
African Journal of Mathematics and Computer Science Research Vol. 5(9), pp. 153-157, July 2012
Available online at http://www.academicjournals.org/AJMCSR
DOI: 10.5897/AJMCSR12.017
ISSN 2006-9731© 2012 Academic Journals

Review

An overview of term rewriting systems

Dasharath Singh1, Ali Maianguwa Shuaibu2* and Adeku Musa Ibrahim1

1
Department of Mathematics, Ahmadu Bello University, Zaria-Nigeria.

2
Department of Mathematics, Statistics and Computer Science, Kaduna Polytechnic, Kaduna, Nigeria.

Accepted 19 March, 2012

It is well-known that termination of finite term of rewriting systems is generally undecidable.
Notwithstanding, a remarkable result is that, rewriting systems are Turing complete. A number of
methods have been developed to establish termination for certain term of rewriting systems,
particularly occurring in practical situations. In this paper, we present an overview of the existing
methods used for termination proofs. We also outline areas of applications of term rewriting systems
along with recent developments in regard to automated termination proofs.

Key words: Confluence, rewriting, term, termination, turing complete.

INTRODUCTION

Rewriting is a very powerful method for dealing
computationally with equations. However, applying
effectively this approach is in general not straightforward.
Alternatively, oriented equations, called rewrite rules, are
used to replace equals by equals, but only in one
direction. A rewrite system is a set of rules used to
compute, by repeatedly replacing parts of a given formula
with equal ones until the simplest possible form, called
normal form, is obtained. For instance, an equation

 can be interpreted as “ is the result of

computing ”, but not vice versa. This directional

replacement is expressed by which reads

 reduces to .

This computational aspect of equations naturally leads
to term rewriting systems (TRSs, for short). Depending
on the kinds of objects that are rewritten, there are
different kinds of rewrite systems such as string rewrite
(Thue or semi-Thue) systems, TRSs and graph rewriting
to mention a few (Baader and Nipkow, 1998; Terese,
2003; Dershowitz, 2005).

The formal study of rewriting and its properties began
in 1910 with a paper by Axel Thue (Book, 1987).
Significantly, most early models of computation were

*Corresponding author. E-mail: shuaibuali16@gmail.com. Tel:
+23408069628448.

based on notions of rewriting strings or terms. The
emergence of Thue systems; Alonzo Church’s lambda
Calculus; Andrei Markov’s normal algorithms, just to
mention a few, led to sustained study of rewriting in the
context of programming language semantics (Book,
1987). To be more specific, the study of TRSs originated
in combinatory logic (CL) and lambda calculus (Curry and
Feys, 1958) developed and deeply analyzed half a
century ago to investigate the foundation of functions. CL
is actually a TRS. One could say that the paradigmatic
example of a TRS is the system of CL. As a matter of
fact, the roots of the very notion of term rewriting and
much of its theory can be found in the system of CL.

In the recent years, a strong impulse for the study of
TRSs (including extensions of the usual rewriting format)
is given by the design of functional languages such as
Miranda (Terese, 2003). Another strong impulse is given
by efforts of many researchers to combine logic
programming with functional programming (Toyama,

1990; March and Zantema, 2007). In this direction,

Toyama (1990) proposed and applied Knuth-Bendix
completion algorithm for a better performance. The
compiling technique proposed in this algorithm is
dynamic in the sense that, rewriting rules are repeatedly
compiled in the completion process. The execution time
of the completion with dynamic compiling is ten or more
times faster than the one obtained with a traditional TRS
interpreter.

Two of the most central properties of TRSs are

154 Afr. J. Math. Comput. Sci. Res.

confluence (the Church-Rosser property) and termination
(strong normalization). A confluent and terminating
system is called convergent (or complete or canonical)
and it defines exactly one normal form for each input
term.

Termination proofs play a fundamental role in many
applications and the challenges in this area are both

practical and theoretical (March and Zantema, 2007).

From a practical point of view, proving termination is vital
issue in software development and formal methods for
termination analysis are essential for program
verification. From a theoretical point of view, termination
is closely connected to mathematical logic and ordinal
theory.

The central aspect of attaining the aforesaid goals lies
in showing that there is no infinite sequence

 such that for all , can be

obtained from by a replacement using a term rewriting

rule. This process is called termination.
Termination, in general, is an undecidable property of

TRSs (Terese, 2003). Nevertheless, TRSs possess a
very significant property that they are Turing complete;
that is, every computable process can be delineated by a
rewriting system. Thus, all endeavours made in this
regard are intended to discover competing methods that
quasi-generally work in cases of practical interest. Most
of such methods in vogue are based on well-founded
orderings.

Summarily, a TRS is a binary relation over the set of
terms of a given signature (or alphabet). The pairs of the
relation are used for computing by replacements until an
irreducible term is eventually reached. This is how the
absence of infinite sequences of replacements grants
termination. A TRS is terminating if all rewrite sequences
are finite. Rules of a terminating system are called
reduction or rewrite rules.

Before we endeavour to present an overview of the
researches undertaken in this area, we briefly make clear
some elementary illustrations, the notion of a rewrite rule
and its action.

Example 1

Consider the following rewrite rules:

 ,

 .

To simplify , we have

.

This is terminating. Note that the first rule makes move

upwards while the second rule makes terms smaller.

Example 2

Using the rewrite rule , we have

.

The s moves to the right while the s moves to the left.

Example 3

looks terminating with the s moving to the right and the

s to the left. But it gives rise to an infinite rewrite

sequence:

Remark

We reemphasize that the termination of such derivations
is crucial using rewriting in proofs and computations. The
difficulty in proving the termination of a system, such as
those in the previous examples, stems from the fact that
while some rules may decrease the size of a term, other
rules may increase its size and duplicate occurrences of

subterms. If is a reduction then is somehow

simpler or smaller than . If it is generative then is

generally more complex or larger than . Any proof of

termination must take into consideration the different
possible rewrite sequences generated by the
nondeterministic choice of rules.

AN OUTLINE OF TERM REWRITING SYSTEMS

As mentioned earlier, one major property which a TRS
needs to satisfy is termination. Generally, termination or
halting computing processes explicitly uses dominance
orderings in addressing problems relating to termination
proofs in theoretical computer science. This aspect of
termination started receiving attention in the 1970s.
Knuth (1973) applied dominance ordering for
demonstrating termination of a sorting algorithm.

Methods of termination

Several methods for proving termination of TRSs have
been developed. Most of these methods are based on
reduction orderings which are well-founded, compatible
with the structure of terms and stable with respect to
substitutions. Examples of these methods include, Knuth-
Bendix order, polynomial interpretations, multiset order,
lexicographic path order, recursive decomposition order,
multiset path order, semantic path order, transformation
order, forward closures, semantic interpretations, dummy
elimination and distribution elimination (Dershowitz, 1987;

Hirokawa, 2006; March and Zantema, 2007). Proving

termination using one of these particular methods, in
general, proves more than just the absence of infinite
derivation sequences. It turns out that such a proof in
many cases implies an upper bound on derivation height,

expressed as the function on terms (Hofbauer and

Lautemann, 1989). Thus, the rate of growth of can

be used for measuring the strength of termination proof
methods.

The use of rewrite systems as termination functions
and the formulation of abstract monotonicity conditions
are explored in (Bachmair and Dershowitz, 1986). Gorn
(1973) uses a stepped lexicographic ordering (under
which longer sequences are larger) to prove termination
of differentiation. Exponential interpretation method of
termination is exploited in (Iturriaga, 1967). The cases
where Iturriaga’s method works are those which the
operators are partially ordered so that the outermost
(virtual) operators of the left-hand side of the rules are
greater than any other operators.

Singh and Singh (2009) outline an alternative proof of
the well-foundedness of the nested multiset ordering. It is
shown that the set of nested multisets over a given set
forms a cumulative type structure. Also, by exploiting the
notion of sets bounded in rank, a necessary and sufficient
condition for the well-foundedness of the nested multiset

Singh et al. 155

ordering is outlined.

Knuth and Bendix (1970) devised a recursive ordering
that combines the notion of precedence with a simple
linear weight. The weight is the sum of the weights of all
the symbols which are non-negative integers.
Furthermore, they point out that their method is
applicable to handle duplicating systems (one that has
more occurrences of a variable on the right than on the
left). Lankford (1979) however suggests a way of
extending the method of Knuth and Bendix by using
integer polynomial weights (with positive coefficients to
guarantee that terms are greater than subterms).

The recursive path ordering (RPO) is shown to be a
quasi well-ordering in case of a finite signature and hence
well-founded (Toyama, 1990; Dershowitz, 1987).
Moreover, it is known to be well-founded for infinite
signature and also in the case of the precedence relation,
is well-ordering. The RPO has also been adapted to
handle associative-commutative operators by flattening
and transforming terms (distributing large operators over
small ones) before comparing them. The difficulty
encountered is that of ensuring monotonicity, since
flattening alone may not ensure monotonicity (Bachmair
and Dershowitz, 1986; Dershowitz, 1987).

In the work of Bergstra and Klop (1985), an alternative
definition of RPO was put forward and proved to be an
iterative path order (IPO). The exact relationship between
the recursive and iterative approaches to path orders was
investigated. It was shown that both approaches coincide
in the case of transitive relations (orders). Klop et al.
(2006) employed a proof technique due to Buchholz
(1995), provides a direct proof of termination for the IPO
starting from an arbitrary terminating relation on the
signature. Both the proofs essentially rely on a natural

number labeled variant of the auxiliary TRS .

Jouannaud et al. (1982) use the recursive
decomposition ordering to prove termination by
comparing two terms and the comparison may only stop
where two decompositions have incomparable symbols
as their first components. The path of subterms ordering
is explicitly considered in Dershowitz (1987) to extend the
RPO. Also, semantic path ordering (SPO) of Kamin and

L vy (1980) is used to prove termination where terms are

compared lexicographically. Furthermore, it was shown
that the use of SPO in a termination proof necessarily
requires the monotonicity condition to hold.

Another approach, called simple path ordering, defined
on multisets for proving termination of differentiation was
devised by Plaisted (1983). Here, terms are mapped into
multisets of sequences of function symbols:

paths in , where a path is a sequence of

operators, beginning with the outermost one of the whole
terms and taking subterms until a constant is reached.

The use of monotonic polynomial interpretations for
termination proofs was suggested by Bachmair and
Dershowitz (1986) and Dershowitz (1987). Using this

156 Afr. J. Math. Comput. Sci. Res.

method, an integer polynomial of degree is associated

with each ary operator The choice of coefficients

must ensure monotonicity and that the terms are mapped
into nonnegative integers only. This is the case if all
coefficients are positive. Zantema (1992) provides a
classification of termination of TRSs based on types of
orderings. The strongest type of termination he considers
was polynomial termination. Polynomial terminations are
those that can be proved by a polynomial interpretation
(PI). Also, Zantema considers the equivalence relation on
terms generated by permuting arguments of operation
symbols of multiset status. The main difficulty with
proving termination using PI technique is that, polynomial
terminating TRSs are double-exponentially bounded in
the size of the initial term (Hofbauer and Lautemann,
1989).

Toyama (1990) develops a simple method for proving
the equivalence of two given TRSs without the explicit
use of induction, and demonstrates that the method can
be effectively applied to deriving a new TRS from a given
one by using equivalence transformation rules. Cropper
and Martin (2001) provide a classification of polynomial
orderings on monadic terms where they investigate
polynomial orderings which are reduction orderings on
term algebras determined by the polynomial
interpretations of the function symbols. Such orderings
offer an apparent flexibility in allowing the choice of
polynomials with arbitrarily high degree and large number
of coefficients. It also provides the opportunity to use
well-understood decision procedures for real arithmetic to
verify the polynomial inequalities needed to prove
termination.

In automation, we often encounter large search spaces
for parameters required by termination criteria and there
is a natural trade-off between power and efficiency. In
order to optimize the said trade-off, developing efficient
search techniques is of cardinal importance. In this
regard, increasing emphasis has shifted towards
transformation methods like the dependency pair method
or semantic labeling. These techniques have significantly
increased the possibility of proving termination
automatically. Arts and Giesl (2000) while elaborating on
termination of TRSs, demonstrate that the application of
dependency pairs does exclude dependency inequalities
for the right-hand subterms, which also appear on the
left. Hirokawa (2006) develops automated termination
methods based on the dependency pair technique. These
methods are intended to make termination tools more
powerful and efficient. Avanzini and Moser (2010)
develop techniques to automatically classify the
complexity of TRSs and introduce polynomial path orders

(, for short) and its extensions. is a syntactic

restriction of the multiset path order on terms, and

whenever compatibility of a TRS with can be

established, the innermost runtime complexity of is

polynomially bounded. The runtime complexity of a TRS

is a measure of the maximal number of rewrite steps as a
function of the size of the initial term, where the initial (or
basic) terms are restricted argument normalized terms.

The construction of a PI and the embedding of the
rewrite relation into the multiset path order (MPO) or the
lexicographic path order (LPO) or the Knuth-Bendix path
order (KBO) are among the most prominent methods for
proving termination of a (finite) TRS. A termination proof
for a TRS using one of these methods is essential for
obtaining an upper bound on the derivation length

function. This function by mapping a natural number to

the length of a longest derivation, starting with a term of

size bounded by , provides a natural measure for the

strength of a termination proof method. Lepper (2001)
lists bounds for these methods along with some
restrictions pertaining to PI and KBO in a chronological
order.

Complexity characterizations for TRSs have been
studied by some researchers (Hofbauer, 1992 and
Weiermann, 1995). It was shown in Hofbauer (1992) that
termination proofs using MPOs imply primitive recursive
derivation lengths; and in Weiermann (1995) work that
termination proofs using LPOs imply multiply recursive
derivation lengths.

In view of the fact that termination of all derivations
initiated by a given term is undecidable and termination
for all terms is not even partially decidable, all one can
hope for, is to develop competing computing termination
tools.

The inherent lack of direction in TRSs, computation of a
logic program involving TRSs, virtually entails that any
non-trivial program would terminate only for certain
classes of inputs. Thus, termination analysis in logic
programming turns out to be of utmost significance. In
recent years, the subject has been widely studied and
significant advances have been made. Currently, there
exist a number of fully-automated tools to prove
termination of a given logic program with respect to a
given class of inputs (Hirokawa, 2006). MPO and LPO
have been implemented in REVE and RRL (Dershowitz,
1987). REVE and RRL are preferred automated
termination provers for TRSs in vogue. There are also a
number of other tools that has attempt proving
termination automatically. These include, AProVE,
Cariboo, CiME, Jambox, Termptation, NTI, Torpa,

Matchbox, Mu Term, TPA, TTT, VMTL etc. (March and

Zantema, 2007, for details).

CONCLUSIONS

TRSs are closely related to theorem proving and
declarative programs. Termination of a TRS is a desired
property proposed to ensure that all computation paths
end. The current direction of research is largely towards
automation of termination analysis for TRSs. These
automated methods are intended to develop competitive

termination tools.

The increasing interest in automated termination
analysis of TRSs has led to an annual International
Competition of Termination Tools initiated in 2004

(March and Zantema, 2007). It aims at identifying most

talented competitors who could obtain an assigned task
by applying appropriate choices of termination proving

techniques within a time limit of s.

REFERENCES

Arts T, Giesl J (2000).Termination of term rewriting using dependency

pairs. Theor. Comp. Sci. 236:133-178.
Avanzini M, Moser G (2010).Complexity Analysis by Graph Rewriting

Revisited. Institute of Computer science, University of Innsbruck,
Austria, Technical Report.

Baader F, Nipkow T (1998). Term Rewriting and All That. Cambridge
University Press. pp. 61-132.

Bachmair L, Dershowitz N (1986). Communication, transformation and
termination. 8

th
 CADE, LNCS 230, J. org. H. Siekmann (ed.),

Springer-Verlag. pp. 5-10.
Bergstra J, Klop J (1985). Algebra for communicating process. TCS

37(1):171-199.
Book RV (1987). Thue systems as rewriting systems. J. Symbolic

Computat. 3 (1&2):39-68
Buchholz W (1995). Proof-theoretic analysis of termination proofs.

APAL 75(1-2):57-65.
Cropper N, Martin U (2001). The classification of Polynomial Orderings

on Monadic terms. Applicable Algebra in Engineering communication
Comp. 12(3):197-226.

Curry HB, Feys R (1958). Combinatory Logic, Vol.1, North- Holland.
Dershowitz N (1987). Termination of Rewriting. J. Symbolic Comput.

3(1&2):69-115.
Dershowitz N (2005). Open. Closed. Open: Proceedings of Conference

on Rewriting Techniques and Applications (RTA). pp. 376 - 393.
Gorn S (1973). On the conclusive validation of symbol manipulation

processes (How do you know it has to work?). J. Franklin Institute
296:6.

Hofbauer D, Lautemann C (1989). Termination proofs and the length of
derivations: proceedings of the 3

rd
 International Conference on

Rewriting Techniques and Applications.LNCS 355. Springer Verlag.
pp. 167 - 177.

Hirokawa N (2006). Automated Termination Analysis for Term
Rewriting. Dissertation, Faculty of mathematics, computer science
and physics, University of Innsbruck.

Hofbauer D (1992). Termination Proofs with Multiset Path Orderings
imply Primitive Recursive Derivation Lengths. Theor. Comp. Sci.
105(1):129-140.

Iturriaga R (1967). Contributions to Mechanical Mathematics. Ph.D.
Thesis, Department of mathematics, Carnegie - Mellon University,
Pittsburgh, Pennsylvania.

Singh et al. 157

Jouannaud JP, Lescanne P, Reinig F (1982).On Multiset Orderings.

Information Processing Letters. 15:57 - 63.
Kamin S, Levy JJ (1980). Two Generalizations of the Recursive Path

Ordering. Unpublished note, Department of Computer Science,
University of Illinois, Urbana, IL.

Klop JW, Van Oostrom V, de Vrijer R (2006). Iterative Lexicographic
Path Orders. LNCS 4060, Kafutatsugi et al (eds.), Amsterdam. pp.
541 – 554.

Knuth DE, Bendix PB (1970). Simple Word Problems in Universal
Algebras, in Computational Problems in Abstract Algebra, J. Leech
(ed.), Pergamon Press.

Knuth DE (1973). The Art of Computer Programming: Fundamental
Algorithms, Addison-Wesley 2:2.

Lankford DS (1979). On Proving Term Rewriting Systems are
Noetherian. Memo MTP-3, Mathematics Department, Louisiana
Tech. University, U.S .A.

Lepper I (2001). Simplification Orders in Term Rewriting: Derivation
Lengths, Order Types and Computability, Inaugural-Dissertation

universit t M nster, Germany.

March C, Zantema H (2007). The Termination Competition. Franz

Baader (ed.): Proceedings of the 18
th
 International Conference on

Rewriting Techniques and Applications, LNCS 4533, Springer Verlag.
pp. 303-313.

Plaisted DA (1983). An Associative Path Ordering. Proceedings of NSF
Workshop on Rewrite Rule Laboratory, U.S.A. pp. 123-136.

Singh D, Singh JN (2009). An alternative proof of the well-foundedness
of the nested multiset ordering. Int. Math. Forum 4(8):359-362.

TERESE (2003). Term Rewriting Systems. Marc Bezem et al. (eds.),
Vol.55 of Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press.

Toyama Y (1990). Term rewriting and the Church-Rosser property.
Ph.D Dissertation, Tohoku University.

Weiermann A (1995). Termination proofs for TRS with LPO imply
multiply recursive derivation lengths. TCS 139:355-362.

Zantema H (1992). Termination of Term Rewriting by Interpretation.
RUU-CS 9214, Department of Computer Science, Utrecht University,
Netherlands.

