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ABSTRACT 
 

Adsorbents such as metal-organic frameworks (MOFs), polymers, activated carbon (AC), and 
membranes are becoming prominent for CO2, SO2, H2S and NH3 capture and in some cases, 
storage. Using the standard adsorbent properties (SAPs) such as adsorption capacity, selectivity, 
permeability/permeance, regenerability and reusability, ease of functionability and tunability, 
thermal and chemical stability, suitable candidates for noxious gas sequestration can be 
determined. To foster the development and selection of a more efficient adsorbent, proper 
documentation of adsorbent performance in terms of SAPs is crucial. In this study, a critical review 
of metal-organic framework (MOF), polymer, activated carbon (AC) and membrane adsorbents was 
performed. Using the SAPs, an up to date comparative analysis was done to select the best 
performing adsorbents. The results of the comparative analysis were then used to categorize the 
adsorbents' suitability for pre-combustion and post-combustion applications. A perspective of future 
study on adsorbents for noxious gas sequestration was also presented. 
 

Review Article 



Keywords: Sequestration; adsorbent;
membrane; noxious gases.

 
1. INTRODUCTION  
 
The world’s energy demand is 
increasing with its population 
significant part of this energy would
by fossil fuels (coal, crude oil, 
73.25% of world energy consumption
provided by fossil fuels by 2040 [1]
show global natural gas, crude 
reserves respectively from the years
2018 and a projection for production
consumption into the future 
evident from the charts that the 
and consumption of these 
would continuously increase into
(except for coal with a slight reduction).
trends would cumulatively result in
in noxious gases released into the
These harmful gases, such as
CH4[7], NH3, SOx, NOx, H2S 
Organic Compounds (VOCs) 
organic gases [9] pose a high enviro
[10]. This, therefore, necessitates
management of air quality to
sustainable environment. 
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adsorbent; metal-organic framework; polymer; activated
gases. 

 continuously 
 growth. A 

would be provided 
 and natural). 

consumption would be 
[1]. Figs. 1 to 3 
 oil, and coal 
years 2016 to 

production and 
 [2–5]. It is               
the production              

 fossil fuels                    
into the future 

reduction). These 
in the increase 

the atmosphere. 
as COx, [6],               
 [8], Volatile            

 and volatile  
environmental risk 

necessitates the 
to ensure a 

Different materials and methods 
been reported for the separation and
hazardous gases either from process
the environment. Amongst these
adsorbents such as metal-organic
(MOFs), polymers, activated carbon
membranes, have been considered
candidates for gas separation and
to their large surface area and 
excellent thermal and chemical stability,
functionability and tunability, low
cost and high selectivity. These adsorbents
be easily modified for specific
through pre- and post-functionalization
structure [19–21]. Adsorbent utilization
more feasible when its CO2 adsorption
is above 3 mmol/g [22]. 
 

For this study, an up to date 
performance of MOFs, polymers,
membrane adsorbents are considered.
primary focus of this study, therefore,
identify the best performing adsorbents
noxious gas sequestration and
suitable areas for their application. 
 

Fig. 1. Natural gas outlook  
(Source: [2–5]) 
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low regeneration 
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Fig. 2. Crude oil outlook  

(Source: [2–5]) 

 

 
Fig. 3. Coal outlook  

(Source: [2–5]) 
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2. ADSORBENTS FOR CAPTURE
HARMFUL GASES 

 
Among the numerous types of adsorbents
capture of harmful gases, MOFs,
membranes, and AC are at the
research for harmful gas sequestration
result of their promising structural
Adsorption, permeability, selectivity,
reusability, and regeneration are key
that determine the deployment of
membranes [23] polymers [24] and
for sequestration of harmful gases
process systems and conditions.
conditions are imperative for the
deployment of these adsorbents for
and storage. 
 

2.1 Metal-Organic Frameworks
 
Metal-Organic Frameworks (MOFs)
emerging class of porous materials
from metal-containing nodes and organic
[27]. Due to the strong bonds that exist
the metal-containing nodes [also
secondary building units (SBUs)] 
linkers, MOFs usually boast of a 
permanent porosity and open
frameworks as shown in Fig. 4. 
spacers or metallic SBUs can be
control the pore environment of the
Their inherent characteristics/advantages
as large surface area, ease of functionalization,
kinetic diameter, electric properties,
Sites (OMS), high porosity and tuneable
pores [29] have made them very
compounds in applications such as
and separation, catalysis and sensing
The ease with which SBUs and organic
are changed and altered has led to 
of thousands of various MOF structures.
result, the structures and properties
 

Fig. 4. The crystalline
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CAPTURE OF 

adsorbents for the 
MOFs, polymers, 

the forefront of 
sequestration as a 

structural properties. 
selectivity, flux rate, 

key parameters 
of MOFs [21], 

and AC [25,26] 
gases in various 

conditions. These 
the industrial 

for gas capture 

Frameworks (MOFs) 

(MOFs) are an 
materials constructed 

organic linkers 
exist between 

[also known as 
 and organic 

 structure with 
open crystalline 

 The organic 
be altered to 
the MOF [28]. 

characteristics/advantages such 
functionalization, 

properties, Open Metal 
tuneable size of 
very attractive 
as gas storage 

sensing [30,31]. 
organic linkers 
 the synthesis 

structures. As a 
properties of MOFs can 

be designed and systematically tuned
of building blocks used for the synthesis
framework [32]. Various strategies
been reported for improving the performance
MOFs [33]. 

 
MOFs have been investigated
optimization of structure functionality.
regard, MOFs have been reported
promising potential for sequestration
such as CO2, H2S, CH4, NH3, NO
14,34–39]. The works of [13,14,40
MOFs for CO2, SO2, H2S, and NH3

at pre- and post-combustion conditions.

 
2.2 Polymers 
 
Porous Organic Polymers (POP) 
of organic building blocks connected
covalent bonds, exhibiting thermal
stabilities, large surface area, ease
and low density [67]. There are two
POP. They include;  
 

i. Amorphouspolymerswhichcompriseconjug
ated microporous polymers
covalent triazine framework
aromatic framework [18],
linked polymers (HCP) [69] 
of intrinsic [70]. 

ii. Crystalline polymers(covalent
polymers) [71]. 

 
Different polymers have been synthesized
harmful gases sequestration at different
conditions [72] and modification
synthetic and post-synthetic functionalization
have been reported for improved performance
specific applications  [15]. The agents
functionalization are compounds 
the affinity of porous polymers 
noxious gas. 

 
rystalline structure of metal-organic frameworks [32] 
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For instance, for CO2 adsorption, amino-
functional groups [74], –N heterocycles [75], 
phenolic motifs [15] are utilized. The method of 
synthesis plays a key role in the structure of a 
polymer, which invariably affects the adsorption 
capacity. The different monomers (building 
blocks) and methods of synthesis are explained 
by [76]. Polymers have also shown excellent 
reusability [75] and low heat of adsorption[77]. 
The works of [11,15,18,69,73,78–85] highlight 
the use of polymers for CO2, SO2, NH3, and H2S 
sequestration. 
 
2.3 Activated Carbon (AC) 
 
AC has been investigated for the capture of 
noxious gases [86,87]. This is due to reduced 
cost of production, large surface area, ease of 
modification of pores, good thermal and chemical 
stability, hydrophobic nature, stability in the 
presence of heat and chemical resistance [88]. 
AC shows promising potential for practical 
applications in terms of balance of performance 
[89] considering cost of production, benign effect 
on the environment, availability of precursor 
materials [90,91] and sustainability [92] and have 
been reported to exhibit reusability, promising 
adsorption kinetics [26] and stability after several 
sorption cycles [63], requiring low regeneration 
energy [93]. A key determinant of the adsorption 
performance of AC is the type of precursor            
used in its synthesis. Different precursors have 
been reported in the literature for the production 
of AC. 

They include bamboo [94], petroleum coke [95], 
rice husk char [26] wood [96], coconut shell [97], 
sugarcane bagasse [91], argan fruit shells [98], 
pinewood shavings char, biochar [89] etc. 
Amongst these precursors, biochar stands out as 
it exhibits high porosity and a high amount of 
fixed carbon that can be processed to AC with 
high microporosity [89]. Therefore, biochar 
precursors should receive further investigation in 
its use for the production of AC for gas 
sequestration. It is imperative to state that these 
precursors should have low ash and volatile 
matter content to produce AC with micropores on 
the surface of the structure for adsorption 
abilities. 
 

AC has been investigated for SOx and NOx [99, 
100], H2S [101], and CO2 [100] sequestration at 
different process conditions. To optimize capture 
and selectivity of AC for specific gases, 
modification of the structure to increase its 
affinity for specific gases have been reported 
[102–108]. Various studies on the use of AC for 
CO2, SO2, NH3, and NOx sequestration have also 
been reported [90,91,93,98,108,109]. 
 

2.4 Membranes 
 

Membranes function as filters, as shown in Fig. 
5. They are used for separation [110]. Different 
researchers have reported membrane used for 
the capture of harmful gases in literature [17, 
111,112] as they are environmentally benign and 
efficient in energy consumption [113] and exhibit 
technical and cost-related merits [114]. 

 

 
 

Fig. 5. Separation of different molecules using membrane [118] 
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Key parameters that determine the feasibility of 
membranes for industrial applications are 
permeability and selectivity [115]. Membranes 
should, therefore, possess high permeability, 
permeance, high selectivity, low cost of 
production and regeneration, excellent chemical 
and thermal stability, and ability to resist 
plasticization [116,117], for it to be feasible. 
Progress in this regard has been recorded in 
literature where properties of membranes have 
been optimized even though challenges such as 
high cost, low physical and chemical stability, low 
selectivity, and low hydrothermal stability persist 
[118]. This structure optimization has resulted in 
the synthesis of different classes of membranes 
[110,119–122].  

 
Various studies on the use of membrane for the 
capture of CO2 and H2S, have also been reported 
[110,112,122–126]. 

 
3. PERFORMANCE EVALUATION OF 

ADSORBENTS USING SELECTED 
SAPS 

 
This section considers the performance of 
adsorbents reviewed in this study for industrial 
applications. Although adsorbents for carbon 
sequestration have not attained the stage of 
commercial applications [127], they are currently 
in their demonstration phase. Parameters          
such as adsorption capacity, selectivity, 
permeability/permeance (for membranes), 
regeneration/reusability, thermal and chemical 
stability, were used to rank these adsorbents to 
determine the most efficient adsorbent and 
suitable points for their application. The 
adsorption capacity was used as the highest-
ranking property. Only the best performing 
adsorbent is reported for each SAP category. 
The industrial applications considered in this 
study include pre-combustion and post-
combustion conditions.  

 
3.1 CO2 Adsorption Capacity at Pre-

Combustion Conditions 
 
Pre-combustion conditions typically occur at 
relatively high pressures and low/high 
temperatures. Such conditions can include 
process systems such as natural gas and biogas 
sweetening. Polymers and AC have shown high 
adsorption capacities at high pressures amongst 
adsorbents reviewed in this study, as highlighted 
in Table 1. Polymers PPN-4 [128] and PAF-1 
[129] exhibited the highest adsorption capacities 

of 48.20 mmol/g and 29.55 mmol/g at pressures 
of 50 bar and 40 bar respectively at ambient 
temperatures. ACs LSB3-800 [86] and SBL-PNP-
1-4-750 [130] also showed high adsorption 
capacities of 20.9 mmol/g and 19.65 mmol/g at 
pressures of 20 bar each at 298K.  
 

Membranes showed suitability for pre-
combustion separation of CO2as highlighted in 
Table 2. They have been shown to function 
within the pressure range of pre-combustion 
carbon capture. Membranes COF 300/6FDA-
DAM MMM and COF 300/Pebax MMM [131] can 
be applied in pre-combustion conditions if their 
thermal stability at high temperatures is 
improved. 
 
MOFs did not show high adsorption capacities as 
much as polymers and AC for pre-combustion 
applications. The highest performing MOFs for 
pre-combustion conditions were HKUST-1 and 
MIL-101 (Cr) [130] with adsorption capacities of 
8.07 mmol/g and 7.19 mmol/g at pressures of 10 
bar and temperatures of 303K.  
 

3.2 CO2 Adsorption Capacity at Post-
combustion Conditions 

 

Post-combustion applications occur basically at 
approximately atmospheric pressure of 1 bar and 
high or low temperatures [132]. At practical post-
combustion conditions of flue gases from 
systems such as automobiles, petrol generators, 
motorcycles, gas turbine power plants, oil turbine 
plants, coal-fired plants, water pyrolysis and 
cement production, only a few adsorbents were 
found to be applicable as reported in Table 1. 
Most of the adsorbents showed a decrease in 
working capacity as temperature increased and 
ultimately resulted in the decomposition of the 
structure, which implied that the adsorbents 
could not be used at relatively high-temperature 
conditions. This can be attributed to the fact that 
as temperature increases, adsorption capacity of 
adsorbents such as AC decreases [133]. The low 
adsorption capacities of AC with values between 
0.2 mmol/g to 1.80 mmol/g at 1 bar and 373K 
[104] and that of NORF700 [134] and NCLK3 
[135] with adsorption capacities of 2.10 mmol/g 
and 2.00 mmol/g at 1 bar and 323K, support this 
claim. Polymers, AC and MOFs, do not exhibit 
high adsorption capacities for CO2 in post-
combustion conditions at high temperatures. 
MOFs 1-een and 1-dmen [136], TAEA modified 
MIL-101 (Cr) [45], and 1-nmen [136] had the 
highest adsorption capacities of 5.05 mmol/g, 
4.34 mmol/g, 4.05 mmol/g and 2.92 mmol/g 
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respectively, at ~1 bar and 313K. Amongst these 
MOFs, 1-dmen [52] has shown promising 
potential for practical applications due to its high 
selectivity of 554 for CO2 in a binary mixture of 
CO2/N2. It is therefore evident that these values 
for adsorption capacity are not as high as those 
recorded in pre-combustion conditions as 
pressure increase results in increase in 
adsorption capacities [137].  
 

Most adsorbents showed functional adsorption 
capacities for post-combustion CO2 capture at 
ambient temperatures, with polymer and AC 
exhibiting the highest adsorption capacities. 
Polymer IHBPA (TEPA) [138] and PI-COF-2 [80] 
had adsorption capacities of 7.65 mmol/g and 5.8 
mmol/g respectively at 1 bar and 298K while AC 
CuO NP-AC [108], ARG-K-Im [98] and DAC-AC-
CO2 [98] had adsorption capacities of 6.72 
mmol/g, 5.63 mmol/g and 5.52 mmol/g 
respectively at 1 bar and 298K. MOF UTSA-120a 
[46] was the highest performing MOF in this 
regard with the adsorption capacity of 5.00 
mmol/g at 1 bar and 296K; all other MOFs 
performed below this value in this study. This 
may be due to the incorporation of functional 
tetrazine groups into the structure, which 
improved its affinity for CO2. Considering the 
working temperatures and pressures of the 
adsorbents, they are most suited for pre- and 
post-combustion capture at ambient 
temperatures. 
 

3.3 CO2 Selectivity of Adsorbents at Pre- 
and Post-combustion Conditions 

 

In terms of selectivity for CO2 in flue gas 
streams, MOFs have shown exceptional 
selectivity that outperformed other adsorbents 
such as polymers, adsorbents and membranes. 
This can be attributed to their ease of 
functionalization using CO2-philic functional 
groups. MIL-140 [41] and UTSA-120a [46] 
showed one of the highest selectivity of 1900 and 
~600 for CO2 in binary mixtures (CO2/N2). 
Extremely high selectivity of 7531 for CO2/N2 
binary mixture was recorded for MOF MFUM-
1(Cu) [139] without information on its adsorption 
capacity. MOFs 1-dmen [136] and 1-ipen [136] 
have also been reported to exhibit selectivities of 
554 and 273, respectively. 
 

3.4 Regenerability and Reusability of 
Adsorbents at Pre- and Post-
combustion Conditions 

 

Some of the adsorbents can be regenerated and 
re-used for CO2 capture without losing their 

adsorption capacities. MOF 1-een [136] has 
been reported to retain its adsorption             
capacity after 600 sorption cycles, the highest 
recorded in this study. Other adsorbents                  
such as AC NSCS-4-700 [63], CNS-AC [90], 
DAC-AC-CO2 [109], polymer (IHBPA (TEPA) 
[138] and MOFs 1-dmen [52] and 1-een [136] 
have been shown to retain their adsorption 
capacities between five to eleven sorption  
cycles. 

 
3.5 Thermal Stability of Adsorbents at 

Pre- and Post-combustion Conditions 
 
Polymer CQN-1 g [52] had the highest           
thermal stability at 773K. Other polymer 
compounds such as TAP-3 [15] and NHC-CAP-1 
[75] had thermal stabilities up to 573K and 373K, 
respectively, while AC NSCS-4-700 [75] had 
thermal stabilities up to temperatures of 473K. 
Some MOFs such as MFM-305 [13], MIL-140 
[41], and Cu-Sp5 [140] are thermally stable at 
temperatures of 723K, 573K and 503K, 
respectively. Some adsorbents in this study, 
therefore, exhibit thermal stabilities at high 
temperatures obtainable in most industrial 
processes. This shows that the adsorbents have 
potential for use at high-temperature             
conditions. However, literature in this regard 
remains scarce. 

 
3.6 Permeance and Selectivity for CO2 of 

Membranes at Pre- and Post-
combustion Conditions 

 
Membranes have also shown promising 
permeance and selectivity for CO2 in flue gas 
mixtures. UiO-66CN@sPIM-1 [120] recorded the 
highest CO2 permeance amongst reviewed 
membranes with a value of 12063 Barrer and 
selectivity (CO2/N2) of 53.5 at atmospheric 
conditions. MoS2-SILM membrane [141] has 
been shown to exhibit the highest selectivity of 
462 for CO2. Also, membranes such as             
MOF-801/PEBA MMM [141] and COF-5/Pebax 
[126] with selectivities of 66 and 49.3, 
respectively, for SCO2/N2. Most of the 
membranes recently synthesized exhibit high 
CO2 permeance and promising selectivity for 
CO2 separation, which exceeded the standard 
values for industrial use of 2250 for CO2 
permeability and ˃30 for selectivity. The fact that 
most membranes have good permeance              
and selectivity for CO2 makes them well suited 
for industrial gas separation process 
applications. 
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Table 1. Selected CO2 adsorbents with the highest adsorption capacity 
 

Material Adsorbent CO2 Uptake 
(mmol/g) 

P 
(bar) 

T (K) Slcty 
(CO2/N2) 

Stability Cycles of performance Potential points of application 

PPN-4 Polymer 48.20 50 298 - - - Pre-combustion capture of CO2 
PAF-1 Polymer 29.55 40 298 - - - Pre-combustion capture of CO2 
LSB3-800 AC 20.9 30 298 - - - Pre-combustion capture of CO2 
SBL-PNP-
1-4-750 

AC 19.65  20 298 - - - Pre-combustion capture of CO2 

SBL-PNP-
1-4-750 

AC 16.2  20 298 - - - Pre-combustion capture of CO2 

HCP-1 Polymer 13.1 30 298 - - - Pre-combustion capture of CO2 
NSCS-4-
700 

AC 11.68 8 298 - - Showed no loss of 
adsorption capacity after 10 
sorption cycles at 473K 
regeneration temperature 

Pre-combustion capture of CO2 

CNS-AC AC 8.36  30 303 - - Adsorption performance 
remained unchanged after 
the 6

th
 sorption cycle 

Pre-combustion capture of CO2 

HKUST-1 MOF 8.07 10 303 - - - Pre-combustion capture of CO2 
IHBPA 
(TEPA) 

Polymer 7.65 1 298 - Thermally 
stable up 
to 363K 

Maintained adsorption 
capacity after the 10

th
 

sorption cycle. 

Post combustion capture of CO2 at 
ambient temperatures 

MIL-101 
(Cr) 

MOF 7.19 10 303 - - - Pre-combustion capture of CO2 

CuO NP-AC AC 6.72  1 298 - - - Post combustion capture of CO2 at 
ambient temperature 

PI-COF-2 Polymer 5.8  1 298 - - - Post combustion capture of CO2 at 
ambient temperature 

ARG-K-Im AC 5.63  1 298 - - - Post combustion capture of CO2 at 
ambient temperature 

DAC-AC-
CO2 

AC 5.52  1 298 28.4 - Showed stability and 
maintained its initial 
adsorption capacity up to 
11

th
 sorption cycle 

Post-combustion capture of CO2 
at ambient temperature; selectivity 
has to be improved upon for viable 
applicability 
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Material Adsorbent CO2 Uptake 
(mmol/g) 

P 
(bar) 

T (K) Slcty 
(CO2/N2) 

Stability Cycles of performance Potential points of application 

1-een MOF 5.05  
4.04  

1 
0.15 

313 293 - Working capacity dropped 
from 13.89wt% to 12.36wt% 
at the 100

th
 sorption cycle 

Sequestration of CO2 flue gases at 
post-combustion conditions from 
automobiles, motorcycles, 
generators, etc. 

UTSA-120a MOF 5.00 1 296 ~600 - - Post combustion capture of CO2 at 
ambient conditions due to high 
selectivity 

CQN-1g Polymer 4.57  1 298 - Thermally 
stable up 
to 773K 

- Post-combustion capture of CO2 
at ambient temperatures; 
Possibility of practical use for CO2 
capture. 

1-dmen MOF 4.34 1 313 554 - Retained its adsorption 
capacity after 7th sorption 
cycle 

Post-combustion capture of CO2 
from the exhaust gas of 
automobiles, petrol generators, 
motorcycles, etc. 

NSCS-4-
700 

AC 4.27 1 298 - - Retained adsorption 
capacity after 10 sorption 
cycles at 473K regeneration 
temperature 

Post combustion capture of CO2 at 
ambient temperature 

TAEA 
modified 
MIL-101 
(Cr) 

MOF 4.06 0.15 313 - - - Post combustion capture of CO2 
from exhaust gas of automobiles, 
petrol generators etc. 

1-ipen MOF 4.05  
 

1 313 273 - - Post combustion capture of CO2 at 
ambient temperature 
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Table 2. CO2 permeance and selectivity capacity of membranes 

 
Material P (bar) T (K) CO2 permeance  CO2/N2 CO2/CH4 Potential points of application 
UiO-66-CN@sPIM-1 1.4 298 12063

a
 53.5 - Separation of CO2 from binary air mixture (CO2/N2) at 

atmospheric  
Conditions. 

COF 300/6FDA-DAM MMM 8 298 8257
a
 - 75 Pre-combustion separation of CO2 

COF 300/Pebax MMM 8 298 8054a - 110 Pre-combustion separation of CO2 
TFC#1 3 298 8010

b
 35.8 - - 

TFC#6 3 298 3010b 55.7 - - 
FIHM-PEGDME-500-180 3.5 303 1566.8

a
 35.1 - - 

MoS2-SILM 1 293 200
b
 462 - Post combustion capture of CO2 at ambient temperatures 

a
 = Barrer;1 Barrer = 10

−10
cc (STP)cm cm

−2
 s

−1
 cmHg

−2
; 

b
 = GPU;1 GPU = 10

−6
cc (STP)cm

−2
 s

−1
 cmHg

−1
 

 
Table 3. Selected NH3 adsorbents with the highest adsorption capacity 

 
Material Adsorbent NH3 Uptake mmol/g P (bar) T (K) Cycles of performance Potential points of application 
PCP-1 Polymer 22.3  1 298 Adsorption capacity reduced at 3rd sorption 

cycle; Reduction of 5.2 mmol/g between 1
st 

and 2
nd

 sorption cycles was recorded 

NH3 capture at ambient conditions 

Cu2Cl2BBTA MOF 19.79  1 298 - NH3 capture at ambient conditions 
MOF-4 MOF 17.8  1 298 - NH3 capture at ambient conditions 
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Table 4. Selected SO2 adsorbents with the highest adsorption capacity 
 

Material Adsorbent SO2 uptake 
(mmol/g) 

P 
(bar) 

T 
(K) 

Selectivity Stability Cycles of performance Potential point of 
application 

MOF-
177 

MOF 25.7  1 293 - Chemically 
unstable 

- Not suitable for 
practical applications 

MOF-3 MOF 10.9  1 298 - - - SO2 capture at 
ambient conditions 

NH2-
MIL-
125(Ti) 

MOF 10.8  0.95 293 SO2/CO2 – 
47-55 

- Showed irreversible adsorption capacity; 
working capacity reduced at 2nd cycle of 
performance. 

SO2 capture at 
ambient conditions 
 

MFM-
300(Sc) 
 

MOF 9.4  1 298  - Adsorption capacity remained unchanged 
after 10 sorption cycles; regeneration 
occurred at room temperature. 

SO2 capture at 
ambient conditions 

MIL-160 MOF 7.2  0.95 293 SO2/CO2 – 
124-128 

Thermally and 
chemically 
stable 

Exhibited good adsorption stability with a 
slight reduction in sorption capacity after 5 
sorption cycle  

SO2 capture at 
ambient conditions 

 
Table 5. Selected H2S adsorbents with the highest adsorption capacity 

 
Material Adsorbent H2S Uptake 

(mmol/g) 
P 
(bar) 

T 
(K) 

Stability Cycles of performance Potential point of 
application 

MIL-101@M-
0.5-0.5 

MOF 36.1  
7.63  

10 
35 

298 - - Pre-combustion capture of 
H2S from syngas stream  

MIL-53 (Al)-
TDC 

MOF 18.1 1 303 Chemically stable in 
the presence of H2S 

The adsorption capacity was retained after 
5 sorption cycles; structure exhibits low 
temperature of 473K for regeneration; 
regeneration can be achieved at temp. of 
338K. 

Integrated Gasification 
Combined Cycle (IGCC) 
for H2S capture at ambient 
temperatures 

BPP-5 Polymer 17.7  1 298 Superior stability in 
fundamental 
conditions 

The author suggested that structure 
maintained its working capacity after 
various adsorption-desorption cycles 

H2S capture at ambient 
conditions 



 
 
 
 

Aimikhe and Eyankware; JSRR, 25(1): 1-21, 2019; Article no.JSRR.51792 
 
 

 
12 

 

3.7 Adsorbent Performance for Other 
Noxious Gases Sequestration at Pre- 
and Post-combustion Conditions 

 
For NH3 capture at post-combustion conditions at 
ambient temperatures, polymer PCP-1 [142] had 
the highest adsorption capacity of 22.8 mmol/g, 
as shown in Table 3. MOF Cu2Cl2BBTA [143] 
and MOF-4 [143] also had good                      
adsorption capacities of 19.79 mmol/g and 17.8 
mmol/g respectively. Unfortunately, the thermal 
and chemical stability of these adsorbents for 
NH3 capture was not investigated by the authors. 
The same applies to their regenerability and 
reusability except for Polymer PCP-1 [142]  
which showed very low reusability potential due 
to the reduced number of pores during 
successive sorption cycles as a result of 
structural collapse. 
 

MOFs, polymers, AC, and membrane have also 
been reported to sequester noxious gases such 
as SO2, NH3 and H2S, considerably at pre-
combustion and post-combustion conditions, 
despite the chemical stability challenges posed 
by compounds such as SO2 and H2S to 
adsorbents. For SO2 capture, MOF compounds 
such as MOF-3 [56], NH2-MIL-125 (Ti) [144], 
MFM-300 (Sc) [55] and MIL-160 [144], MOC-1 
and MOC-3 [54] had better adsorption                      
capacity at post-combustion conditions at 
ambient temperatures, as shown in Table 4. 
Unfortunately, none of these                          
compounds were investigated at temperatures 
consistent with Flue Gas Desulfurization (FGD) 
systems. 
 

MOF MIL-53 (Al) TDC [57] was found to be the 
highest performing adsorbent for H2S capture at 
post-combustion conditions at ambient 
temperatures, more than Polymers PM012@Ui-
66@H2S-MIPsM [145] and BPP-5 [146] as 
shown in Table 5. Furthermore, Polymer BPP-5 
[146] had better chemical stability and potential 
for regenerability and reusability. MOF MIL-
101@M-0.5-0.5[147] was found to be the only 
adsorbent with high potential for H2S                       
capture at pre-combustion conditions with 
adsorption capacity of 36.1 mmol/g at 10 bar and 
298K. Membrane NbOFFIVE-1-NI/6FDA-
DAMMMM [146] showed the capacity to 
simultaneously separate CO2 and H2S from 
methane (CH4), with a selectivity of 48 for 
CO2+H2S over CH4 and permeance of 950 
CO2+H2S. This compound has the potential for 
natural gas sweetening if the permeance 
property is improved. 

4. CONCLUSIONS AND PERSPECTIVES 
 

In this review, the performance of selected 
categories of adsorbents for noxious gas 
sequestration has been evaluated. The suitability 
of the adsorbents with the highest SAPs such as 
adsorption capacity, selectivity, permeance, 
regenerability, and reusability, thermal and 
chemical stability was determined for pre-
combustion and post-combustion industrial 
applications. Perspectives of future studies were 
also presented. 
 

In terms of adsorption capacity, Polymers, AC, 
and MOFs are suitable for CO2 adsorption at pre- 
and post-combustion conditions. Some polymers 
and ACs were found to have very high 
adsorption capacities compared to MOFs. MOFs, 
on the other hand, having the highest adsorption 
capacities are best suited for SO2 capture. For 
H2S and NH3 adsorption, MOFs and Polymers 
had the highest adsorption capacity, making 
them more suitable than ACs.  
 

MOFs have been revealed to show exceptional 
selectivity for CO2 and SO2 in binary mixtures of 
CO2/N2 and SO2/CO2, respectively, making it a 
suitable candidate for CO2 and SO2 capture. 
Most membranes showed selectivity and 
permeance capacities suitable for industrial 
applications (˃30 for selectivity and ˃2250 for 
permeance).  
 

4.1 Perspective for Future Study 
 

Most of the temperature conditions at which 
these adsorbents were investigated are below 
practical temperature conditions obtainable in 
post-combustion process systems. This, 
therefore, creates a challenge in their industrial 
deployment. It is, therefore, needful to investigate 
the capture and storage capacities of these 
absorbents at higher temperatures, to ensure 
their industrial applicability for improved 
environmental sustainability. Also, information on 
the selectivity, stability, regenerability and 
reusability of most of the adsorbents were not 
reported. It becomes imperative for these 
parameters to be adequately investigated and 
reported. The adsorption capacities of MOFs for 
CO2, Polymers, and ACs for SO2, as well as ACs 
for H2S and NH3, should be further investigated 
and improved. 
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