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ABSTRACT 
 
Aims: Investigate effect of legume integration and phosphorus application on nitrogen (N) and 
phosphorous (P) concentration and yield of maize. 
Place and Duration of Study: The study was carried out in Kabete Field Station of the University 
of Nairobi during the long (LRS) and short rainy (SRS) seasons of 2012.  
Methodology: A split plot layout in a randomized complete block design (RCBD), with three 
replicates was used. The main plots were sole maize, intercropping (chickpea/maize; lupin/maize) 
and rotation systems (chickpea-maize; lupin-maize) systems. The sub plots were Minjingu rock 
phosphate (MPR) and triple superphosphate (TSP) fertilizers, applied at 60 kg P ha-1. Maize P and 
N concentrations were measured at seedling, mid-flowering and physiological maturity/harvest. 
Maize grain and dry matter (DM) yield were determined at physiological maturity. 
Results: During the LRS, significantly (P=0.05) higher maize P concentrations were recorded in 
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chickpea/maize intercrop (C/M) with TSP at seedling; sole maize, chickpea/maize (C/M) and lupin/ 
maize (L/M) intercrops, with MPR and TSP at mid flowering and L/M intercrop with TSP at harvest. 
In the SRS at seedling and harvest stages, significantly higher values were recorded in the lupin-
maize rotation (L-M) with MPR. At mid flowering, significantly higher P values were observed in L/M 
with MPR. During the LRS, N concentration in maize was significantly higher in L/M with TSP and 
L/M with MPR at seedling and mid flowering stages, respectively. At harvest L/M with TSP had 
significantly higher values. In the SRS, maize N concentration was significantly higher in L-M and 
chickpea-maize (C-M) rotation with MPR and sole maize with TSP at seedling; and L/M with MPR 
and TSP, at mid flowering and harvest, respectively. During the LRS, maize grain yields were 
significantly higher in L/M with TSP and MPR and C/M with MPR. In the SRS, significantly higher 
maize grain yields were recorded in L/M with TSP and L-M with MPR. DM yields in the LRS were 
significantly higher in L/M with TSP applied. In the SRS, DM yields were significantly higher in L/M 
with MPR, C/M with MPR, L-M with MPR and C-M with MPR. 
Conclusion: The integration of MPR or TSP and legumes increased maize N and P concentration 
and yields. The use of cost effective MPR in an intercropping system may be preferred by small 
holder farmers. 
 

 
Keywords: Chickpea; lupin; Minjingu PR; Triple superphosphate. 
 

1. INTRODUCTION 
  
Nitrogen (N) and phosphorus (P) are critical 
macronutrients in the production of maize (Zea 
mays L.) the primary staple of Kenya [1,2]. 
Intensive use of soils coupled with irregular 
mineral fertilizer use in small holder farms of 
Kabete, Kenya have caused deficiencies of these 
nutrients and consequently low yields. The use of 
chemical fertilizers, to enhance soil fertility, is 
limited by high costs. On the other hand, the 
quantity of organic manures available in small 
holder farms is insufficient to meet maize nutrient 
requirements [3]. Organic manures require 
application in large quantities [4]. Integrating 
legumes white lupin (Lupinus albus L.) and 
chickpea (Cicer arietinum L.), in maize cropping 
systems with application of Minjingu phosphate 
rock (MPR), would be a feasible alternative for 
increasing N and P nutrition and yields of maize.  
 
Legumes supply fixed N to non-legume crops 
grown in association or rotation with them [5].  
Legume roots, rhizodeposits [6,7,8] and residues 
[9,10] are important N pools. MPR is a cost 
effective P source. It costs about 50% of 
processed P fertilizers on elemental basis. It also 
rebuilds soil capital P due to residual effect [11]. 
Prior studies in Kenya by Okalebo and Nandwa 
[11] and Onwonga et al. [12] have revealed an 
average effectiveness of about 65% for MPR 
compared with processed fertilizers. The major 
impediment to its use is its insolubility [13] which 
may constrain P uptake by plants. Plants have 
adapted strategies to enhance insoluble P 
acquisition and use [14,15]. Where there is 
exudation of organic acids and acid 

phosphatase, bound forms of P are solubilized 
and this increases the availability of P for plant 
uptake [14,16]. Cluster-rooted plants such as 
white lupin and members of the Proteaceae 
excrete carboxylic acids and mediate desorption 
of significant amounts of soil phosphorus [14]. 
Some carboxylic acids (carboxylates), for 
example citrate and malate, can mobilize 
(in)organic phosphorus into the soil solution [17, 
18]. Chickpea (Cicer arietinum L.), like lupin, 
exudes carboxylates from its roots [19] and can 
thus mobilize calcium-bound phosphate (Ca-P) 
for uptake by plants.  
 
The objective of the study was therefore to 
investigate effect of integration of legumes white 
lupin (Lupinus albus L.) and chickpea (Cicer 
arietinum L.) and application of MPR and Triple 
superphosphate (TSP) fertilizers on N and P 
concentrations and yield of maize in Kabete, 
Kenya.  
 

2. MATERIALS AND METHODS 
 

2.1 Site Description  
 
A field experiment was conducted at Kabete 
Field Station of the University of Nairobi in 
Kenya, during the short (SRS) and long rain 
(LRS) seasons of 2012. The site (1940 m asl) is 
geographically located in agro-ecological zone 
UM3 (Upper Midland) at 1° 15’ S and 36° 41’ E 
and receives an average annual precipitation of 
1000 mm [20]. The minimum and maximum 
mean temperatures are 13.7°C and 24.3°C, 
respectively. The soil is predominantly deep 
(>180 cm), dark red to dark reddish brown, 
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friable clays and classified as a humic Nitisol [21, 
22]. The site is representative, in terms of soil 
and climate, of large areas of the central Kenya 
highlands. Initial soil properties were: clay 
texture, medium available P, organic carbon and 
N (Table 1) according to Landon [23] soil nutrient 
classification. 
 

2.2 Experimental Design and Treatments 
 
A split plot layout in a randomized complete 
block design (RCBD), with three replicates was 
used. The main plots were sole maize, 
intercropping (chickpea/maize; lupin/maize) and 
rotation (chickpea- maize; lupin-maize) systems. 
The sub plots were MPR and TSP, both applied 
at 60 kg P ha-1. 
 

2.3 Agronomic Practices 
 

Land was ploughed manually. This was followed 
by raking and levelling before application of 
treatments. MPR was applied by broadcasting, in 
both the LRS and SRS, three days before 
planting and was incorporated into the top soil. 
TSP was applied in both seasons, by banding 

and mixed well with soil before sowing. Maize 
(Zea mays L.; Hybrid 513) was sown at the rate 
of two seeds per hill at spacing of 75 cm × 30 
cm, in respective treatments (Table 2). In the 
intercropping system, in both LRS and SRS, one 
row of legume, either lupin or chickpea, was 
sown between two maize rows, at the rate of two 
seeds per hill. For the rotation system, chickpea 
and lupin were sown at the rate of two seeds per 
hill as sole crops during the SRS at a spacing of 
75 cm × 30 cm. Thinning to one seedling per hill 
was done four weeks after sowing for all crops. 
The plots were kept weed free throughout the 
growing season through manual control. After 
harvesting of grain, crop residues were chopped 
into 5-20 cm and incorporated into the plots they 
were removed from, during land preparation for 
planting in the second season. 
 

2.4 Soil Sampling and Analysis 
 

Soil samples (0-20 cm) were collected, in a zig-
zag manner, from the field before experimental 
set up. Air-dried composited sample, sieved 
through 2 mm mesh, was analyzed for initial 
properties; pH (Soil: H2O: 1:2.5), total nitrogen

 
Table 1. Initial physical and chemical soil properties (0-30 cm) 

 

Property Units Value Class* Property Units Value Class* 

pH (H2O) - 6.3 Medium Ca cmolc kg
-1

 8.13 Medium 
Available P  mg kg

-1
 10 Medium Mg cmolc kg

-1
 1.7 Medium 

Total N % 0.32 Medium Sand % 5  
Organic C  % 2.75 Medium Silt % 27  
Bulk density Mg m

-3
 1.00  Clay % 68  

Exc. K cmolc kg-1 1.05 High Textural class  Clay  
*Landon [23] classification 

 

Table 2. Treatments and cropping sequence in the LRS and SRS of 2012 
 

Cropping system P source            Cropping sequence 

LRS SRS 

Sole maize MPR Maize Maize 
 TSP Maize Maize 
 None (control) Maize Maize 
Rotation    
Lupin-Maize (L-M) MPR Lupin Maize 
 TSP Lupin Maize 
 None (control) Lupin Maize 
Chickpea-Maize (C-M) MPR Chickpea Maize 
 TSP Chickpea Maize 
 None (control) Chickpea Maize 
Intercropping    
Lupin/Maize (L/M) MPR Lupin/Maize Lupin/Maize 
 TSP Lupin/Maize Lupin/Maize 
 None (control) Lupin/Maize Lupin/Maize 
Chickpea/Maize (C/M) MPR Chickpea/Maize Chickpea/Maize 
 TSP Chickpea/Maize Chickpea/Maize 
 None (control) Chickpea/Maize Chickpea/Maize 
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(Kjeldahl method), available P (double acid 
method) and organic C (Walkley – Black 
method), as described by Okalebo et al. [24]. 
Mineral nitrogen was determined by KCl 
Extraction/Cadmium reduction column method 
[25], exchangeable K by Flame Emission 
Spectrophotometry and Ca and Mg by Atomic 
Absorption Spectrophotometry [26]. Texture was 
determined using the hydrometer method [27]. 
Undisturbed core samples were used for bulk 
density determination [28].  
 

2.5 Plant Sampling, Analysis and Yield 
Determination 

 
At maize seedling four whole plants were 
randomly sampled per plot. At mid flowering, the 
leaf opposite the ear was sampled from ten 
randomly selected plants. At physiological 
maturity the above ground portion of the plant 
was harvested from three center rows in all plots 
and separated into stover (stalk and leaves) and 
cobs. Sample (plant tissue) fresh weights were 
determined immediately in the field using a 
weighing balance. Sub-samples, for calculation 
of DM yield and nutrient concentration, were 
chopped into small pieces, placed into paper 
bags and oven dried (65°C) for 72 hours. The 
oven dried samples were weighed, ground and 
sieved (2 mm mesh). Analyses of N and P 
concentrations of the samples were performed 
using standard methods [24]. Maize cobs were 
de-husked, dried, and threshed. The grains were 
weighed to obtain yield. Grain (13% moisture) 
and DM yields were expressed in kg ha-1 using 
the following formulae: 
 

Yield (kg ha
-1

) = yield (kg) / area (m
2
) x 

10000 
 

2.6 Statistical Analysis 
 
Data collected were subjected to analysis of 
variance (ANOVA) using GenStat 15

th
 Edition, 

2012. Means were separated using Fisher's 
protected least significant difference test 
(P=0.05). 
 
3. RESULTS AND DISCUSSION 
 

3.1 Phosphorous Concentration in Maize 
 
During the LRS at seedling stage, significantly 
higher maize P levels were recorded in 
chickpea/maize intercrop (C/M) with TSP (Table 
3). At mid flowering significantly higher values 
were recorded in sole maize, chickpea/maize 

(C/M) and lupin/ maize (L/M) intercrops, with 
MPR and TSP. At harvest, highest P values were 
noted in L/M intercrop with TSP. During the SRS 
at seedling and harvest stages, significantly 
higher values were recorded in the lupin-maize 
rotation (L-M) with MPR. At mid flowering, 
significantly higher P values were observed in 
L/M with MPR (Table 3). 
 
Higher maize P levels in chickpea/maize (C/M) 
and lupin/maize (L/M) intercrops with MPR and 
TSP at mid flowering, in both seasons, can be 
attributed to mobilization of MPR by intercropped 
legume in addition to enhanced uptake of P from 
soluble TSP. Olivera et al. [29] similarly noted 
that phosphorous application increased shoot P 
content. Similarly, Dahmardeh et al. [30] reported 
that maize-cowpea intercropping increased 
nitrogen, phosphorus and potassium contents 
compared to maize monocrop. Whitehead and 
Isaac [31] and Li et al. [32] reported interspecific 
facilitation of P uptake between intercropped 
species. During the SRS, mobilization of MPR by 
acids released during decomposition of lupin 
residues from previous season might have 
contributed to higher maize P concentration in L-
M with MPR at seedling and harvest [33]. 
 
3.2 Nitrogen Concentration in Maize 
 
During the LRS, N concentration in maize was 
significantly higher in L/M with TSP at seedling 
stage (Table 4) At mid flowering, significantly 
higher values were observed in L/M with MPR. At 
harvest L/M with TSP had significantly higher 
values (Table 4). In the SRS at seedling stage, N 
concentration in maize was significantly higher in 
L-M and chickpea-maize (C-M) rotation with 
MPR and sole maize with TSP (Table 4). At mid 
flowering and harvest L/M with MPR and TSP, 
respectively had significantly higher N 
concentration (Table 4). 
 
Higher N values in L/M during the LRS and SRS 
at mid flowering and harvest could be attributed 
partly to N recycling by lupin. Seran and Brintha 
[34] noted that an intercrop is more efficient at 
uptake as compared to a monocrop. This is 
because when only one species is grown, all 
roots tend to compete with each other for 
nutrients since they are all similar in their 
orientation and below surface depth. Significantly 
higher N uptake in lupin-maize (L-M) rotation and 
chickpea-maize with MPR, at seedling during  
the SRS of 2012 was due to rotational                 
benefits of legumes on succeeding maize crop. 
Mineralization of legume residues contributed to 
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the N pool for uptake by maize. This is in 
agreement with findings of Lpoez-Bellido et al. 
[35], Kuo and Jellum [36] and Shah et al. [37]. 
Shafi et al. [38] observed increased N uptake in 
maize stover with crop residues retention on trial 
fields. Stevenson and van Kessel [39] and 
Staggenborg et al. [40], in pea and sorghum/soy 
bean studies, respectively also noted the role 
played by crop residues in improving the soil 
physicochemical condition hence improved N 
uptake. 
 

3.3 Maize Grain and Dry Matter (DM) 
Yields 

 
In the LRS of 2012, maize grain yields were 
significantly higher in L/M with TSP and MPR 
and C/M with MPR (Table 5). In the SRS of 
2012, significantly higher maize grain yields were 
recorded in L/M with TSP and L-M with MPR. 
Treatment effects on DM yields closely followed 
maize grain yields. DM yields in the LRS 2012 
were significantly higher in L/M with TSP. In the 

Table 3. Effect of cropping system and P source on maize P concentration 
 

Cropping  

system 

P source Plant P (g/kg) 

LRS SRS 

Seedling Flowering Harvest Seedling Flowering Harvest 

Sole Maize  CTRL 0.81
c
 0.86

b
 1.41

c
 0.79

g
 0.83

i
 0.75

k
 

TSP 0.77
d
 0.99

a
 1.36

d
 0.94

e
 0.97

f
 0.92

f
 

MPR 0.92
b
 1.01

a
 1.33

e
 0.96

d
 0.99

e
 0.94

e
 

C/M CTRL 0.82
c
 0.85

b
 1.41

c
 0.74

h
 0.69

j
 0.80

j
 

TSP 0.97
a
 1.03

a
 1.36

d
 0.98

d
 1.07

d
 0.89

g
 

MPR 0.91
b
 0.92

a
 1.33

e
 0.92

f
 1.12

b
 0.73

l
 

L/M 
 

CTRL 0.71
e 

 0.86
b
 1.25

g
 0.59

k
 0.58

l
 0.60

n
 

TSP 0.73
e
 0.95

a
 1.52

a
 1.14

b
 0.86

g
 1.15

b
 

MPR 0.88
bc

 1.09
a
 1.47

b
 1.00

c
 1.25

a
 1.04

c
 

C-M 

 

CTRL    0.70
i
 0.67

k
 0.55

o
 

TSP    0.66
j
 0.86

g
 0.65

m
 

MPR    0.97d 1.10c 0.83i 

L-M 

 

CTRL    0.92
f
 0.84

h
 0.71

i
 

TSP    0.91
f
 0.99

e
 0.84

h
 

MPR    1.22
a
 1.12

b 
 1.33

a
 

Key: LRS – long rain season; SRS – short rain season; CS – cropping system; P – phosphorous source; CTRL = control; TSP 
= triple superphosphate; MPR = Minjingu phosphate rock.  Means in a column followed by the same letter(s) are not 

significantly different at P = 0.05 (Fisher's Protected Least Significant Difference Test) 
 

Table 4. Effect of cropping systems and P sources on maize N concentration 
 

Cropping 
system 

P source Total N (%) 

LRS SRS 

Seedling Flowering Harvest Seedling Flowering Harvest 

Sole Maize  CTRL 1.23
e
 1.08

e
 1.16

d
 1.64

bc
 0.26

i
 0.60

j
 

TSP 1.36c 1.16d 1.26c 1.69ab 1.98e 1.73e 

MPR 1.30
d
 1.16

d
 1.23

c
 1.52

g
 1.75

g
 1.91

c
 

C/M  CTRL 0.94h 1.02f 0.98f 0.55g 1.97e 1.26g 

TSP 1.16
f
 1.03

f
 1.13

de
 0.91

f
 0.77

h
 0.84

h
 

MPR 1.08g 1.18cd 1.10e 1.47d 1.79fg 1.63f 

L/M CTRL 0.63
i
 0.77

g
 0.70

g
 0.94

f
 2.01

e
 1.86

d
 

TSP 1.97
a
 1.84

b
 1.75

a
 1.38

e
 2.41

b
 2.14

a
 

MPR 1.60
b
 1.90

a
 1.70

b
 1.47

d
 2.58

a
 2.02

b
 

C-M CTRL    0.65
f
 0.72

h
 0.65

i
 

TSP    1.61
c
 1.77

g
 1.61

f
 

MPR    1.66
abc

 1.83
f
 1.66

f
 

L-M CTRL    0.53
g
 0.16

j
 0.35

k
 

TSP    1.39
e
 2.12

d
 1.75

e
 

MPR    1.74
a
 2.26

c
 2.00

b
 

Key: LRS – long rain season; SRS – short rain season; CS – cropping system; PS – phosphorous source; CTRL = control; TSP 
= triple superphosphate; MPR = Minjingu phosphate rock.  Means in a column followed by the same letter(s) are not 

significantly different at P = 0.05 (Fisher's Protected Least Significant Difference Test) 
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Table 5. Maize grain and DM yields over the SRS and LRS of 2012 
 

Cropping system P source  Grain yield (ton ha
-1

)   DM yield (ton ha
-1

) 
LRS SRS LRS SRS 

Sole Maize CTRL 3.03
cd

 3.78
d
 5.0

cd
 5.84

g
 

 TSP 4.04
b
 5.06

b
 6.17

bc
 7.46

cde
 

 MPR 3.16
cd

 3.32
cd

 4.9
d
 6.98

f
 

L/M  CTRL 2.95
d
 3.68

d
 5.16

bc
 6.84

f
 

 TSP 4.61
a
 5.28

ab
 7.65

a
 7.66

cd
 

 MPR 4.18
ab

 4.51
bc

 6.4
b
 9.4

a
 

C/M CTRL 3.11
cd

 3.89
cd

 4.84
d
 4.83

h
 

 TSP 3.47
c
 4.84

bc
 4.69

d
 7.27

def
 

 MPR 4.13
ab

 4.12
cd

 5.4
bc

 8.57
ab

 
L-M CTRL  4.62

bc
  5.98

g
 

 TSP  4.53
bc

  7.91
c
 

 MPR  5.66
a
  9.0

a
 

C-M CTRL  2.95
e
  5.69

g
 

 TSP  4.46
bc

  7.01
ef

 
 MPR  4.11

cd
  8.97

a
 

Key: LRS – long rain season; P – Phosphorous CTRL = Control; TSP = triple superphosphate; MPR = Minjingu phosphate 
rock.  Means in a column followed by the same letter(s) are not significantly different at P = 0.05 (Fisher's Protected Least 

Significant Difference Test) 

 
SRS, DM yields were significantly higher in L/M 
with MPR, C/M with MPR, L-M with MPR and C-
M with MPR. 
 
Higher grain yield in L/M with TSP and MPR and 
C/M with MPR in the LRS and in L-M with MPR 
and L/M with TSP in the SRS can partly be 
attributed to improvement in N nutrition by maize 
through symbiotic N fixation by the legumes. 
Jansen [41] in a study involving white lupin, 
reported a potential atmospheric nitrogen fixation 
rate of up to 400 kg N ha-1 yr-1 for lupin. In a 
study on chickpea nitrogen fixation rates in the 
production of wheat, fixation rates of between 
100- 238 kg N ha

-1
 were reported [42]. In the 

SRS, mineralization of incorporated lupin 
residues possibly enhanced N supply to maize, 
resulting to higher grain yields in the L-M and 
L/M systems. Lupin has high above ground 
biomass [43]. Kamh et al. [44]) and Nuruzzaman 
et al. [45] also found out that there was better 
growth of wheat after lupin cropping in a pot 
experiment. 
 
Improved P nutrition for maize after MPR and 
TSP application additionally improved yields. 
TSP is highly soluble and available for crop 
uptake. Chickpea and lupin, exude carboxylates 
from roots [19,46,47] and could have mobilized 
calcium-bound phosphate (Ca-P) in MPR for 
uptake by plants. Onwonga et al. [12] and Lelei 
et al. [48] made similar observations. Treatment 
effects on DM yields closely followed grain yields 
because nutrients that accumulate in the stover 
are transferred to grain as they develop. With 
plant growth, nutrients are partly translocated to 

newly formed leaves and reproductive parts 
[49,50,51]. An adequate supply of phosphorus is 
associated with greater strength of cereal stover 
[49,52,53]. Sufficient availability of nitrogen (N) is 
a prerequisite for high dry matter production and 
protein yields [54,55]. 
 
4. CONCLUSION 
 
The application of MPR and TSP fertilizers and 
integration of legumes increased maize N and P 
concentration and grain yields. The use of cost 
effective MPR in an intercropping systems may 
be preferred by farmers and is recommended. 
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