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It is well-known that termination of finite term of rewriting systems is generally undecidable. 
Notwithstanding, a remarkable result is that, rewriting systems are Turing complete. A number of 
methods have been developed to establish termination for certain term of rewriting systems, 
particularly occurring in practical situations. In this paper, we present an overview of the existing 
methods used for termination proofs. We also outline areas of applications of term rewriting systems 
along with recent developments in regard to automated termination proofs. 
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INTRODUCTION  
 
Rewriting is a very powerful method for dealing 
computationally with equations. However, applying 
effectively this approach is in general not straightforward. 
Alternatively, oriented equations, called rewrite rules, are 
used to replace equals by equals, but only in one 
direction. A rewrite system is a set of rules used to 
compute, by repeatedly replacing parts of a given formula 
with equal ones until the simplest possible form, called 
normal form, is obtained. For instance, an equation 

 can be interpreted as “  is the result of 

computing ”, but not vice versa. This directional 

replacement is expressed by  which reads 

 reduces to .  

This computational aspect of equations naturally leads 
to term rewriting systems (TRSs, for short). Depending 
on the kinds of objects that are rewritten, there are 
different kinds of rewrite systems such as string rewrite 
(Thue or semi-Thue) systems, TRSs and graph rewriting 
to mention a few (Baader and Nipkow, 1998; Terese, 
2003; Dershowitz, 2005).  

The formal study of rewriting and its properties began 
in 1910 with a paper by Axel Thue (Book, 1987). 
Significantly,  most  early  models  of  computation  were 
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based on notions of rewriting strings or terms. The 
emergence of Thue systems; Alonzo Church’s lambda 
Calculus; Andrei Markov’s normal algorithms, just to 
mention a few, led to sustained study of rewriting in the 
context of programming language semantics (Book, 
1987). To be more specific, the study of TRSs originated 
in combinatory logic (CL) and lambda calculus (Curry and 
Feys, 1958) developed and deeply analyzed half a 
century ago to investigate the foundation of functions. CL 
is actually a TRS. One could say that the paradigmatic 
example of a TRS is the system of CL. As a matter of 
fact, the roots of the very notion of term rewriting and 
much of its theory can be found in the system of CL. 

In the recent years, a strong impulse for the study of 
TRSs (including extensions of the usual rewriting format) 
is given by the design of functional languages such as 
Miranda (Terese, 2003). Another strong impulse is given 
by efforts of many researchers to combine logic 
programming with functional programming (Toyama, 

1990; March  and Zantema, 2007). In this direction, 

Toyama (1990) proposed and applied Knuth-Bendix 
completion algorithm for a better performance. The 
compiling technique proposed in this algorithm is 
dynamic in the sense that, rewriting rules are repeatedly 
compiled in the completion process. The execution time 
of the completion with dynamic compiling is ten or more 
times faster than the one obtained with a traditional TRS 
interpreter. 

Two   of   the   most   central  properties  of  TRSs    are 
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confluence (the Church-Rosser property) and termination 
(strong normalization). A confluent and terminating 
system is called convergent (or complete or canonical) 
and it defines exactly one normal form for each input 
term. 

Termination proofs play a fundamental role in many 
applications and the challenges in this area are both 

practical and theoretical (March  and Zantema, 2007). 

From a practical point of view, proving termination is vital 
issue in software development and formal methods for 
termination analysis are essential for program 
verification. From a theoretical point of view, termination 
is closely connected to mathematical logic and ordinal 
theory.  

The central aspect of attaining the aforesaid goals lies 
in showing that there is no infinite sequence 

 such that for all ,  can be 

obtained from  by a replacement using a term rewriting 

rule. This process is called termination. 
Termination, in general, is an undecidable property of 

TRSs (Terese, 2003). Nevertheless, TRSs possess a 
very significant property that they are Turing complete; 
that is, every computable process can be delineated by a 
rewriting system. Thus, all endeavours made in this 
regard are intended to discover competing methods that 
quasi-generally work in cases of practical interest. Most 
of such methods in vogue are based on well-founded 
orderings. 

Summarily, a TRS is a binary relation over the set of 
terms of a given signature (or alphabet). The pairs of the 
relation are used for computing by replacements until an 
irreducible term is eventually reached. This is how the 
absence of infinite sequences of replacements grants 
termination. A TRS is terminating if all rewrite sequences 
are finite. Rules of a terminating system are called 
reduction or rewrite rules.  

Before we endeavour to present an overview of the 
researches undertaken in this area, we briefly make clear 
some elementary illustrations, the notion of a rewrite rule 
and its action. 
 
 

Example 1 
 
Consider the following rewrite rules: 
 

 ,  

 

 . 

 

To simplify , we have  

 
 

 

 
 
 
 

 

 

. 

 

This is terminating. Note that the first rule makes  move 

upwards while the second rule makes terms smaller. 
 
 
Example 2 
 

Using the rewrite rule , we have 

 

  

 

 

 

.  

 

The s moves to the right while the s moves to the left. 

 
 
Example 3 
 

  

 

looks terminating with the s moving to the right and the 

s to the left. But it gives rise to an infinite rewrite 

sequence: 
 

 

  

 
 

Remark 
 
We reemphasize that the termination of such derivations 
is crucial using rewriting in proofs and computations. The 
difficulty in proving the termination of a system, such as 
those in the previous examples, stems from the fact that 
while some rules may decrease the size of a term, other 
rules may increase its size and duplicate occurrences of 

subterms. If  is a reduction then  is somehow 

simpler or smaller than . If it   is   generative   then    is 



 
 
 
 

generally more complex or larger than . Any proof of 

termination must take into consideration the different 
possible rewrite sequences generated by the 
nondeterministic choice of rules. 
 
 

AN OUTLINE OF TERM REWRITING SYSTEMS 
 

As mentioned earlier, one major property which a TRS 
needs to satisfy is termination. Generally, termination or 
halting computing processes explicitly uses dominance 
orderings in addressing problems relating to termination 
proofs in theoretical computer science. This aspect of 
termination started receiving attention in the 1970s. 
Knuth (1973) applied dominance ordering for 
demonstrating termination of a sorting algorithm. 
 
 

Methods of termination 
 
Several methods for proving termination of TRSs have 
been developed. Most of these methods are based on 
reduction orderings which are well-founded, compatible 
with the structure of terms and stable with respect to 
substitutions. Examples of these methods include, Knuth-
Bendix order, polynomial interpretations, multiset order, 
lexicographic path order, recursive decomposition order, 
multiset path order, semantic path order, transformation 
order, forward closures, semantic interpretations, dummy 
elimination and distribution elimination (Dershowitz, 1987; 

Hirokawa, 2006; March  and Zantema, 2007). Proving 

termination using one of these particular methods, in 
general, proves more than just the absence of infinite 
derivation sequences. It turns out that such a proof in 
many cases implies an upper bound on derivation height, 

expressed as the function  on terms (Hofbauer and 

Lautemann, 1989). Thus, the rate of growth of  can 

be used for measuring the strength of termination proof 
methods. 

The use of rewrite systems as termination functions 
and the formulation of abstract monotonicity conditions 
are explored in (Bachmair and Dershowitz, 1986). Gorn 
(1973) uses a stepped lexicographic ordering (under 
which longer sequences are larger) to prove termination 
of differentiation. Exponential interpretation method of 
termination is exploited in (Iturriaga, 1967). The cases 
where Iturriaga’s method works are those which the 
operators are partially ordered so that the outermost 
(virtual) operators of the left-hand side of the rules are 
greater than any other operators. 

Singh and Singh (2009) outline an alternative proof of 
the well-foundedness of the nested multiset ordering. It is 
shown that the set of nested multisets over a given set 
forms a cumulative type structure. Also, by exploiting the 
notion of sets bounded in rank, a necessary and sufficient 
condition for the well-foundedness  of  the nested multiset  
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ordering is outlined. 

Knuth and Bendix (1970) devised a recursive ordering 
that combines the notion of precedence with a simple 
linear weight. The weight is the sum of the weights of all 
the symbols which are non-negative integers. 
Furthermore, they point out that their method is 
applicable to handle duplicating systems (one that has 
more occurrences of a variable on the right than on the 
left). Lankford (1979) however suggests a way of 
extending the method of Knuth and Bendix by using 
integer polynomial weights (with positive coefficients to 
guarantee that terms are greater than subterms).  

The recursive path ordering (RPO) is shown to be a 
quasi well-ordering in case of a finite signature and hence 
well-founded (Toyama, 1990; Dershowitz, 1987). 
Moreover, it is known to be well-founded for infinite 
signature and also in the case of the precedence relation, 
is well-ordering. The RPO has also been adapted to 
handle associative-commutative operators by flattening 
and transforming terms (distributing large operators over 
small ones) before comparing them. The difficulty 
encountered is that of ensuring monotonicity, since 
flattening alone may not ensure monotonicity (Bachmair 
and Dershowitz, 1986; Dershowitz, 1987). 

In the work of Bergstra and Klop (1985), an alternative 
definition of RPO was put forward and proved to be an 
iterative path order (IPO). The exact relationship between 
the recursive and iterative approaches to path orders was 
investigated. It was shown that both approaches coincide 
in the case of transitive relations (orders). Klop et al. 
(2006) employed a proof technique due to Buchholz 
(1995), provides a direct proof of termination for the IPO 
starting from an arbitrary terminating relation on the 
signature. Both the proofs essentially rely on a natural 

number labeled variant  of the auxiliary TRS .  

Jouannaud et al. (1982) use the recursive 
decomposition ordering to prove termination by 
comparing two terms and the comparison may only stop 
where two decompositions have incomparable symbols 
as their first components. The path of subterms ordering 
is explicitly considered in Dershowitz (1987) to extend the 
RPO. Also, semantic path ordering (SPO) of Kamin and 

L vy (1980) is used to prove termination where terms are 

compared lexicographically. Furthermore, it was shown 
that the use of SPO in a termination proof necessarily 
requires the monotonicity condition to hold. 

Another approach, called simple path ordering, defined 
on multisets for proving termination of differentiation was 
devised by Plaisted (1983). Here, terms are mapped into 
multisets of sequences of function symbols: 

paths in , where a path is a sequence of 

operators, beginning with the outermost one of the whole 
terms and taking subterms until a constant is reached.  

The use of monotonic polynomial interpretations for 
termination proofs was suggested by Bachmair and 
Dershowitz   (1986)  and  Dershowitz  (1987).  Using  this 
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method, an integer polynomial of degree  is associated 

with each ary operator  The choice of coefficients 

must ensure monotonicity and that the terms are mapped 
into nonnegative integers only. This is the case if all 
coefficients are positive. Zantema (1992) provides a 
classification of termination of TRSs based on types of 
orderings. The strongest type of termination he considers 
was polynomial termination. Polynomial terminations are 
those that can be proved by a polynomial interpretation 
(PI). Also, Zantema considers the equivalence relation on 
terms generated by permuting arguments of operation 
symbols of multiset status. The main difficulty with 
proving termination using PI technique is that, polynomial 
terminating TRSs are double-exponentially bounded in 
the size of the initial term (Hofbauer and Lautemann, 
1989).  

Toyama (1990) develops a simple method for proving 
the equivalence of two given TRSs without the explicit 
use of induction, and demonstrates that the method can 
be effectively applied to deriving a new TRS from a given 
one by using equivalence transformation rules. Cropper 
and Martin (2001) provide a classification of polynomial 
orderings on monadic terms where they investigate 
polynomial orderings which are reduction orderings on 
term algebras determined by the polynomial 
interpretations of the function symbols. Such orderings 
offer an apparent flexibility in allowing the choice of 
polynomials with arbitrarily high degree and large number 
of coefficients. It also provides the opportunity to use 
well-understood decision procedures for real arithmetic to 
verify the polynomial inequalities needed to prove 
termination.  

In automation, we often encounter large search spaces 
for parameters required by termination criteria and there 
is a natural trade-off between power and efficiency. In 
order to optimize the said trade-off, developing efficient 
search techniques is of cardinal importance. In this 
regard, increasing emphasis has shifted towards 
transformation methods like the dependency pair method 
or semantic labeling. These techniques have significantly 
increased the possibility of proving termination 
automatically. Arts and Giesl (2000) while elaborating on 
termination of TRSs, demonstrate that the application of 
dependency pairs does exclude dependency inequalities 
for the right-hand subterms, which also appear on the 
left. Hirokawa (2006) develops automated termination 
methods based on the dependency pair technique. These 
methods are intended to make termination tools more 
powerful and efficient. Avanzini and Moser (2010) 
develop techniques to automatically classify the 
complexity of TRSs and introduce polynomial path orders 

( , for short) and its extensions.  is a syntactic 

restriction of the multiset path order on terms, and 

whenever compatibility of a TRS  with  can be 

established, the innermost runtime complexity of  is 

polynomially  bounded.  The  runtime  complexity  of  a  TRS 

  
 
 
 
is a measure of the maximal number of rewrite steps as a 
function of the size of the initial term, where the initial (or 
basic) terms are restricted argument normalized terms.  

The construction of a PI and the embedding of the 
rewrite relation into the multiset path order (MPO) or the 
lexicographic path order (LPO) or the Knuth-Bendix path 
order (KBO) are among the most prominent methods for 
proving termination of a (finite) TRS. A termination proof 
for a TRS using one of these methods is essential for 
obtaining an upper bound on the derivation length 

function. This function by mapping a natural number  to 

the length of a longest derivation, starting with a term of 

size bounded by , provides a natural measure for the 

strength of a termination proof method. Lepper (2001) 
lists bounds for these methods along with some 
restrictions pertaining to PI and KBO in a chronological 
order.  

Complexity characterizations for TRSs have been 
studied by some researchers (Hofbauer, 1992 and 
Weiermann, 1995). It was shown in Hofbauer (1992) that 
termination proofs using MPOs imply primitive recursive 
derivation lengths; and in Weiermann (1995) work that 
termination proofs using LPOs imply multiply recursive 
derivation lengths. 

In view of the fact that termination of all derivations 
initiated by a given term is undecidable and termination 
for all terms is not even partially decidable, all one can 
hope for, is to develop competing computing termination 
tools.  

The inherent lack of direction in TRSs, computation of a 
logic program involving TRSs, virtually entails that any 
non-trivial program would terminate only for certain 
classes of inputs. Thus, termination analysis in logic 
programming turns out to be of utmost significance. In 
recent years, the subject has been widely studied and 
significant advances have been made. Currently, there 
exist a number of fully-automated tools to prove 
termination of a given logic program with respect to a 
given class of inputs (Hirokawa, 2006). MPO and LPO 
have been implemented in REVE and RRL (Dershowitz, 
1987). REVE and RRL are preferred automated 
termination provers for TRSs in vogue. There are also a 
number of other tools that has attempt proving 
termination automatically. These include, AProVE, 
Cariboo, CiME, Jambox, Termptation, NTI, Torpa, 

Matchbox, Mu Term, TPA, TTT, VMTL etc. (March  and 

Zantema, 2007, for details). 
 
 

CONCLUSIONS 
 

TRSs are closely related to theorem proving and 
declarative programs. Termination of a TRS is a desired 
property proposed to ensure that all computation paths 
end. The current direction of research is largely towards 
automation of termination analysis for TRSs. These 
automated methods are intended  to  develop competitive  



 
 
 
 
termination tools. 

The increasing interest in automated termination 
analysis of TRSs has led to an annual International 
Competition of Termination Tools initiated in 2004 

(March  and Zantema, 2007). It aims at identifying most 

talented competitors who could obtain an assigned task 
by applying appropriate choices of termination proving 

techniques within a time limit of  s. 
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