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ABSTRACT 
 
Oilseeds have been the backbone of India’s agricultural economy since long. Oilseed crops play the 
second most important role in Indian agricultural economy, next to food grains, in terms of area and 
production. Oilseeds production in India has increased with time, however, the increasing demand 
for edible oils necessitated the imports in large quantities, leading to a substantial drain of foreign 
exchange. The need for addressing this deficit motivated a systematic study of the oilseeds 
economy to formulate appropriate strategies to bridge the demand-supply gap. In this study, an 
effort is made to forecast oilseeds production by using Autoregressive Integrated Moving Average 
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(ARIMA) model, which is the most widely used model for forecasting time series. One of the main 
drawbacks of this model is the presumption of linearity. The Group Method of Data Handling 
(GMDH) model has also been applied for forecasting the oilseeds production because it contains 
nonlinear patterns. Both ARIMA and GMDH are mathematical models well-known for time series 
forecasting. The results obtained by the GMDH are compared with the results of ARIMA model. The 
comparison of modeling results shows that the GMDH model perform better than the ARIMA model 
in terms of mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean 
square error (RMSE). The experimental results of both models indicate that the GMDH model is a 
powerful tool to handle the time series data and it provides a promising technique in time series 
forecasting methods. 
 

 
Keywords: Oilseeds; forecasting; autoregressive integrated moving average; group method of data 

handling; root mean square error. 
 
JEL Classification: Q10, C45, C53. 
 

ABBREVIATIONS 
 

AR : Autoregressive  
MA : Moving Average 
ARMA : Autoregressive Moving Average 
ARIMA : Autoregressive Integrated Moving 

Average 
ACF : Autocorrelations Functions  
PACF : Partial Autocorrelations Functions 
GMDH : Group Method Data Handling 
ANN : Artificial Neural Network 
RMSE : Root Mean Square Error 
MAE : Mean Absolute Error 
MAPE : Mean Absolute Percentage Error 
AIC : Akaike Information Criteria 
BIC : Bayesian Information Criteria 
Q Statistics : Box-Pierce  
LB : Ljung-Box   
TMO : Technology Mission Oilseeds  
ISOPOM : Integrated Scheme on Oilseeds, 

Pulses, Oil Palm and Maize 
PD  : Partial Descriptions 
 
1. INTRODUCTION 
 
India is one among world’s largest producers and 
consumers of vegetable oils. Oilseeds have been 
the backbone of India’s agricultural economy 
since long. Indian vegetable oil economy is the 
fourth largest in the world, next to USA, China, 
and Brazil. The country’s contribution is 7 
percent of the global vegetable oils production 
with 14 per cent share in the area. Oilseed crops 
play the second most important role in the Indian 
agricultural economy next to food grains in terms 
of area and production. While oilseeds covered 
26087.2 thousand hectare, the area under          
food grains was 125298.7 thousand hectare 
during 2015-16. On the other hand the 
production of oilseeds was 25250.8 thousand 

tonnes and that of good grains was 254595.9 
thousand tonnes during the same period 
(http://eands.dacnet.nic.in/latest_20011.htm). 
The Indian climate is suitable for the cultivation of 
oilseed crops; therefore, large varieties of 
oilseeds are cultivated here. The major oilseeds 
cultivated in our country are Groundnut, 
Rapeseed and Mustard, Castor seed, Sesame, 
Niger seed, Linseed, Safflower, Sunflower and 
Soybean. However, Groundnut, Rapeseed and 
Mustard, Sesame, Soybean and Sunflower 
account for a major chunk of the output. At 
present, more than 27 million hectares of land is 
under oilseeds cultivation. The area under 
oilseeds has been increasing over time and           
the production has registered many fold 
increase; however, the productivity is still low as 
compared to the other oilseed producing 
countries in the world. The productivity of 
oilseeds in India was 1408 Kg./Ha during 2015-
16, where as it was 3173 Kg./Ha in USA, 2864 
Kg./Ha in Brazil and 2074 Kg./Ha in China 
respectively during the same period 
(https://www.reportlinker.com/data/series/0PPaw
mn6Hlc). The reason of low and fluctuating 
productivity is primarily because cultivation of 
oilseed crops is mostly done on marginal lands, 
which are lacking in irrigation and using of low 
levels of input. To improve the situation of 
oilseeds in the country, Government of India has 
been pursuing several development programs, 
such as Oilseed Growers Cooperative Project, 
National Oilseed and Development Project, 
Technology Mission Oilseeds (TMO) and 
Integrated Scheme on Oilseeds, Pulses, Oil 
Palm and Maize (ISOPOM) etc 
(http://salasargroup.com/commodities/oil-seeds/). 
The concerted efforts of these development 
programs register significant improvement in 
annual growth of productivity and area under 
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oilseed crops. The combined efforts have been 
reflected in oilseeds production. But the growth in 
the domestic production of oilseeds has not been 
able to keep pace with the increase in demand in 
the country. As a result of which, India still 
imports a significant proportion of its requirement 
of edible oil. Edible oil is the largest imported (30 
percent) commodity in India next only to 
petroleum products even though India had the 
world’s second largest area under oilseeds [1,2]. 
 
In this paper, an effort has been made to forecast 
oilseeds production for the next five years (2016-
17 to 2020-21). The model used for forecasting is 
an Autoregressive Integrated Moving Average 
(ARIMA) model. As the model was introduced by 
Box and Jenkins in 1960, this model is also 
known as Box-Jenkins model. The model is used 
for forecasting a single variable. Although it is 
used across various functional areas, its 
application is very limited in agriculture, mainly 
because of unavailability of required data and 
because agricultural output depends typically on 
monsoon and other factors [3]. The primary 
reason behind choosing ARIMA model for 
forecasting is that it assumes non-zero 
autocorrelation between the successive values of 
the time series data [4]. But ARIMA model can 
only capture linear feature of time series data [5] 
to deal with non-linearity of time series data, 
Group Method of Data Handling (GMDH) has 
also been used in our analysis for forecasting 
oilseeds production. This model was first used in 
1966 by Prof. Alexey G. Ivakhnenko [6].  
 

2. REVIEW OF LITERATURE 
 
Padhan Purna Chandra [7], has applied ARIMA 
model on a 60years’ time series data (from 1950 
to 2010) to forecast annual productivity of 
selected agricultural product (34 different 
products). The validity of the model is verified 
with various model selection criteria such as 
minimum of AIC (Akaike Information Criteria) and 
lowest MAPE (Mean Absolute Percentage Error) 
values. Among the selected crops, tea provides 
the lowest MAPE values, whereas cardamom 
provides lowest AIC values.  
 
Kumar Manoj and Anand Madhu [4] forecasted 
sugarcane production in India by using ARIMA 
model. The order of the best ARIMA model was 
found to be (2, 1, 0). They suggested that the 
forecast results have shown the annual 
sugarcane production will grow in 2013, then 
there will be a sharp dip in 2014 and in 
subsequent years 2015 through 2017, it will 

continuously grow with an average growth rate of 
approximately 3 percent year-on-year.  
 
Arivarasi R and Ganesan Madhavi [8] have also 
used the ARIMA Model to forecast the area and 
production of vegetables in the in the feeder 
zones (zone 1-Kancheepuram district & zone 2 -
Thiruvallur district) of Chennai city. The ARIMA 
(0, 1, 2) model is suitable for the cultivation area 
of the zone 2 and ARIMA (2, 0, 1) model is 
suitable for zone 1. ARIMA (2, 0, 1) model is 
highly suitable for the vegetable production in 
both the zones. The model performances are 
validated by comparing the regression co-
efficient values. While the model was used for 
forecasting for the period 2011-12 to 2014-15, 
decreasing trend was found in cultivated area 
and production of vegetables in zone 1.However, 
in zone 2 increasing trend was found in cultivated 
areas but decreasing trend was found for the 
vegetable production. Hence, it can be 
concluded that if this situation remained the 
same for a long period, then the further 
cultivation of vegetable crops will no longer be 
possible in both the zones. 
   
Borkar Prema & Bodade V.M, [3] have applied 
the ARIMA model to forecast annual productivity 
of selected pulse crops. Applying annual data 
from 1950-51 to 2014-15, forecasted values have 
been obtained for another 5 years since 2016. 
The evaluation of forecasting of pulses 
production has been carried out with Root Mean 
Squares Percentage Error (RMSPE), Mean 
Absolute Percentage Error (MAPE) and Relative 
Mean Absolute Percentage Error (RMAPE). 

 
Amanifard et al. [9] presented two meta-models 
based on the evolved group method of data 
handling (GMDH) type neural networks for 
modeling of both pressure drop (ΔP) and Nusselt 
number (Nu). It was shown that some interesting 
and important relationships like useful optimal 
design principles involved in the performance of 
micro-channels can be discovered by Pareto 
based multi-objective optimization of the 
obtained polynomial meta-models representing 
their heat transfer and flow characteristics. They 
concluded that, such important optimal principles 
would not have been obtained without the use of 
both GMDH type neural network modeling and 
the Pareto optimization approach. 
 
Amanifard et al. [10] presented a quadratic 
model based upon some experimental results, 
using evolved GMDH-type neural networks for 
modeling of the transient evolution of spiky stall 
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cells in an axial compressor. They concluded that 
the methodology applied in this work could 
sufficiently derive such complex model of 
unstable flow of rotating stall based on 
experimental input–output data. The prediction 
ability of such polynomial model has also been 
presented for some unforeseen data. 
 
Ahmadi et al. [11] proposed an intelligent 
approach to determine the output power and 
torque of a Stirling heat engine. The approach 
employs the GMDH method to develop an 
accurate predictive tool for determining output 
power and torque of a Stirling heat engine in 
manner that is inexpensive, fast and precise. 
Consequently, based on the output results, the 
GMDH approach can help energy experts to 
design Stirling heat engines with high levels of 
performance, reliability and robustness and with 
a low degree of uncertainty. 
 
Osman Dag and Ceylan Yozgatligil [12] in their 
study, the R package GMDH is presented to 
make short term forecasting through GMDH-type 
neural network algorithms. The GMDH package 
has options to use different transfer functions 
(sigmoid, radial basis, polynomial, and tangent 
functions) simultaneously or separately. Data on 
cancer death rate in Pennsylvania from 1930 to 
2000 are used to illustrate the features of the 
GMDH package. The results based on ARIMA 
models and exponential smoothing methods are 
included for comparison. GMDH algorithms show 
the same or even better performance than the 
other methods. 
 

3. OBJECTIVE 
 

The objective of the study is to generate short-
term forecast of the oilseeds production by using 
Autoregressive Integrated Moving Average 
(ARIMA) model and also through Group Method 
of Data Handling (GMDH) model (one the sub-
model of Artificial Neural Networks).  
 

4. MATERIALS AND METHODS 
 

4.1 Data 
 

The data used for this study is the               
oilseeds production in India for the last 50 years, 
i.e., from 1966-67 to 2015-16 which is collected 
from “APY State Data”, uploaded by Directorate 
of Economics and Statistics, Department of 
Agriculture, Cooperation and Farmers          
Welfare, Ministry of Agriculture and          
Farmers Welfare, Govt. of India 
(http://eands.dacnet.nic.in/latest_20011.htm). 

4.2 Autoregressive Integrated Moving 
Average (ARIMA) 

 
The model used in this study is the 
autoregressive integrated moving average 
(ARIMA).The ARIMA is an extrapolation

1
 

method, which requires historical time series 
data of underlying variable.  
 
The model in specific and general forms may be 
expressed as follows.  
 
Let    Yt  is a discrete time series variable which 
takes different values over a period of time. The 
corresponding AR (p) model of  Yt series,  
 
Which is the generalizations of autoregressive 
model, can be expressed as:      
                               
AR (p) Yt 
Yt= μ + ɸ

1
 Yt-1+ ɸ

2
 Yt-2+ …+  ɸ

�
 Yt-p+  ɛt             (1)  

 
Where,  Yt  is the response variables at time t,  
 
 Y���,  Yt-2, … …  Yt-p    is the respective variables at 

different time with lags;  
 

μ is constant mean of the series,  ɸ
1
,  ɸ

2
,…, ɸ

�
 

are the coefficients; and  ɛt is the error factor. ɛt is 
a white noise process, where E(ɛt) = 0, var (ɛt) = 
σ2>0, cov( ɛt, ɛ���) = 0,  t, h ≠ 0 
 
Similarly, the MA (q) model which is again the 
generalization of moving average model may be 
specified as:  
 
MA (q):  Yt= µ+ εt - δ1 ɛ

t-1
-  δ2 ɛ

t-2
-... - δ� ɛt-q      (2)  

 
Where, � is the constant mean of the series; 

 
δ1,  δ2,…  δq  is the coefficients of the estimated 

error term;   ɛt is the error term.   

 
By combining both the models, we get the 
Autoregressive Moving Average or ARMA 
models, which has general form as:  

 
 Yt = μ + ɸ

1
 yt-1 + ɸ

2
 Yt-2+ …+  ɸ

�
 Yt-p+  ɛt- δ1 ɛ

t-1
-

 δ2 ɛ
t-2

- … - δ� ɛt-q                                          (3) 

 
Box and Jenkins argue that a non-stationary 
series can be transformed either into a 

                                                           
1 Extrapolation techniques make forecasts using only the 
past data. 
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stationary or an almost stationary series, if it is 
differenced an appropriate number of times. 
Thus, if we have a stochastic process {Yt, t= 0, 
±1, ±2, ... } which is non-stationary and has a 
trend, we can find a positive integer ‘d’ such that 
the transformed series Wt = ∇dYt becomes 
stationary, ∇ being the difference operator, viz. 
∇Yt = Yt -Yt-1, ∇

2
Yt =Yt - 2Yt-1+Yt-2 and so on. After 

the transformed into a stationary or to an almost 
stationary series, the model transforms to 
ARIMA [13]. The mathematical equation, 
involving Yt and εt that summarizes the ARIMA 
(p,d,q) model as defined in Equation (4): 
 

ɸp(B) (1-B)
d 

Yt = θq(B) εt                  (4) 
 

Where, ɸp(B) =  1- ɸ1B - ɸ2B
2 -…. - ɸpB

p 

 
   θq(B) =  1- θ1B - θ2B

2
 -……. - θqB

q
 

    
If  Yt  is stationary at level or I(0) or at first 
difference I(1) or at second difference I(2) 
determines the order of integration. After the 
stationary of the series was attained, ACF (Auto 
Correlation Function) and PACF (Partial Auto 
Correlation Function) of the stationary series are 
employed to select the order p and q of the 
ARIMA model. The parameters were estimated 
using the non-linear least square method as 
suggested by Box and Jenkins (1976).  ɛt  is a 
white noise process, where E(εt) = 0, var (εt) = σ

2 

>0, cov (εt, εt-h) = 0,  t, h ≠ 0. Based on the model 
diagnostic tests and parsimony we obtained the 
best fitting ARIMA model. 
 
The complete procedure of model building and 
forecasting are fully described by Box and 
Jenkins 1976. In short, they have suggested four 
basic steps viz., (i) Identification of the model, (ii) 
Estimation of parameters of the model, (iii) 
Diagnostic Checking of the model, and (iv) 
Forecasting. The details of the estimation and 
forecasting process are discussed below. 
 
Identification: The first step of applying Box-
Jenkins forecasting model is to identify the 
appropriate order of ARIMA (p, d, q) model. 
Identification of ARIMA model implies selection 
of order of AR(p), MA(q) and I(d). The order of d 
is estimated through I(1) or I(2) process of unit 
root stationary tests. The model specification and 
selection of order p and q involved plotting of 
autocorrelations functions (ACF) and partial 
autocorrelations functions (PACF) or correlogram 
of variables at different lag length. If the PACF 
displays a sharp cutoff while the ACF decays 

more slowly (i.e., has significant spikes at higher 
lags), we say that the series displays an AR 
signature. However, if the ACF displays a sharp 
cutoff while the PACF decay more slowly, we say 
that the series displays an MA signature [14]. 
The autocorrelation functions specify the order of 
moving average process, q and partial 
autocorrelations function select the order of 
autoregressive process p.  
 

Estimation of the model: ARIMA models are 
fitted and accuracy of the model has tested 
based on diagnostics statistics. Once the order of 
p, d, and q are identified, their statistical 
significance can be judged by t-distribution. The 
next step is to specify appropriate regression 
model and estimate it. ARIMA models are fitted 
and accuracy of the model was tested based on 
diagnostics statistics. 
 
Diagnostic checking: Now a question may arise 
that how we know whether the identified model is 
appropriate. One simple way to figure that out is 
by diagnostic checking the residual term 
obtained from ARIMA model by applying the 
same ACF and PACF functions. First obtaining 
the ACF and PACF of residual term up to certain 
lags of the estimated ARIMA model, and then 
checking whether the coefficients are statistically 
significant or not. The best model was selected 
based on the following diagnostics,  
 

(i) Low Akaike Information Criteria (AIC): AIC 
is estimated by AIC = −2loge (�) + 2�, 
where � = �+ � and � is the likelihood 
function. 

(ii) Low Bayesian Information Criteria (BIC): 
The Bayesian information criterion is a 
criterion for model selection among a finite 
set of models. It is based, in part, on the 
likelihood function, and it is closely related 
to Akaike information criterion (AIC). 
Sometimes, Bayesian Information Criteria 
(BIC) is also used and estimated by BIC = 
−2loge (�) + loge (N) �. Where N is number 
of observation and m is the number of 
parameters. 

(iii)  The minimum Root Mean Square Error 
(RMSE) and Mean Absolute Percent Error 
(MAPE) are used as a measure of 
accuracy of the models. 

RMSE= �∑ (�������,� − ���������,�)��
��� /�       

and   MAPE 

=
�

�
∑ [

�������,�����������,�

���������,�
]�� 100�

��� , 

  Where, X Actual,t  and XForecast,t  are actual 
and forecast output at time t, 
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(iv) These may also be judged by Ljung-Box 
Q (LBQ) statistic

2
 under null hypothesis 

that autocorrelation co-efficient up to lag 
k is equal to zero. LBQ is used to assess 
assumptions after fitting a time series 
model (ARIMA), to ensure that the 
residuals are independent. 

 
Forecasting: Once the first three steps of 
ARIMA model are over, then we can obtain the 
forecasted values by estimating the appropriate 
model, which is free from problems. The 
forecasted values are reported for a maximum of 
5 years, as long-term forecasting might not be 
appropriate. 
 
The major drawback of ARIMA model is 
presumption of linearity, hence, no nonlinear 
patterns can be recognized by ARIMA model. 
Sometimes, the time series often contain 
nonlinear components; under such condition the 
ARIMA models are not adequate in modeling and 
forecasting [2]. To overcome this difficulty, 
GMDH model has been successfully used. To 
deal with uncertainty, linearity or nonlinearity of 
time series data in a wide range of disciplines 
GMDH is more effective. 
 
4.3 Group Method of Data Handling 

(GMDH) 
 
GMDH is a family of inductive algorithms for 
computer-based mathematical modeling of multi-
parametric datasets that features fully automatic 
structural and parametric optimization of models 
[15]. GMDH is an original method for solving 
problems of structural and parametric 
identification under conditions of uncertainty 
[16]. It is an important model of time series data 
which is one sub-model of ANN3 (Artificial Neural 
Network). The main idea of the GMDH is to build 

                                                           
2 The Ljung-Box Q statistic to test whether a series of 
observations over time are random and independent. If 
observations are not independent, one observation can be 
correlated with a different observation k time units later, a 
relationship called autocorrelation. Autocorrelation can 
decrease the accuracy of a time-based predictive model, 
such as time series plot, and lead to misinterpretation of the 
data. 
 
3ANN: The basic objective of ANNs was to construct a model 
for mimicking the intelligence of human brain into machine. 
Similar to the work of a human brain, ANNs try to recognize 
regularities and patterns in the input data, learn from 
experience and then provide generalized results based on 
their known previous knowledge. Although the development 
of ANNs was mainly biologically motivated, but afterwards 
they have been applied in many different areas, especially for 
forecasting and classification purposes [21]. 

an analytical function in a feed-forward network 
based on a quadratic node transfer function 
whose coefficients are obtained by using a 
regression technique. The GMDH is a self-
organizing, unidirectional structure with multiple 
layers, each of which is composed of several 
neurons that have a similar structure. Weight is 
inserted inside each neuron as definite and 
constant values based on singular value 
decomposition method by solving normal 
equations [17]. 
 
The GMDH was introduced as a multivariate 
analysis method for modeling and identification 
of complex systems. In this model, the general 
connection between inputs and output variables 
can be expressed by a complicated polynomial 
series in the form of the Volterra series, known 
as the Kolmogorov-Gabor polynomial [18]. 
 

  
(5) 

 
where{ ��, �� , … �� , .…..} is the vector of input 
variables and {��, ��, ���, ����,…..} is the vector of 

coefficients of variables in the polynomial, n is 
the number of inputs, Y is a response variable, xi 

and xj are the lagged time series to be regressed. 
However, for most application the quadratic form 
are called as partial descriptions (PD) for only 
two variables is used in the form 
 
yn  = G (xi, xj) = ��  +  ��xi +  ��xj + ��xixj  +  ��xi

2   + ��xj
2   

 

to predict the output. The input variables are set 
to {��,�� , �� , .…..,xn} and output is set to {y}. The 

aim of the GMDH algorithm is to find �i unknown 
coefficients of Volterra series. The coefficients 
(weights) ��, for i = 0, 1, 2, 3, 4, 5 are determined 
using the least square method for each pair of xi 
and xj input variables [19]. 
 

The GMDH algorithm considers all pairwise 
combinations of p lagged time series. Therefore, 
each combination enters each neuron. Using 
these two inputs, a model is constructed to 
estimate the desired output. In other words, two 
input variables go in a neuron, one result goes 
out as an output. The structure of the model is 
specified by the Ivakhnenko polynomial in 
equation 5 where n = 2. This specification 
requires six coefficients in each model to be 
estimated [12].  
 

The main function of GMDH is based on the 
forward propagation of signal through nodes of 
the net similar to the principle used in classical 
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neural nets. Every layer consists of simple 
nodes, each of which performs its own 
polynomial transfer function and passes its 
output to nodes in the next layer. The 
computation process comprises three basic 
steps [20]: 
 
Step 1: Select input variables { �� , ��  , ��  , 
.…..,xn} where n is the total number of input. The 
data are separated into training and testing data 
sets. The training data set is used to construct a 
GMDH model and the testing data set is used to 
evaluate the estimated GMDH model.  
 
Step 2: Construct L numbers of new variables Z 
={z1, z2, z3, ……,zL} in the training data set for all 
independent variables and choose a PD of the 
GMDH. Conventional GMDH has been 
developed using polynomial, PD of the following 
form 
 
zl  = G(xi, xj) = ��+ ��xi + ��xj+ ��xixj +  ��xi

2
+ 

��xj
2  for l =1,2,3..,, L. 

 

where, L = n(n-1)/2 
 

Select new variables as input of the next middle 
layer and truncate the subsequent computation. 
With the identification of the optimal output of 
partial polynomials at each layer, the selection of 
new variables enables the network to quickly 
converge to the target solution. Once the partial 
polynomial equations at each unit are selected, 
the residual error in each layer is further checked 
to determine whether the set of equations of the 

model should be further improved within the 
subsequent computation.  
 
Step 3: Estimate the coefficient of the PD. The 
vectors of coefficients of the PDs are determined 
using the least square method. 
 
Step 4: Determine new input variables for the 
next layer.  There are several specific selection 
criteria to identify the input variables for the next 
layer. In our study, we used two criteria. The first 
criteria, the single best neuron out of these L 
neurons, Z׳ identified according to the value of 
mean square error (MSE) of testing dataset. In 
second criteria, eliminate the least effective 
variables, replace the column of { �� , ��  , ��  , 
.…..,xn}  by those column {z1, z2, z3, ……,zl} that 
best estimate the dependent variable y in the 
testing dataset. 
 
Step 5: Build the final model and compute the 
predicted value. The final prediction model can 
be obtained with selected variables in each layer 
and the coefficients of partial polynomials 
between the connected layers. Check the 
stopping criterion. The lowest value of selection 
criteria using GMDH model at each layer 
obtained during this iteration is compared with 
the smallest value obtained at the previous one. 
 

The structure of the GMDH algorithm is 
illustrated in Fig. 1. Those shadowed nodes in 
Fig. 1 that have significant contribution to the 
output and are selected to be input in the next 
layer [22]. 

 

 
 

Fig. 1. Structure of the GMDH algorithm 
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Table 1. An illustration of time series data structure in GMDH algorithms 
 

Subjects Y x1 x2 x3  xp 
1 yt yt-1 yt-2 yt-3  yt-p 

2 yt-1 yt-2 yt-3 yt-4  yt-p-1 

3 yt-2 yt-3 yt-4 yt-5  yt-p-2 

….       

t-p yp+1 yp yp-1 yp-2  y1 

 
The GMDH algorithm is a system of layers in 
which there exist neurons. The number of 
neurons in a layer is defined by the number of 
input variables. To illustrate, assume that the 
number of input variables is equal to p; since we 
include all pair-wise combinations of input 
variables, the number of neurons is equal to h = 
pc2 [12]. 
  
4.3.1 Time series prediction by GMDH 
 
A classical method for time series forecasting 
problem, the number of input nodes of nonlinear 
model, such as the GMDH is equal to the 
number of lagged variables (yt-1, yt-2, yt-3…,y t-p), 
where p  is the number of chosen lagged. The 
outputs, yt, the predicted value of a time series 
defined as   
  
yt = f (yt-1, yt-2, yt-3…,y t-p), 
 
However, there is no suggested systematic way 
to determine the optimum number of lagged p. 
The number of lagged p is chosen either in an 
adhoc basis or from traditional Box Jenkins 
methods. The lagged variables obtained from the 
Box-Jenkins analysis are the most important 
variables to be used as input nodes in the input 
layer of the GMDH model [23]. In our study, a 
time series model is considered as nonlinear 
function of several past observations and random 
errors as follows:   
 
yt = f[ (yt-1, yt-2, yt-3…,y t-p),( ����,  ����,����…, ���� )] 

 
where f is a nonlinear function determined by the 
GMDH.   
 
4.3.2 Data structure of GMDH  
 
An illustration of time series data structure in 
GMDH algorithms is presented in Table 1. Since 
we have a time series data set with t time points 
and p inputs. We construct the model for the data 
with time lags, the number of observations 
presented under the subject column in the table 
is equal to t-p; and the number of inputs i.e, 
lagged time series, is p. In this table, the variable 

called y is put in the models as a response 
variable, and the rest of the variables are taken 
into models as lagged time series xi, where i = 
1,2,...,p. The notations in Table 1 are followed 
throughout this paper. 
 
A better model which explains the relation 
between response and lagged time series is 
captured via transfer functions.  
 

5. RESULTS AND DISCUSSION 
 
5.1 ARIMA Model 
  
The preliminary understating about the nature of 
data showed that there is no consistency in the 
production of oilseeds over the time period (Fig. 
2). The variable shows increasing trend. 
 
Identification: Identification of the model was 
concerned with deciding the appropriate values 
of (p, d, q). Auto regressive and moving average 
terms are identified based on ACF and PACF 
values. The ACF helps in choosing the 
appropriate values for ordering of moving 
average terms (MA) and PACF for those 
autoregressive terms (AR).  
 
ARIMA model is generally applied for stationary 
time series data. Stationary vs. non-stationary 
can check through correlogram or autocorrelation 
functions. If autocorrelation coefficients don’t die 
out slowly, then the series is probably non-
stationary. The general procedure to convert a 
non-stationary series to a stationary series is 
through first difference or second difference. In 
general, most of the variables are I (1) i.e., first 
difference or I (2) i.e., second difference, thereby 
ARMA model is applied at I(1) or maybe I(2). 
Both the first differences and the second 
difference time series data of production are 
given in Fig. 3 and Fig. 4, respectively. 
Comparing the figures, it has been observed that 
in the first figure, difference magnitude of auto 
correlation is lower than that in the second 
difference data. Hence, we considered I(1) for 
making the series stationary. 
 



ACF and PACF of production of oilseeds are 
presented in Figs. 5 and 6.  Based on these 
figures, the initial ARIMA model has been 
developed. It can be seen from Figs. 5 and 6 that 
there is a slow decay in the PACF, but it also has 
a cut-off only at lag1, suggesting AR (1). The 
ACF also has one significant spikes at lag1. This 
pattern is typical to an MA process of orders 1.
 
Estimation of the model: Once the orders 
and q are identified, the next step is to specify 
appropriate ARIMA model and estimate it. With the 
help of SPSS software, various orders of ARIMA 
model has been estimated. After the identification 

 

 
 

Fig. 2. Time series plots of 
oilseeds 

 

Fig. 5. ACF of 1stdifferenced series by lag
 

Table 2. Coefficients of estimated values of fitted ARIMA models

Sl.No Variable Model
1 Production ARIMA(0,1,1)

SE 
t- value

2 Production ARIMA(1,1,0)
SE 
t- value

3 Production ARIMA(1,1,1)
SE 
t- value
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ACF and PACF of production of oilseeds are 
presented in Figs. 5 and 6.  Based on these 
figures, the initial ARIMA model has been 

gs. 5 and 6 that 
there is a slow decay in the PACF, but it also has 

off only at lag1, suggesting AR (1). The 
ACF also has one significant spikes at lag1. This 
pattern is typical to an MA process of orders 1. 

Once the orders of p, d, 
and q are identified, the next step is to specify 
appropriate ARIMA model and estimate it. With the 
help of SPSS software, various orders of ARIMA 
model has been estimated. After the identification 

process has completed, the number of possible 
models are identified. According to identification 
process, the model has been identified as ARIMA 
(1, 1, 1). However, the coefficient of AR (1) is not 
statistically significant. Hence in addition to ARIMA 
(1, 1, 1), the study also attempts to estimate 
ARIMA (1, 1, 0) and ARIMA (0, 1, 1) model. The 
results of ARIMA (1, 1, and 1), ARIMA (1, 1, 0)  
and ARIMA (0, 1, and 1) are summarized in Table 
2. 
 
We proceeded to further statistically analyze 
these two possible models. The best model is 
selected based on the diagnostics checking.

 
 

Fig. 3. Plots of 1
st

 difference 
 

Fig. 4. Plots of 2
difference

 
Fig. 5. ACF of 1stdifferenced series by lag Fig. 6. PACF of1stdifferenced series by lag

Coefficients of estimated values of fitted ARIMA models 
 

Model Constant AR(1) 
ARIMA(0,1,1) 0.028 - 

 0.009  
value 3.216  

ARIMA(1,1,0) 0.027 -0.479 
 0.015 0.128 

value 1.804 -3.743 
ARIMA(1,1,1) 0.028 -0.093 

 0.010 0.261 
value 2.901 -0.357 
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process has completed, the number of possible 
els are identified. According to identification 

process, the model has been identified as ARIMA 
(1, 1, 1). However, the coefficient of AR (1) is not 
statistically significant. Hence in addition to ARIMA 
(1, 1, 1), the study also attempts to estimate 

(1, 1, 0) and ARIMA (0, 1, 1) model. The 
results of ARIMA (1, 1, and 1), ARIMA (1, 1, 0)  
and ARIMA (0, 1, and 1) are summarized in Table 

We proceeded to further statistically analyze 
these two possible models. The best model is 

iagnostics checking. 

 

Fig. 4. Plots of 2
nd

 
difference 

 

series by lag 

MA(1) 
0.596 
0.126 
4.718 
- 
- 
- 
0.519 
0.234 
2.214 
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Diagnostic checking: Now a question may arise 
that how we know whether the identified model is 
appropriate. After an estimation of the 
parameters, we test the adequacy of the model 
based on Box-Pierce (Q) and Ljung-Box (LB) 
statistics. The statistics is calculated from the 
ACF of residual term up to 16 lags of the 
estimated ARIMA model. We also check the 
statistical significance of the parameters. An 
adequate model does not always generate good 
forecasts. Further, we select the model having 
low Bayesian Information Criteria (BIC), lowest 
root means square error (RMSE), lowest mean 
absolute percent error (MAPE), and highest 
stationary R-Square and R-Square. 
 
Comparing these three models, the ARIMA 
(0,1,1) model is found to be the best for oilseeds 
production. Only in this model, the estimated 
coefficient is statistically significant. LB and Q 
statistics of the model is also statistically 
significant. At the same time, RMSE, MAPE, 
MAE and BIC of ARIMA (0,1,1) have shown a 
value lower than that of ARIMA(1,1,0) and 
ARIMA(1,1,1) models. The summary of the 
estimates of ARIMA (0,1,1) models is given in 
Table 3. 
 
Based on the parameter estimates in the Table 2 
and model statistics presented in the Table 3, the 

study chose the ARIMA (0,1,1) as the best model 
for the oilseeds production in the India. The 
model is thus given as:  
 
          (1-B)1 Yt = θ q(B) εt    
           i.e., Yt = 0.028 + Yt-1– 0.596 εt-1 

 
This model is a special case of ARIMA model, 
which is called an Integrated Moving Average 
Model. 
 
Forecasting: Once the identification, estimation 
of the model and diagnostic checking steps of 
ARIMA model is over, then we can obtain 
forecasted values by estimating the appropriate 
model, which is free from problems. The 
forecasted values obtained from ARIMA model 
are reported in Table 4. The forecasted values 
are reported for a maximum 5 years as long-term 
forecasting might not be appropriate. 
 
In our study, ARIMA (0,1,1) is the best model for 
oilseeds production. Based on this model, 
forecasted values of oilseeds production will be 
30062 thousand tonnes, 30987 thousand tonnes, 
31939 thousand tonnes, 32922 thousand tonnes 
and 33934 thousand tonnes during 2016-17, 
2017-18, 2018-19, 2019-20 and 2020-21, 
respectively. It is clear that oilseeds production 
will be slightly increasing over time. 

  
Table 3. RMSE, MAPE, BIC values and Q statistics of fitted ARIMA models 

 
Sl. 
no 

Variable Model RMSE MAPE MAE BIC Stationary 
R2 

R
2
 Ljung box  

Q statistics 
Df 

1 Production ARIMA 
(0,1,1) 

2811.85 11.72 2008.66 16.04 0.26 0.87 13.03 17 

 

 
 

Fig. 7. Actual value, fitted value and forecast value and confidence band in ARIMA model 
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Table 4. Forecast values with ARIMA model 
 

Model 
ARIMA 
(0,1,1) 
 

Variable Value Years 
Production 
(000 
tonnes) 

 2016-17 2017-18 2018-19 2019-20 2020-21 
Forecast 30062 30987 31939 32922 33934 
Lower 22069 22181 22330 22510 22715 
Upper 40062 42195 44372 46601 48887 

 

The graphical representation of forecast value of 
oilseeds production under ARIMA is depicted in         
Fig. 7. In the diagram, time is measured along 
the horizontal axis and the vertical axis measures 
level of production (thousand tonnes). The actual 
value is shown by red line and the fitted value in 
blue. The thick blue line indicates the forecast 
value of oilseeds production whereas the 
confidence band has been shown by the shaded 
area. 
 

5.2 GMDH Model 
 

In this section we analyze the short-term 
forecasting results of oilseeds production through 
GMDH - neural network algorithms

4
 by using 

GMDH Shell software. GMDH-neural network 
selects the model of optimal complexity and such 
a selection depends on the form of external 
criterion realization. K-fold cross validation is one 
of such criteria. In our study, we used this k fold 
validation method. In this validation, original 
sample was randomly partitioned into k 
subsamples. A single subsample was taken as 
the validation data for testing model, and the 
other k – 1 sub-samples were used as training 
data. The cross-validation process was repeated 
k times using each of the k subsamples exactly 
once. The value of k obtained from the K folds 
can produce a single estimation. The advantage 
of this method over repeated random sub-
sampling is that all observations are used for 
both training and validation, and each 
observation is used for validation exactly once. 
The experiment was carried out using RMSE 
validation criterion [16]. Therefore, the optimal 
time series forecasting model was selected by 
minimum value of RMSE, calculated for the 
testing sample. This validation criterion defines 
model selection criterion for both the core 
algorithm

5
 and variables ranking

6
. In our time 

                                                           
4 GMDH-type neural network algorithms are modeling 
techniques which learn the relations among the variables. In 
the perspective of time series, the algorithm learns the 
relationship among the lags. After learning the relations, it 
automatically selects the way to follow in algorithm. 
5Core algorithms perform generation and selection of model 
structures. Then model coefficients are fitted using the least 
squares method. 

series analysis under GMDH-neural network 
model, based on k- cross validation criterion, our 
forecasting model is an optimal with k=2.  
 

In this model the variables ranking are selected 
by error. Variables are dropped after rank 600. 
The neural–type method used as a core of 
algorithm in our model. The summary of the 
results of our model depict that model complexity 
(it informs about the number of coefficients in the 
model and the number of layers) is 2 of 6. It 
means that the model has two layers and six 
coefficients or weight of polynomial. Maximum 
number of layer selected in our model are 33 
with initial layer7 width 1. The Criterion value of 
this model is 0.060354 which informs about the 
value of validation criterion configured in the 
Solver module

8
. Top-ranked model has the 

smallest criterion value. Our model’s low criterion 
value indicates that the model is suitable for this 
data. 
 

The formula of suggested forecasting model 
under GMDH –neural network is given by the 
following equation. The t-values have been put 
insight the bracket. 
 

Yt = 6677.04 + 1.036 Yt-15 + 0.005 Yt-23 

        (7.75)         (5.04)          (0.58) 
 

Accuracy of model shows different accuracy 
metrics for the model selected in the model 
browser. Model contains accuracy measures 
calculated for observations used to create the 
model. Error measure is used to choose a metric 
for calculation of the mean and the root mean 
errors. Available metrics are the absolute (MAE 
and RMSE), which outputs mean error values “as 
is” and the target percentage (MAPE), where for 
each model value we calculate percentage 
deviation from the actual value and then the 
percentage deviations are averaged [24]. The 
model statistics of GMDH - neural network are 
presented in Table 5. 

                                                                                        
6 Variables ranking turns on preliminary ranking and 
reduction of variables. Ranking of variables according to their 
individual ability to predict testing data. 
7Initial layer width means how many neurons are added to 
the set of inputs at each new layer. 
8Solver [25] module produces predictive models for target 
variables. 
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Calculation of magnitude of predicted variable 
involves only the observations that are used for 
training and testing. The forecasting values are 
presented in Table 6. In our study, GMDH - 
neural networks model forecasting oilseeds 
production will be 28176 thousand tonnes, 22145 
thousand tonnes, 32864 thousand tonnes, 32008 
thousand tonnes and 35751 thousand tonnes in 
2016-17, 2017-18, 2018-19, 2019-20, 2020-21, 
respectively. 
 

The diagrammatic presentation of forecast value 
of oilseeds production under GMDH- neural 
network has been shown in Fig. 8. In this 
diagram the actual value is depicted by black line 
and the fitted value is shown in blue. The red line 
indicates the forecast value of oilseeds 
production whereas the confidence band has 
been presented by the shaded area. The time is 
measured along the horizontal axis and the 
vertical axis measures the level of production 
(thousand tonnes). 

 

Table 5. RMSE, MAPE, MAE values of fitted GMDH neural network models 
 

Sl. No Variable Model RMSE MAPE MAE R2 
1 Production 

(000 tonnes) 
GMDH 1833.72 5.275 1473.56 0.99 

 

Table 6. Forecast values with GMDH neural network model 
 

Model Variable Value Years 
GMDH Production 

(000 
tonnes) 

 2016-17 2017-18 2018-19 2019-20 2020-21 
Forecast 28176 22145 32864 32008 35751 
Lower 24508 18477 29196 28340 32083 
Upper 31844 25813 36532 35676 39419 

 

 
 

Fig. 8. Actual value, fitted value and forecast value and confidence band in GMDH model 
 

6. COMPARISON BETWEEN ARIMA AND 
GMDH-NEURAL NETWORK MODEL 

 

Now the question that arises is which model is 
better and appropriate for forecasting the 
oilseeds production. To find the solution, we 
compare the model statistics of ARIMA and 
GMDH-neural network in terms of RMSE, MAE 
and MAPE. Model with lower values of RMSE, 
MAE and RMPE as compare to the other model, 
is better. The model statistics of GMDH-neural 
network and ARIMA both are presented in Table 
7. The table indicates that GMDH-neural network 
is better model than ARIMA in all respect. 
 

To verify our results, we considered similar 
research works such as Srinivasan, [26] and Xu 
et al. [27]. Srinivasan used a GMDH-type neural 

network and traditional time series models to 
forecast predicted energy demand. It was shown 
that a GMDH-type neural network was superior 
in forecasting energy demand compared to 
traditional time series models with respect to 
MAPE. In another study, Xu et al. (2012) applied 
a GMDH algorithm and ARIMA models to 
forecast the daily power load. According to their 
results, GMDH-based results were superior to 
the results of ARIMA models in terms of MAPE 
for forecasting performance. 
 
Since the above analysis lends support to the 
choice of GMDH-neural network over ARIMA 
type modeling we would propose the values 
obtained from GMDH-neural network as the 
forecast outcome. 
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Table 7. RMSE, MAPE, MAE statistics of fitted ARIMA models and GMDH 
 

Variable Model RMSE MAE MAPE R
2 

Production ARIMA (0,1,1) 2811.85 2008.66 11.71 0.88 
GMDH 1833.72 1473.89 5.275 0.99 

 

Table 8. Forecast values with GMDH- neural network model 
 

Variable Model Predicted 
Production 
(000 tonnes) 

GMDH  2016-17 2017-18 2018-19 2019-20 2020-21 
28176 22145 32864 32008 35751 

 

7.  FINAL FORECASTING 
 

The final outcome of GMDH model are presented 
precisely in Table 8 and the graphical 
presentation of forecasted value of oilseeds 
production under GMDH- neural network is 
depicted in Fig. 8. 
 

Both from Table 8 and Fig. 8, it is clear that the 
expected oilseeds production will increase in 
India in near future which will reduce the gap 
between demand and supply of oilseeds. 
Alternatively, it can be said that this rise in supply 
will be helpful in meet in the growing domestic 
demand for edible oil due to increase in 
population. As a result, the dependence on 
imported edible oil will reduce substantially, 
preventing the huge expenditure of already 
scarce foreign exchange. 
 

8. CONCLUSION   
 

ARIMA models are not always adequate for the 
time series that contains non-linear structures. In 
this context, a nonlinear GMDH can be an 
effective way to improve forecasting 
performance. Based on the results obtained in 
our study, one can infer that application of 
GMDH techniques in modeling and forecasting of 
time series can increase the forecasting 
accuracy. More specifically, the GMDH-neural 
network model performed better for forecasting 
oilseed production of India as compared to 
ARIMA models. The results of forecasting in 
GMDH-neural network methods reveals that 
India’s oilseeds production will be 28176 
thousand tonnes in 2016-17. It will decline to 
22145 thousand tonnes in 2017-18 and 
thereafter it will increase to 32864 thousand 
tonnes in 2018-19, 32008 thousand tonnes in 
2019-20 and 35751 thousand tonnes in 2020-
21.This production of oilseeds may not be 
adequate to make our country self-sufficient. This 
is because the demand for oilseeds grows faster 
along with rising population. Still the gap 
between demand and supply of oilseeds will 
reduce, resulting in reduced dependence on 

imported of edible oil and drain of foreign 
exchange from India will be under control. 
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