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Abstract

The theory of fixed point is applied in many fields of mathgas as well as in other studies. That is the
main reason for producing new results, as well as for gigiegpalready known theorems about fixgd
point. This paper considers several generalizations of Rnd€a[1] and S. K. Chatterjea [2] theorems
about fixed point.
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1 Introduction

The theory of fixed point dynamically develops in the periochefrecent decades. The first important result
in the theory of fixed point about contractive mapping is Baritheorem (principle of contractive mapping,

[3]). Exactly this theorem is very important researchimggrument in many different fields of mathematics.

The above theorem was presented, 1922, in S. Banach dieseBy applying the stated theorem is proven
that an integral equality might be solved. Further, R. Kanfid 1968 has proven that, {iX,d) is a

complete metric space arf: X — X is such mapping that it existsJ (0,2) so that for allx, yO X the
inequality

d(Sx Sysa( d x 9¢ @d.y P @

is satisfied, then there is a unique fixed point®nSeveral years later, 1972, S. K. Chatterjea E§ h
proven that if(X, d) is a complete metric space aBd X — Xis such mapping that it exists 0 (0,1) so
that for all x, yOO X the inequality

d(Sx Sy<a( ¢ x 9 d.y P 2
is satisfied, then there is a unique fixed point®n

In the further considerations we will generalizesh results by applying the sequentially convergent
mappings, defined as the following

Definition 1 [4]. Let (X, d) be a metric space. A mappifilg: X — X is said sequentially convergent if, for
each sequencgy,} the following holds true:

if {Ty} convergences, thefy,} also convergences.
2 Generalization of Kannan Theorem

Theorem 1.Let (X, d) be a complete metric spac®; X -~ X andT: X - X be a mapping such that it
is continuous, injection and sequentially convetgéne >0 y>0, 2a +y<1 and

d(TSx TSysa( d TxT$x (d Ty Tpyy (d,TX ®)

for all x,y0 X, then there is a unique fixed point & and for anyx, 0 X the sequenc¢S" x}
convergences to the above fixed point.

Proof. Let xy be any point onX and the sequencgx} be defined as the following,,; = Sx, ,
n=0,12,3,... The inequality (3) implies that

A(MXpe, TH) S (A T, TR+ @ T TX))+) @ Tx ),

therefore

d(Meq, DR) = A Tx, Tha), (4)
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for eachn=0,1,2,3,..,and0< A = % < 1. The inequality (4) implies that for ath, NN, n> m

d(To, Ton) S 25 A Tx, Ty) )

holds true. And sinc®<A <1, it is true that the sequen&x} is Caushy. ButX is complete metric
space, thereby (5) implies that the sequgiiog is convergent, i.e. it existalJ X so thatlim Tx, = z.

n- o
Further, the mappind : X — X is sequentially convergent and since the sequghgg is convergent, it
implies that the sequendeq} is also convergent, i.e. it existsd X so that lim x, =u holds true.

n- oo

Further, the continuous df implies that lim Tx, = Tu holds true. Thus,

n- oo

d(TSuTyos ¢ TSu 3+ d Fx f)+ (dJx, Jru
=d(TSUTS ¥+ @ Tx Tx)+ dTa. Tu
<o[d(Tu TSSO+ ¢ T8 x TSeN+y (d Tu TS ) %xA" ( dyTxgP ( ¢ Tx )
=ad(Tu TSY+aA"™ ¢ Ty T9+y @ Tu Fx)+A" (d TXx) + d(Topq, TO.

Forn — o, the continuous off and0<A<1imply thatd(TSy TQ<a d TSu T But, sincd<a <1,

the latter implies thad(TSy Ty=0, i.e. TSu= TL. Finally, T is injection, and thuSu= u. The latter
actually means that the mappirg has a fixed point.

Let u,v X be fixed points orS, i.e. Su= u and Sv= v. Then, (3) implies the following

d(TuTY=dTSuT9«a( @ TuTpu (dTv)Bw (d TSy ( dT)

Since0< <1, the last inequality implies that(Tu, TY =0, i.e. Tu=Tv. But, sinceT is injection, it is
true thatu = v. The last actually means th@ithas a unique fixed point. Finally, the arbitrarmes xy O X

and the above stated imply that for eagfi] X the sequencéS" x} convergences to the unique fixed
pointonS.m

Consequence 1Let (X, d) be a complete metric spacd; X - X andT: X - X be such mapping that
it is continuous, injection and sequentially comesnt. If A 0(0,1) and

d(TSX TSY<AY @ Tx T3 (d Ty Sy( d T}

holds true for allx, yO X, then S has a unique fixed point and for eagh X the sequencéS" x}
convergences to the above fixed point.

Proof. The inequality of arithmetic and geometric meahs AM-GM inequality) implies that
d(TSx TSys4( ¢ TxT9x (d Ty TBy (d,TXN.

The statement is directly implied by theorem 1 for y = % [
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Consequence 2Let (X,d) be a complete metric spac8; X - X and the mappind : X - X be
continuous, injection and sequentially convergéntr >0, y=0, 2a+y<1 and

d3(Tx TSy+ d( Ty Ty

holds true for allx,yd X, then S has a fixed point and for eackyO X the sequence{Sn>@}
convergences to a fixed point.

Proof. The inequality stated in the condition implies thequality (3). And the claim is implied by the
Theorem 1m

Consequence 3 [5]Let (X,d) be a complete metric spacg; X - X and the mapping : X -~ X be
continuous, injection and sequentially convergénr 0(0,4) and

d(TSx TSysa( d TxT$x (d Ty T§ (6)

for all x,yO X, then S has a unique fixed point and for eagpd X the sequencgS” ¥} convergences
exactly to that fixed point.

Proof. It is sufficient to takey =0 in the Theorem 1m

The paper [5] considers an example in which Kanfleorem is not applicable, but the Consequence 3
(Theorem 2.1. [5]) implies the existence of a fixgmint for the considered mapping. Hereinafter vitk w
consider one more example of this type.

Example 1.Let X ={0} D{l i } andd be an Euclidian metric ad. Then, (X,d) is a complete

11
34
metric space. Let the mappirf X - X be determined as the followin&(0) =0 and S(%) ——+1, for

n>1. If there existsaJ(0,4), so that for all x,yd X the condition (1) is satisfied, and for

-1 — 1._ 5n-3 i i
=50 Y= m then for eachn>1 the following should be satisfie@ <= _m which is

contradictory. Therefore the Kannan Theorem is emphcable when solving the given problem. The
mapping T: X - X determined asT(0)=0 and T(— , for n=1 is continuous, injection and

]
sequentially convergent. Further, sirjegly <[ xy , for aII X, y= 0 it is true that for eachh>1 .

MM <[ADS) { €8 4 P e i <3 gay)

is satisfied. Therefore, for ath, nNON, m> n

1y 1 1 1 1 1( 1 _ 1
|TS(F) TSr—n)H (D] [ 2 F[ eZ(m-J]) SE[ Al g(n*]l))
l[ 1 ]
[ [0 [ez"i K e“‘*}’

<1ITA-TSd) [+ Td)- T8 ]
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holds true, and for eachO N

ITSO)- T F ity <3 (o o) =2l TO- TR | Fy TE)|

also holds true. Thus, the inequality (6) holde tier o :% . Therefore, the Consequence 3 implies that the
mapping S has a unique fixed poini.

Consequence 4 [1]If (X,d) is a complete metric space aBd X - X is such mapping that it exists
a0(0,4) so that for allx, yO X the condition (1) is satisfied, thes has a unique fixed point.

Proof. It is sufficientTx= x to be substitute in Consequence 3. The mappinig continuous, injection
and sequentially convergent, and furthermore timelition (1) is equivalent to the condition (@).

Remark 1. For Tx= X, the Theorem 1 and the consequences 1 and 2 daagto the same arguments as
the proof of Consequence 4, imply that into a cetgmetric spac&, a mappingS: X -~ Xsuch that it
satisfies one of the following conditions

d(Sx Sy<sa[ d x 9% d,y Byy (d 3, a>0,y=0, 2a+y<1,
d(Sx Sy<A¥ ¢ x 9 d,y B (d 3, A0(0,2),

d?(x, SR+ F( y Sy
d(Sx Sy< a'—d(x‘&9+ Ty Sy

+ydxy a>0,y20, 2a+y<1,

has a unique fixed poini0 X , and exactly that fixed point is the bound of Hegjuence x} defined as
Xn+1 = S¥,, for n=0,1,2,3,.., and Xy is any point onX .

3 Generalization of Chatterjea Theorem

Theorem 2. Let (X,d) be a complete metric spacg; X - X andT: X - X be continuous, injection
and sequentially convergent mappingalt0, y=0, 2a+y<1 and

d(TSx TSysa( d Tx Ty (d Ty Dpxy (d, T @)

for all x, yO X, then S has a unique fixed point and for eaxfd] X the sequencgS” ¥} convergences
to that fixed point.

Proof. Let x5 be any point onX and let the sequende;} be defined as¢,,1 = S¥,, n=0,1,2,3,... The
inequality (7) implies the following

d(Mhe, TH) = A TS TSx)<a( @ Tx T+ (ddx  THxy ( dyTx IX
=ad(Mya1, Th-p) +y A T, 1)
Sa(d(Mx, D)+ d T T +y @ T Txy)

therefore,

A(Mxpa1, TR) S A A Teg, T)- (8)
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for eachn=0,1,2,3,.. and A :‘i’_—"; <1. Thus, the inequality (8) implies that for afl, nNON, n> mit is
true that

d(Toy, ) < 25 Ty, Ty), ©)

Since A <1, the latter implies that the sequedde} is Cauchy sequence. Further, analogously as the
proof of Theorem 1 we conclude that the sequdiieg is convergent, and further the sequefixg is
convergent, i.e. it exista 0 X so that lim x, =u and lim Tx, = Tu. Thus,

n- oo n - oo

d(TSy T ¢ TSu TSox+ (d T5.x A5 ) ( d™Sy, x) Tu
<a@dTuTS g+ ¢ T8 & Ty (d TuTS g)xA" (dyTxox ( i )
=ad(Tu TR)+a d Txq, TSy @ Tu Txq)+A" (d Ix ¢ (dTx JTu
Since 0<A<1 and furthermore sinceT is continuous mapping, forn — o it implies that

d(TSy Ty<a ¢ TSu Th. But, a <1, therefore the latter implies tha(TSy Ty=0, i.e. TSu= Tt.
Finally, T is injection, and thereforeéSu= u, that is the mapping has a unique fixed point.

Let u,v X be fixed points o1$ , i.e. Su= u and Sv= v. Thus, (7) implies that
d(TuTYy=dTSuT9=a( d TuTev (d,TvIBwy ( dTo=T+y) ( dT)

and since2a +y <1, the latter inequality implies that(Tu, Ty =0, i.e. Tu=Tv. But, T is injection,
thereforeu=V. The latter actually means that has a unique fixed point and for eagfh X the

sequencd S” ¥} convergences to the unique fixed point®nm

Consequence 5.Let (X,d) be a complete metric spacg; X - X and T: X - X be continuous,
injection and sequentially convergentAf1(0,1) and

d(TSx TSy AY ¢ Tx TS (d Ty DSX( d, T)

for all x,yd X, thenS has a unique fixed point and furthermore for eagh! X the sequenceS" %
convergences to exactly the above fixed point.

Proof. The arithmetic mean-geometric mean inequality iegpthat
d(TSx TSy<4( @ TxT$y (d Ty ISx ( d, TH).
Fora=y= % , by applying the Theorem 2 we actually get thevatgiatemenm

Consequence 6Let (X,d) be a complete metric spacg; X - X andT: X - X be continuous mapping
such that it is injection and sequentially convetgtf a >0, y=0, 2a+y<1 and

d2(Tx TSy+ d( Ty T9x
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for all x,yOI X, then'S has a unique fixed point and for eagfil] X the sequenceS" ¥} convergences
to the above fixed point.

Proof. The inequality stated in the above condition ieplihe inequality (7). Thus, the statement is ietpli
by Theorem 1m

Consequence 7.Let (X,d) be a complete metric spacs;: X -~ X and T: X -~ X be continuous

mapping such that it is injection and sequentiedigvergent. Ifa O (0,%) and
d(TSx TSysa( @ Tx T3y (d Ty ¥ (10)

for all x,yO X, then S has a unique fixed point and for eaxfhd] X the sequenceS" ¥ convergences
to the above fixed point.

Proof. For y =0 in the Theorem 2 we get the proof of the aboviestant.s

Example 2.Let (X,d) andT,S: X - X be the metric space and the mappings defined e iBxample
L. If it existsa0(0,3) such that for allx, yO X the condition (2) is satisfied, then far=1, y=-L it is

2 . . .
true that for eacin>1, 422+3+lsa has to be satisfied. The latter is contradicttimgreby the sequence
n N

2n2 . . . .-
{m convergences t% . Thus, the Chatterjea Theorem is not applicabighis case. But, it is easy
to be proven that the mapping: X - X satisfies the condition (10). Thus, the Consegeéhinplies that
the mappingS has a unique fixed poink.

Consequence 8 [2]Let (X,d) be a complete metric space agd X - X be such mapping that it exists
a0(0,1) and for allx, yO X the condition (2) is satisfied. The® has a unique fixed point.

Proof. Let Tx= x. Thus the Consequence 7 implies the validity efahove statemen.

Remark 2. Let Tx= x. By applying the same arguments as in the pro@afsequence 4, the Theorem 2
and the consequences 5 and 6 imples that in a etenpletric spaceX , any mappingS: X - X such that
it satisfies one of the following conditions

d(Sx Sy<al ¢ x 9y d,y I¢y (d ¥, a>0,y20, 2a+y<1,
d(Sx SysAY @ x 9 d,y B (d ¥, 10(0,1),

d?(x Sy+ (v S
d(sx Sysa g TLINep ¢ x ), a>0,820, 20+ f<1

has a unique fixed point [0 X , which is also a bound of the sequefi&g defined as the following
Xn+1 = Sy, for n=0,1,2,3,.., and x3 any point onX.

4 Generalization of Koparde — Waghmode Theorem

P. V. Koparde and B. B. Waghmode [6] have proveat,tif (X,d) is a complete metric space and
S: X — X is mapping such that it exists (1 (0,4) so that for allx, yO X the following is satisfied
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d?(Sx Sysa( d( x 9+ U .y B (11)

then S has a unique fixed point. In our further consitierss, by applying sequentially convergent
mappings, we will generalize this result.

Theorem 3.Let (X,d) be a complete metric spacg; X -~ X andT: X - X be a continuous mapping
such that it is injection and sequentially convetgff o >0, y>0, 2a+y<1 and

d?(TSx TSysa( &( TxT$x 24 Ty Pyy 2d ., T) (12)

for all x,yO X, then S has a unique fixed point and for eagfl] X the sequencéS” ¥} convergences
to the above fixed point.

Proof. Let Xy be any point onX and let the sequendeq} be defined as the followingy,,q; = S¥, .
n=0,12,3,... The inequality (12) implies the following

d?(Txuy, D) = A(TSK, TSx)<a( W Tx T 20 Ix TW+y 2(d zTx oIk
= a(d?(Tx,, Ter) + F(Txeg, TR)+y d( Ty Txa),

for eachn=0,1,2,3,... The condition given the Theorem implies thht,/% <1. The latter implies

validity of the following d(T%,.1, T%) <A d Tx, T¥%.1), for eachn=0,1,.... Analogously, as the Proofs of
the Theorems 1 and 2, firstly the sequefibg} is Cauchy, and further it is a convergent sequefseher,

the mappingr : X — X is sequentially convergent and thereby the sequfhg} is convergent, it is true
the sequencéx} is also convergent, i.e. it existsl X so that lim x, = u holds true. Furthermore, the

n- oo

continuous ofT implies thatlim Tx, = Tu. We will prove thatu is a fixed point onl . This,

d(TSyTY< d T Txq)+ 6 Ty, T$& (d Tuf+ (d FSx TSu
sd(Tu,T>ﬁ+1)+\/a(d2(T}g, TS+ %|( Tu T y 2(1 Tuhx
= d(Tu Toeg) +ya( F(Tx, Tha)+ A( Tu Ty 4 Tu Ty

for eachnON. Forn - o, the latter is transformed as the followid§TSuy Tl)S\/E d TSu T But,
Ja <1. Therefored(TSy Ty =0. Now, one more time as in the proof of Theoremel get thatu is a
fixed pointonS.

Let u,v X be two fixed points or5, i.e. Su= u and Sv= v. Then (4) implies the following

d?(TuTy= F(TSuT9ea( A TuTpu 2@ ,TvIBw *(d, T)
=a(d*(Tu Tg+ F(Ty Y +y &( Tu =y & Tu v
and since0 < y<1 the latter inequality implies that(Tu, TY=0, i.e. Tu=Tv. But, T is injection, and
thus U=V. That actually means thdt has a unique fixed point. Finally, the arbitrassef x; 0 X and

also the above stated, imply that for eagtil X the sequenceS" ¥} convergences to the unique fixed
pointonS . m
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Consequence 9.Let (X,d) be a complete metric spac&: X - X and T: X - X be continuous
mapping such that it is injection and sequentietigivergent. Ifa 0(0,2) and

d?(TSx TSysa( &( TxT$x 4 Ty T§ (13)

for all x,yO X, then S has a unique fixed point and for eagfil] X the sequencgS” ¥} convergences
to the above fixed point.

Proof. For y =0, the Theorem 3 implies the validity of the abotaements

Consequence 10 [6]If (X,d) is a complete metric space aBd X — X is such mapping that it exists

a0(0,4) and for allx, yO X the condition (11) is satisfied, theshas a unique fixed point.

Proof. For Tx= x in the Consequence 9 we get the proof of the abatementm

Example 3.Let (X,d) andT,S: X » X be the metric space and the mappings defined e iExample

1. Ifit exists @ 0(0,3) such that for all, yO X the condition (11) is satisfied, then far= L., y=—>1- it

12 (2n-
is true that for eacln >1, the inequalityM
4(2n-17+ (17
Thus, the Koparde and Waghmode Theorem is notaglpd when solving this problem. The mappihds
continuous, injection and also sequentially congat@nd for allm,nON, n > m it is true that

<a <% has to be satisfied, which is contradictory.

TSE)- T k420 T8)- TEhE+ | ) Teh?)

ITSG)- TS P (1 TE)- T8O P+ | Ty TEDF).
Furthermore, for eachON the following holds true

_Tgql 1
ITS(0)- Ts) P< L (| O TR0)F + | B > T$ )
<L(TO-TSOF + |TE) Ts8)f)
Thus, fora :% the inequality (13) is satisfied. So, the Consageed implies that the mappirg has a
unique fixed pointm
Remark 3. Let Tx= X, in the Theorem 3. By applying the same argumasti the proof of Consequence

4, it is true that in a complete metric spa¥e any mappingS: X — X such that it satisfies the following
condition

d?(Sx Sysa( d( x 9 W,y By %0, 9, a>0,y20, 20+y<1,

has a unique fixed point O X , which is actually the bound of the sequefigg defined as the following
Xn+1 = S¥%, N1 =0,1,2,3,.., for any pointx, on X.
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5 Conclusion

In the above consideration, by applying the sedakyntconvergent mappings we have proven several
generalizations of already known theorems aboetfigoint in a complete metric space. Further, voxqut
that many already known theorems in the theoryadf point are implied by the obtained resultshiis t
paper. It is naturally to wonder do any other samifeneralizations hold true for the already known
theorems about common fixed points on two differaappings in a complete metric space and is itttrae
analogously other results might be generalizedh tve results proven in [7-10].
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