sequence {xn} ∈ X such that
⟨Tkxn, xn⟩ → rk; 1 ≤ k ≤ m if and only if rk ∈ Wem(T ).

Proof. Suppose that for a point rk = (r1, ..., rm) ∈ Cm there exists an orthonormal sequence
{xn} ∈ X such that ⟨Tkxn, xn⟩ → rk; 1 ≤ k ≤ m. Since every orthonormal sequence {xn} converges
weakly to zero and ∥xn∥ = 1, we have that rk ∈ Wem(T ).

Conversely, let rk = (r1, ..., rm) ∈ Wem(T ) and show that there exists an orthonormal sequence
{xn} ∈ X such that ⟨Tkxn, xn⟩ → rk; 1 ≤ k ≤ m. Suppose rk ∈ We(T ). Then there is a sequence
{xn} of vectors such that ⟨Tkxn, xn⟩ → rk, ∥xn∥ = 1, xn → 0 weakly. Choosing the set {x1, ..., xn}
which satisfy |⟨Tkxn, xn⟩− r| < 1

i
∀i and letting M be the subspace spanned by x1, ..., xn and P be

the projection ontoM then we have ∥Pxn∥ → 0 as n → ∞. Suppose zn = ∥(I−P )xn∥−1((I−P )xn).
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We obtain Tkzn =

∥∥∥∥(I − P )xn

∥∥∥∥−1(
Tk(I − P )xn

)
. This gives

⟨Tkzn,zn⟩=
⟨∥∥∥∥(I − P )xn

∥∥∥∥−1(
Tk(I − P )xn

)
,

∥∥∥∥(I − P )xn

∥∥∥∥−1(
Tk(I − P )xn

)⟩
=

∥∥∥∥(I−P )xn

∥∥∥∥−2{
⟨Tkxn,xn⟩−⟨Tkxn,Pxn⟩−⟨TkPxn,xn⟩+⟨TkPxn,Pxn⟩

}
→ rk.

We choose n large enough such that |⟨Tkzn, zn⟩ − rk| < 1
n+1

.

If we let zn = xn+1 we get |⟨Tkxn+1, xn+1⟩ − rk| < 1
n+1

which completes the proof.

Before we prove the following result, we remind the reader that a subset A of a linear space M is
convex if ∀x, y ∈ A the segment joining x and y is contained in A, that is, λx+ (1− λ)y ∈ A ∀λ ∈
[0, 1]. A set S is starshaped if ∃y ∈ S such that ∀x ∈ S the segment joining x and y is contained
in S, that is λx + (1 − λ)y ∈ S ∀λ ∈ [0, 1]. A point y ∈ S is a star center of S if there is a point
x ∈ S such that the segment joining x and y is contained in S. A convex set is starshaped with all
its points being star centers.

Theorem 2.3. Suppose T = (T1, ..., Tm) ∈ B(X). Then Wem(T ) is nonempty, compact and each
element rk ∈ Wem(T ) is a star center of Wm(T ). Moreover, Wem(T ) is convex.

Proof. First, we prove that Wem(T ) is nonempty. To do this, from Theorem 2.2, there exists
an orthonormal sequence {xn} ∈ X such that ⟨Tkxn, xn⟩ → rk; 1 ≤ k ≤ m. Thus the sequence
{⟨Tkxn, xn⟩}∞n=1 is bounded. Choose a subsequence and assume that ⟨Tkxn, xn⟩ converges. Then
Wem(T ) is nonempty.

The compactness of Wem(T ) can be seen right from its definition. That is, the joint essential
numerical range is defined as the intersection of all sets of the form Wm(T +K) : K = (K1, ...,Km)
where K(X) denote the sets of compact operators in B(X). Being an intersection of compact sets,
the joint essential numerical range is also compact.

To prove that each element rk ∈ Wem(T ) is a star center of Wm(T ), it should be shown that
(1 − λ)p + λrk ∈ Wm(T ) : λ ∈ [0, 1] where rk ∈ Wem(T ) and p ∈ Wm(T ). Assume without loss
of generality that ∥T∥ = 1. Suppose s ∈ Wm(T ) so that s = λrk + (1 − λ)p. Let {xn} and {en}
be orthonormal sequences in X such that rk = ⟨Txn, xn⟩, p = ⟨Ten, en⟩ and ∥xn∥ = ∥en∥ = 1. Then,

s = λ⟨Txn, xn⟩+ (1− λ)⟨Ten, en⟩

=

⟨
T
√
λ xn,

√
λ xn

⟩
+

⟨
T
√
1− λ en,

√
1− λ en

⟩
=

⟨
(T

√
λ xn + T

√
1− λ en), (

√
λ xn +

√
1− λ en)

⟩
∥∥∥∥√λ xn +

√
1− λ en

∥∥∥∥2

=

(∥∥∥∥√λ xn

∥∥∥∥2

+

∥∥∥∥√1− λ en

∥∥∥∥2)
= λ ∥ xn ∥2 + (1− λ) ∥ en ∥2

= λ+ (1− λ) = 1

Thus, (1− λ)rk + λp ∈ Wm(T ).
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Convexity of Wem(T ) is proved by showing that for rk, p ∈ Wem(T ) and λ ∈ [0, 1] we have λrk +
(1 − λ)p ∈ Wem(T ). Now, rk ∈ Wem(T ) = Wem(T +K) for every K ∈ K(X) and p ∈ Wem(T ) =
Wem(T +K) ⊆ Wm(T +K). By Theorem 2.3, λrk + (1− λ)p ∈ Wm(T +K).

Thus, λrk + (1− λ)p ∈ ∩{Wm(T +K) : K ∈ K(X)} = Wem(T ). Hence Wem(T ) is convex.

Theorem 2.4. Suppose X is an infinite dimensional complex Hilbert space. Let T = (T1, ..., Tm) ∈
B(X) and r = (r1, ..., rm) ∈ Cm. If there exists a sequence of unit vectors {xn} ∈ X converging
weakly to 0 ∈ X such that ⟨Tkxn, xn⟩ → r; 1 ≤ k ≤ m then r ∈ Wem(T ).

Proof. Suppose that for a point r = (r1, ..., rm) ∈ Cm there is a sequence {xn} ∈ X such that
⟨Tkxn, xn⟩ → r. Since every sequence {xn} → 0 weakly, and ∥xn∥ = 1, we have r → Wem(T ).

We require the following theorem by Dash [13] in the sequel.

Theorem 2.5. Let T = (T1, ..., Tm) be a commuting m-tuple operator on X. Then:

(a) λ = (λ1, ..., λm) ∈ σl
em(T ) if and only if there exists a sequence {xm} of unit vectors in

X with xm → 0 weakly such that ∥(Ti − λi)xm∥ → 0 as m → ∞, for each i, 1 ≤ i ≤ m.

(b) λ = (λ1, ..., λm) ∈ σr
em(T ) if and only if there exists a sequence {xm} of unit vectors

in X with xm → 0 weakly such that ∥(T ∗
i − λ∗

i )xm∥ → 0 as m → ∞, for each i, 1 ≤ i ≤ m.

Moreover, the sequence {xm} can be chosen orthonormal.

See Dash [13] for the proof.

Theorem 2.4 and Theorem 2.5 together show the relationship between the sets σem(T ) and Wem(T ).
This paper uses these two theorems to show that the joint essential spectrum of T = (T1, ..., Tm) is
contained in the joint essential numerical range of T = (T1, ..., Tm) in the following theorem.

Theorem 2.6. Let X be an infinite dimensional complex Hilbert space and T = (T1, ..., Tm) ∈
B(X). Then σem(T ) ⊆ Wem(T ).

1.2. Proof. Let λ = (λ1, ..., λm) ∈ σem(T ). It should be shown that λ = (λ1, ..., λm) ∈ Wem(T ). To do
this, since σem(T ) = σl

em(T ) ∪ σr
em(T ), it is enough to show that both σl

em(T ) and σr
em(T ) are

contained in Wem(T ). Now suppose λ = (λ1, ..., λm) ∈ σl
em(T ). Then there is a sequence {xm} of

unit vectors in X such that ∥(Ti − λiI)xm∥ → 0 ∀i = (1, ...,m) as xm → 0 weakly.

Now |⟨(Ti − λiI)xm, xm⟩| ≤ ∥(Ti − λiI)xm∥ → 0 ∀i = (1, ...,m).

Therefore, ⟨Tixm, xm⟩ → λi ∀i = (1, ...,m). Thus λ = (λ1, ..., λm) ∈ Wem(T ).

Likewise, let λ = (λ1, ..., λm) ∈ σr
em(T ) then λ∗ = (λ∗

1, ..., λ
∗
m) ∈ σl

e(T )
∗.

This gives λ = (λ1, ..., λm) ∈ Wem(T )∗ = [Wem(T )]∗ (the complex conjugate of Wem(T )) implying
that λ = (λ1, ..., λm) ∈ Wem(T ).

3 Conclusions

In section 2, equivalent definitions of the joint essential numerical range were proved. We also
proved that the set Wem(T ) is nonempty, compact and convex. Further, it was shown that the
joint essential spectrum of an m-tuple operator T = (T1, ..., Tm) ∈ B(X) is contained in the joint
essential numerical range of an m-tuple operator T = (T1, ..., Tm) ∈ B(X).
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