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ABSTRACT 
 

The field of nanoscience has evolved into a wide variety of successes over the past two decades 
and the emphasis on nanotechnology is to revolve around various dynamic fields, such as sensor, 
biomedical, and many useful applications. Advances in related fields are certainly due to the ability 
to synthesize nanoparticles from a variety of materials, structures, and to convert samples into 
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complex nanoarchitectures. The promises of nanomedicine are broad. Graphene (Gr), the first 2-
dimensional material to stand alone, is a type of new nanomaterial that leads to the excitement of 
natural biological applications. Number of researches has been conducted on applicability of GBNs 
in the area of environment, biomedical, and healthcare sectors. As compared to other 
nanomaterials, extraordinary properties of graphene-based nanomaterials (GBNs) like high surface 
area, multilayers, multifunctional and excellent biocompatibility make them capable to play great roll 
of highly-tailored multifunctional delivery vehicles for drugs delivery, gene delivery, phototherapy 
and bioimaging. However, research communities performed plenty of research works on GBNs 
synthesis and biological acitivity evaluation, but  there is limited comprehensive reviews published 
so far biological applications. So, we have studied a large number of scientific reports and 
investigations, presented in this review describing recent progress and modern perspectives with 
respect to graphene and related nanomaterials for biological applications.  
 
Graph 1: Graphical Abstract 
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1. INTRODUCTION 
 

In the 21
st
 century, nanotechnology exhibit 

unfathomable influences on the entire world 
economy and society. R&D works in 
nanotechnology have gained promising 
breakthroughs in wide applicable areas such as 
materials and manufacturing, agriculture, 
bioengineering, healthcare, energy etc [1-3]. 
Nanomaterials have high surface to volume area, 
easy surface functionalization and the possibility 
offered by their multimodal conjugation with 

different functional groups, drugs, antibodies, 
contrast agents and selective ligands by covalent 
or not covalent interactions, make them ideal 
platforms for their application in biological and 
biomedical sector [4-6]. Although, traditional 
techniques like chemotherapy, radiotherapy and 
surgery [7] have many achievements. But there 
are so many drawbacks are present in clinical 
uses like resistant effect for multi-drugs, poor 
biological availability and non-specific bio-
distribution in human body [8]. The biomedical 
applications have been found due to their 
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specialized and improved biophysical and 
biochemical properties and so, greatly influence 
biomedical synergistic effects [9].  
 
Initially, graphene came into existence in the 
year 1859 discovered by British Chemist 
Benjamin Collins Brodie and theoretically further 
explained later Wallace. In recent times, 
graphene was considered to be a hidden gem 
and recognized as booming material in 2021 
global revolution in all applied fields of science 
and technology. Graphene and its derivatives, 
due to a wide range of unique properties that 
they possess, can be used as starting material 
for the synthesis of useful nanocomplexes for 
innovative therapeutic strategies and 
biodiagnostics owing to its large theoretical 
specifications such as Young’s modulus of  
approximately 1.0 TPa, great intrinsic mobility 
(~200,000 cm

2
v

-1
s

-1
) and surface area (~2630 

m
2
g

-1
) [4-7]. The strong available free π 

electrons, carbon-carbon bonding in the plane, 
and reactive sites for surface reactions boost 
graphene molecule as a brilliant as well as 
unique material with extraordinary, electronic, 
mechanical, physicochemical, optical thermal 
and biomedical properties [5-8]. Among GBNs, 
graphene oxide (GO) is one of the most potential 
materials for biomedical applications. GBNs, 
compared to the other carbon-based materials, 
have the large surface area, easily modified by 
different functional groups and better solubility 
that makes them an excellent choice for 
biomedical use. This review encompasses the 
recent trends and opportunities of graphene-
based advanced materials indicate new potential 
applications of GBNs to anticipate more 
emphasis on the research exploration.   
 

2. STRUCTURAL CONSIDERATIONS  
 
In nature, pure carbon occurs in many allotropic 
forms made by the allotropic modifications of 
carbon like, graphite, diamond, lonsdaleite and 
chaoite etc. are some. Carbon is available in 
many forms such as graphene, graphyne, 
graphdiyne etc. Graphene is nanosized allotrope 
of carbon atom having very small thick layer 
approximately one atom. It has double sided 
surface available for organic reactions. There are 
several methods to synthesize graphene from 
graphite such as mechanical cleavage, graphite 
oxide/fluoride reduction, liquid phase exfoliation, 
intercalation, compound exfoliation, chemical 
vapor deposition, bottom-up approach of 
chemical synthesis and epitaxial silicon carbide 
decomposition. Preparation of graphene from 

graphite exfoliation is the most popular 
technique. This technique is done in the 
presence of various dispersants. Graphene has 
huge potential for technical applications by 
having light weight, high mechanical strength, 
stiffness, superior elasticity and thermal 
properties, electrical properties, high electron 
mobility. Graphene also possesses quantum hall 
effect, Dirac fermions transportation and good 
optical transparency. 
 
Graphene has several structures and there 
should be deep knowledge of structure of 
particular material under consideration. Structure 
of graphene, graphene oxide and reduced 
grapheme oxide revealed that they possess two-
dimensional and has six-Carbon atoms in 
hexagonal array like honeycomb (Fig. 1). 
Graphene is a zero defective single plane of 
graphite with four sp

2
-hybridized bonds. In four 

bonds one bond is σ bonded with three 
neighbors and one is π-bonded which is oriented 
out of the plane. Metals and functional groups 
are employed in fabrication process of GBNs due 
to which some impurity is found in graphene and 
some surface area of graphene is reduced. So 
before applying GBNs some covalent and non-
covalent modification is required to increase the 
efficiency of graphene [10]. Exfoliation is good 
technique in large scale syntheses of graphene. 
Graphene and GO can be differentiated on the 
bases of oxygen atoms bounded to carbon. Go 
was produced by Brodie during his study of 
chemical reactivity of graphite in 1859 [8-11]. GO 
is prepared by treating with acid and base and 
then sonication is done. Number of functional 
groups are found present on the surface of GO 
like oxygen, epoxide groups, carbonyl groups, 
hydroxyl groups and phenolic groups. Modified 
carboxylic group by covalent functionalization is 
helpful for studies of biological systems and 
applications. Due to Non-covalent 
functionalization of graphene, new chemical 
groups are not allowed to change structure or 
electronic properties. 
 

GO can be synthesized using H2SO4/KMnO4 by 
Hummer’s method through oxidative exfoliation. 
Composition and non-stoichiometric structure of 
GO are strictly depend upon production details 
[12].  Number of researchers studded on the GO 
structures. Some of them are named as 
Hofmann, Nakajima–Matsuo, Ruess, Lerf–
Klinowski Scholz–Boehm and Szabo models 
[11]. There are plethora of evidences in the favor 
of Lerf–Klinowski structure to describe GO       
[13-15]. 
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Table 1. Difference between normal and cancer cell 
 

Structural Parameters Normal Cell Cancer Cell 

Cell Shape Uniform Irregular 
Nucleus Spherical Irregular 
Cytoplasmic Volume Large Small 
Growth Controlled Uncontrolled 
Location  Remain in their intended Location Can spread to different Locations 
Chromatin Fine Chromatin Coarse Chromatin 

 

 

 
Fig. 1. Schematic formation of graphene, graphene oxide (GO), reduced grapheme oxide (rGO) 
 
rGO is prepared by chemical or thermal 
reduction of graphene oxide or graphite oxide. 
Structure of rGO is an intermediate form of 
graphene sheet and GO which should be highly-
oxidized. Various reducing agents are employed 
during production of rGO such as L-ascorbic acid 
hydrazine, hydrazine hydrate, and sodium 
borohydride. Poh and co-workers have better 
described the properties of reduced rGO [15]. 
 
For better understanding of structure and 
properties of any material, characterization of 
that material is required. There are various 
techniques available for investigating the quality 
of graphene and number of atoms of oxygen 
present on the surface of GO and rGO. Several 
Spectroscopic techniques such as nuclear 
magnetic resonance, Raman spectroscopy; 

transmission electron microscopy spectroscopy, 
solid-state Fourier transform and atomic force 
microscopy are helpful to understand the 
structural properties of GBNs. Raman 
spectroscopy is a technique employed to 
evaluate the lattice defects of the graphene and it 
has non-destructive nature. UV–visible 
spectroscopy is a powerful tool to determined 
non-defective graphene layers. In these 
radiations are hindered by graphene layers and 
hindrance increases by layer to layer increase 
from bi-layer to six-layer at the same wavelength. 
Composition, electronic and chemical state of 
material can be studded by X-ray photoelectron 
spectroscopy [16]. This spectroscopic technique 
is a sensitive to surface and its nature is 
quantitative which provide information about 
different types of elements present in the sample 
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and their bonding [17,18]. Morphological 
characterization of graphene can also be known 
by Energy dispersive X-ray spectra. It helps in 
finding metal catalyst which are trapped in lattice 
structure [19] and distinguishing functional 
groups on the surface of GO. Advanced Forced 
Microscopic Technique is necessary for getting 
information about characterization and its 
composites. Investigation of few-layer of 
graphene flakes can be done by using atomic 
force microscopy. AFM technique should be 
avoided for large areas and regular scanning. To 
study graphene nanosheets different modes     
are employed to such as electrical,         
magnetic, elastic, frictional and mechanical            
properties [20].  
 

Morphological characterization can be achieved 
by Scanning Electron Microscope. Surface of 
sample is focused by beam of electrons and 
various signals are observed providing 
information for composition and surface 
topography. Fine microstructure characterization 
can be achieved by Transmission Electron 
Microscopy. This technique employs a beam of 
electrons to the specimen and image is 
produced. Using electron diffraction techniques 
in situ, atomic scale resolution is achieved with 
various crystallographic and imaging modes. 
[21]. Resolving power of TEM is found nearly 20 
times more than the SEM. The minimum 
distance between two distinguishable points can 
be about 0.2 nm. Before TEM characterization, 
sample is prepared by long and sophisticated 
techniques [22,23]. Thermal stability of element 
and fractions of volatile components can be 
found by Thermogravimetric analysis or thermal 
gravimetric. It analysis the change in weight of 
specimen under observation on heating [24,25]. 
The weight is normally measured in presence of 
air or in presence of inert atmosphere, Air used is 
helium or argon and change in weight is 
dependent on increase in temperature. TGA and 
Infrared spectrophotometer both are jointly    
used to analyze the gases which are released 
during thermal decomposition. TGA        
technique has major roll to know about the 
difference in the thermal degradation among GO 
and rGO. 
 

3. BIOLOGICAL APPLICATIONS 
 

Emergence of GBNs lead to different application 
in multiple fields like drug and gene delivery, 
cancer treatment, cancer cells are different in 
size and shape with abnormal growth- Table 1 
tissue engineering, antibacterial materials 

development, biosensing etc. Biocompatibility is 
key point for the selection of GBNs for desired 
application. Go and rGO are found better 
aqueous and  have colloidal stability as 
compared to carbon based materials and hence 
GO and rGO are suitable for drug delivery and 
therapeutic applications. Number researches are 
going on graphene for regenerative medicine and 
tissue engineering applications. Graphene 
helped the researchers to get innovative ideas to 
deliver antitumor drugs to tumor cells. Graphene 
based nanocarriers are studded enormously from 
last few years and used as therapeutic agents 
such as, antibodies, DNA, RNA, 
chemotherapeutic drugs and genes etc. GO and 
rGO are biocompatible and easily modifiable 
surface area. GO and rGO can be modified for 
generating opportunity for linking with carboxyl, 
epoxide, hydroxy groups and hydroxyl. These 
groups can provide attachment sites to      
various molecules like protein, DNA and RNA 
[26,27].  
 

3.1 Drug Delivery  
 

GO is relevant for utilizing in many biological 
applications due to its  properties of large surface 
area, multiple layers, surface chemistry, lateral 
dimension and purity. Graphene has every atom 
available on the surface of a layer due to which it 
posses higher drug loading capacity. GO based 
drug delivery systems have particle 1-100 
nanometer size ,1-2 nanometer thickness and 1-
3 layers. Graphene is suitable as nanocarrier for 
drug delivery by its amazing properties like large 
specific surface area, small size, low cost, 
intrinsic optical properties and non-covalent 
interactions with drug molecules. Physisorption 
properties make GBNs capable to use in loading 
hydrophobic drugs with antibodies for selectively 
killing of cancer cells such as doxorubicin and 
docetaxel.  
 

Chemical modification, electrostatic interaction 
and non-covalent bonding are employed in drug 
delivery techniques of GBNs [28,29]. 
Hydrophobic interactions assist drug loading with 
high influencing power and high efficiency for 
less soluble drugs also. GO provides both sides 
surfaces for conducting and loading drug. 
Reactive sites are provided by hydrophilic groups 
to connect functional molecules to improve the 
anticancer efficiency such as carboxyl, hydroxyl, 
and epoxy. These functional groups present on 
surface are able to provide facility for conjugation 
with various systems and biomedical imaging 
[22,26]. 
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Anticancer drugs such as CPT, PTX, and DOX 
have been widely used in clinical methods. There 
is interaction of cells membrane with 
nanocarriers by endocytosis. It is a necessary 
requirement for targeted drug delivery to the cell 
nucleus that drug carrier should escape 
endosomal compartment and release loaded 
drug into the cytosolic compartments. This 
proposed a new idea of loading DOX on GO 
surface to reverse the cancer drug resistance in 
DOX resistant MCF-7/ADR cells. This technique 
result higher cytotoxicity in comparison to free 
DOX. On the bases of tumor characteristics, the 
microenvironment Stimuli-responsive 
nanomaterials are designed and technique is 
used in tumor curing by assisting for penetration, 
diffusion and release of drugs. In the cancer 
treatment pH should be acidic in cancer micro 
environment, intracellular lyso-somes and 
endosomes and this help in active drug release 
in the tumor tissue/cells. DOX is loaded on nGO-
PEG by simply mixing at pH 8 environment to 
form nGO-PEG-DOX [30]. DOX loaded graphene 
oxide has tumor growth inhibition about 66–91% 
cell death. GO loaded Paclitaxel and 
Methotrexate via π–π stacking and with amide 
bonds have found effective results in inhibition of 
tumor growth about 66–90%. It has effective 
cancerous effect on lung and breast cancer. GO 
with folic acid in drug loading system. Both DOX 
and CPT loaded on functionalized nGO have 
higher cytotoxicity to cancer cells as compared to 
GO-loaded with DOX or CPT alone for same 
drug delivery system. Higher cytotoxicity was 
observed on the composite rather than raw GO 
self loading. Some of specific targets are 
included such as HA receptor, FA receptor, Tf 
receptor, CAMR, EGFR and VEGFR [31]. 
Modification of FA has great contribution to 
improved tumor therapy. Liu synthesized FA-
modified fluorinated GO carrier for DOX delivery 
[32]. Subcellular organelles have great attraction 
for tumor therapy. GA targeted into mitochondri 
with combination of GO and loaded DOX as 
carrier is applied by Zhang et al. [33]. 
 

3.2 Gene Delivery/Therapy  
 

Gene therapy resolves the problem of 
abnormalities in gene treatments methods. It is 
important discovery over the traditional methods 
of treatments and helpful in precision medicine 
techniques. Gene therapy is employed for 
treatment of genetic disorders like cancer 
Parkinson’s disease and cystic fibrosis. Gene 
therapy strategies are under research for cancer 
treatment. Gene therapy is very fast, less toxic, 

inexpensive, higher disease recovery rates and 
effective. Due to ameliorate research, cheaper 
gene vectors will be available in the market 
which will make treatment accessible for most of 
the cancer patients. As compared to 
chemotherapy gene therapy has been found 
relatively safe as side effects are tolerable 
[30,32].  
 

Recent progress in developing safe and effective 
vectors approaches for untradeable diseases like 
cancer. Nucleic acids are introduced in Gene 
therapy through gene knockout or expression 
into targeted cells. GBNs are employed as 
carriers and interact with nucleic acids, DNA and 
RNA [34]. Due to physiosorption properties of 
GO nucleobases get absorbed by π–π 
interaction, by these nucleotides enzymatic 
cleavage is protected. Basically gene delivery 
vector provides degradation protection to DNA 
and transfection efficiency is high. As a vector 
approach graphene oxide nanosheets are easily 
taken by cells [35]. There are two techniques for 
gene delivery systems, one is viral vector and 
other is non-viral vector systems. Viral vector 
system for transferring gene is highly efficient, 
but there are some limitations like insecurity, 
higher costing, host immune response [36,37]. 
Though non-virol vectors are simple but their 
immune response risk is low.  Gene carriers are 
better over the viral and non-viral vectors in 
terms of high immune response, low toxicity, 
chromosomal integration, formation of mutations 
in DNA molecules and production cost. GO-
based nanomaterials are super vehicles for drug 
loading due to their large surface area, good 
capability for adsorption, good biological-safety 
and biocompatibility. It is found that through π–π 
stacking, GO can absorb single-stranded DNA 
(ssDNA), but have difficulties for double-stranded 
DNA (dsDNA). This is resolved by Di Santo by 
designing GO/cationic lipid nanoparticles and 
plasmid DNA (pDNA) [38] to introduce artificially 
RNA or DNA into HeLa cells and HEK-293 cells.  
 

For breast cancer treatment graphene-based 
gene therapy used many factors like siRNA [39], 
pDNA [40], microRNA-101 (miR-101) [41] and 
the HSV-TK [42]. GO derivatives help in 
penetration of siRNA or pDNA into cells by 
protecting enzyme cleavage to DNA [43]. Huang 
designed PEI-functionalized GO to transfect 
siRNA and technique is found effective and may 
be helpful for inhibiting breast tumor metastasis 
[44]. Graphene can absorb NIR light. Tian 
increased efficacy and taking capacity against 
cancer cells by localized NIR heating of GO–



 
 
 
 

Sharma et al.; JPRI, 33(55B): 216-230, 2021; Article no.JPRI.78558 
 
 

 
222 

 

PEG–Ce6.NIR heating increases membrane 
fluidity and hence helpful to enhance taking 
capacity of GO–PEG–Ce6 by [45]. According to 
Kim, functionalized rGO irradiation by NIR 
improves drug/gene delivery and intracellular 
lifetime [46,47]. 
 

3.3 Diagnosis and Imaging 
 

Diagnostic and observation of the unique 
biological components can be ratified easily by in 
vivo and in vitro bioimaging techniques. 
Sensitivity of these bioimaging is low for small 
lesions, so there is need to find new 
technologies. GBNs technologies are found 
sensitive enough for these small lesions. 
Graphene quantum dots (GQDs) is a type of 
GBNs. Properties of photo-physical and 
fluorescence spectroscopy made GQD most 
widely employed for bioimaging. Bio-imaging 
help to detect the growth of processes which are 
abnormal in nature like hypoxia/hyperoxiaand 
cancer development and ornecrosis. Bio-Imaging 
techniques includes confocal and fuorescence 
imaging for graphene based structures [48], like  
photoacoustic imaging [49], magnetic resonance 
imaging [50], positron-emission tomography 
(PET) [51,52], ultrasound imaging [53,54], 
coherent anti-stokes Raman scattering imaging 
(CARS) [55,56], surface-enhanced Raman 
scattering (SERS) [53], and electron 
paramagnetic resonance imaging (EPRI) [57,58].       
                                               
Magnetic Resonance Imaging: MRI method is a 
non-ionizing and non-invasive in nature. The 
diagnostic technique of MRI has ultra spatial and 
temporal resolution [59-61]. To get detailed and 
accurate information of image, Gd, Mn, and Fe 
which are contrasting elements should be 
accumulated in tumor region. Tumor targeting 
and long lasting blood circulation time vector 
should be developed on urgent bases. MRI 
combination with PTT has advantage to get 
diagnosis and treatment in same time. Meng 
prepared a GO composite nanoscaled metal–
organic frames, which is applied in tumor-guided 
PTT with MRI [62]. In a consequent work, Usman 
et al. reported the synthesis of a graphene oxide 
(GO)-based theranostic nanodelivery system 
(GOTS) for magnetic resonance imaging (MRI) 
using naturally occurring protocatechuic acid 
(PA) as an anticancer agent and gadolinium (III) 
nitrate hexahydrate (Gd) as the starting material 
for a contrast agent [63,64] (Fig. 2 and Fig. 3). In 
addition, Lage et al. investigated the combination 
of diagnostics and therapy (theranostic) for 
nanoengineered multifunctional systems in 

nanomedicine (Fig. 2). From the various 
multimodal nanosystems for graphene-based 
magnetic nanoparticles (GbMNPs) as theranostic 
platforms. [64,65].  
 

Fluorescence Imaging: FLI is a suitable for 
diagnosing tumor and its treatment. FLI 
technique is non-invasive in nature in which 
photons are emitted by fluorescent probes. High 
loading capability of GO leads to introduce FLI-
guided theranostic by FLI agents [65]. During the 
therapeutic process FLI is used in observation of 
the pathological tissue and find distribution and 
metabolism of drugs [66].  
 

Photoacoustic Imaging: PAI is dependent on the 
photoacoustic (PA) effect and is found to be a 
very effective diagnostic tool. In this imaging 
short pulses of non-ionizing laser are absorbed 
to convert them into heat and thermal expansion 
gives specific natured acoustic signals. PA 
agents are excellent in photothermal conversion. 
Most of the agents in application for PAI are 
noble metal, inorganic NPs, semiconducting 
NPs, and NIR dye [67-70]. 
 

Raman Imaging: Surface-enhanced Raman 
scattering is mostly in used for disease diagnosis 
and biomolecular detection due to non-invasive, 
ultra-sensitive and high resolution [71,72]. Noble 
metals like gold with specific local SPR features 
have excellent Surface-enhanced Raman 
scattering activity [73-77]. To target Raman 
imaging of HeLa cells, a multifunctional platform 
is designed by Zhang which is based on GO 
(GO/AuNP/FA [78,79]. 
 

Computed Tomography: CT is a widely used 
non-invasive and high spatial resolution based 
disease diagnosis method [80]. Graphene oxide-
based nanomaterials bioimaging for tumor 
diagnosis have more advantages than other 
materials. GBNs have a number of achievements 
in vitro cellular and in vivo bioimaging. A guided 
cancer therapy Imaging is designed on the bases 
of PVP–rGO/Bi2S3 by Dou [81]. CT has 
excellent performance for getting information 
about tumors position and details. GBNs have 
excellent multimodal bioimaging performance by 
PA/MR/CT/FL for detecting, treatment and 
monitoring of the tumor. Based on the above 
discussion, it can be hopefully assumed that the 
platform for green and sustainable research and 
development is currently focused on novel 
materials like, grapheme-based materials, which 
have soon become the prospects for 
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Fig. 2. [A] (a) Active agents-loaded of GAGPAu nanocomposite in a theranostic nanodelivery system. Diagnostic agents, gadolinium (green) 
and AuNPs (yellow) and the anticancer agent, PA are attached on a graphene sheet via hydrogen bond, π–π interaction and electrostatic 

interaction (GOTS); (b) Release profiles of protocatechuic acid from GO-Gd/PA nanocomposite (GAGPA) in pH 7.4 and 4.8 media; (c) 
Pseudo−seconder order kinetic plot of protocatechuic acid release data at pH 4.8 medium from GAGPA nanocomposite (Drug-GO/Gd); (d) 
Pseudo−seconder order kinetic plot of protocatechuic acid release data at pH 7.4 medium from GAGPA nanocomposite (Drug-GO/Gd); [B] 

FTIR spectra of GO nanosheets (A); pure protocatechuic acid (B); pure Gd(NO3)3 (C) protocatechuic acid loaded on GO/Gd nanolayers 
(GAGPA) (D); and gold nanoparticles coated on GAGPA nanocomposite (GAGPAu) (E); [C] Schematic representation of graphene-based 
magnetic nanoparticles (GbMNPs), their usual functionalization, targeting and triggering strategies, as well as their most used combined 

diagnostic and therapeutic applications (theranostic) 
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Fig. 3. (a) TEM micrographs of protocatechuic acid loaded on GO/Gd nanocarrier (GAGPA) at high and low magnifications; (b) TEM 
micrographs of protocatechuic acid loaded on GO/Gd nanocarrier after surface coating with gold nanoparticles (GAGPAu). ([A,B & D] 

Reprinted from ref. [64] under Creative Commons Attribution (CC BY) license MDPI 2018 and [C] Repreinted from ref. [65] under Creative 
Commons Attribution (CC BY) license MDPI 2021)



 
 
 
 

Sharma et al.; JPRI, 33(55B): 216-230, 2021; Article no.JPRI.78558 
 
 

 
225 

 

reference to the regulated and activated physical 
structure with diversified biomedical applications. 

 

4. CONCLUSION AND FUTURE 
OUTLOOK 

 

GBNs finds targeting several biological effects, 
high drug loading rate and increased sensitivity 
of chemotherapy as compare to other drug 
delivery systems. New proposals of mixing of 
techniques are given for cancer treatment like 
PTT-PDT technique, chemo-PTT technique and 
chemo-PDT technique. Scientific Committee on 
Emerging and Newly Identified Health Risks 
(SCENIHR) considered graphene as a toxic 
product and risky for health. Toxic aspect of 
graphene and GBNs has great challenges and 
therefore it found high interest among 
researchers and more works are recommended. 
Graphene quantum dots are accepted for the use 
of multimodal therapies, bio-imaging regarding 
cytotoxic effects and little doses of special 
featured materials. The experimental data on the 
toxicity are limited more in vitro rather than to in 
vivo. Studies conducted are not enough for the 
confirmation of in vitro and in vivo toxicity but in-
depth investigations is required for GO-based 
nanomaterials and their derivatives. In 
conclusion, GBNs are more crucial having many 
surprising advantages and also challenges such 
as toxicities. Researches in multiple fields in 
GBNs will leads to ultimate benefits for human 
community to cure diseases as well as disorders 
to a significant extent. GBNs have created 
interest among researchers by their unique 
physicochemical properties and multiple uses in 
different fields. 3D porous graphene materials 
have attracted great attention for environmental 
applications in the removal of pollutants of 
organic, inorganic and radio-pollutants. Different 
properties of GBNs like high surface area to 
volume ratio, polyatomic aromatic structure and 
easy multi-functional ability offers capability and 
flexibility for cargo-loading, transporting and 
tissues targeting. Furthermore, additional 
research is required to optimize and to evaluate 
their considerations on the safer synthetic 
strategies, toxicity and environmental 
appropriateness. 
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