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Abstract 
 

The main objective of this paper is to propose a numerical integration method that provides improved 
estimates as compared to the Newton-Cotes methods of integration. The method is an extension of 
trapezoidal rule where after segmentation, the top part of each segment was further subdivided into 
rectangles and/or squares and triangles (approximate). The area of each segment is then obtained as the 
sum of areas of these geometric shapes and the area of the down part of the segments which is usually a 
rectangle. The process resulted in an improved formula for numerical integration which we derived in the 
paper. The proposed method was compared with some Newton-Cotes methods of integration and it 
outperformed. With the proposed method, one can provide estimates with predetermined desired absolute 
relative true errors. 
 

 
Keywords: Numerical integration; Newton-Cotes methods; absolute relative true error. 
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1 Introduction 
 
As indicated by Kaw and Keteltas [1], integration is the process of measuring the area under a function 
plotted on a graph. The process also known as integral calculus has countless applications in a wide range of 
fields including engineering, statistics, finance, actuarial science, etc. [2-4,1,5] and biostatistics to estimate 
quantiles and various distribution functions. Numerical integration has increased greatly in estimating 
likelihoods and posterior distributions using Bayesian methods [6].  
 
Sometimes, the evaluation of expressions involving these integrals can become very difficult, if not 
impossible. Due to this reason, a number of different numerical methods (numerical integration) have been 
developed to simplify the integral [7]. For example in statistics, emphasis in recent years on Bayesian and 
empirical Bayesian methods and on mixture models has greatly increased the importance of such numerical 
integration for computing likelihoods and posterior distributions and associated moments and derivatives [7].  
 
Numerical integration involves the approximation of numerical values that cannot be integrated analytically 
[7]. It is sometimes referred to as quadrature which involves replacing the area under a curve by an area of a 
square. Several numerical integration methods such as Newton-Cotes, Romberg integration, Gauss 
Quadrature and Monte Carlo integration are used to evaluate those functions that can’t be integrated 
analytically. Newton-Cotes methods use interpolating polynomials. Newton-Cotes methods such as the 
Trapezium rule, Simpson 1 3⁄   rule, Simpson 3/8 rule and Boole’s rule are special cases of 1st, 2nd, 3rd and 
4th order polynomials used respectively and the Weddle’s rule is also a special case of the 6th order 
polynomial. The Trapezium rule and the numerical integration method we are proposing have no restriction 
on the number of segmentation. The number of segments for the Simpson 1 3⁄   rule must be even and for 
Simpson 3/8 rule, the number of segments must be a multiple of 3. For the Boole’s rule the number of 
segments must be a multiple of 4 and for Weddle’s rule the number must be a multiple of 6.  
 
The Newton-Cotes formula is a frequently used interpolator function in the form of a polynomial. This 

formula involves n  points in the interval [ ],a b  with 1n−  order polynomial which passes through the 

abscissas ��  ( 
 = 0, 1, … , �)  equally spaced. Approximating the area under the curve ( )y f x=  from 

x a=  to x b= , the closed Newton-Cotes formula employs Lagrange interpolating when fitting 

polynomials. Letting 0

( )
, n

b a
x a x b and

n

−= = ∆ =  , we have 

 

��(�) = � �(��)��(�)
�

���
.                                                                                                                                  (1) 

 
where � in ��(�) stands for the  order polynomial that approximates the function � = �(�) given at � + 1 
data points as (��, ��), (��, ��), … , (��, ��) and 
 

��(�) =  � � − ���� − ��

�

��� ,���
, 
 = 0,1,2, … , �  .                                                                                          (2) 

               
where ��(�) is a weighting function that includes a product of  � − 1 terms with terms of 
 =   omitted [1]. 
 

Integrating ( )f x  over [ ],a b  and choosing 
( )

i

b a i
x a

n

−= +  we have the Newton-Cotes rule; 

 

!�"�(�) = # �(�)$
%

&� ≈ � (��(��)
�

���
 .                                                                                                        (3) 
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where the weight iw  is determined by; 

 

   (� = # ��(�)$
%

&� = # � � − ���� − ��

�

��� ,���

)*

)+
&� , 
 = 0,1,2, … , �.                                                                  (4) 

 
When 1,n =  we have a simple trapezoidal rule of; 
 

[ ]2 0 1( ) ( )
2

A f x f x
∆= + .                                                                 (5) 

 
When 2,n =  it gives the Simpson 1

3
 rule of; 

 

[ ]3 0 1 2( ) 4 ( ) ( )
3

A f x f x f x
∆= + + .                                                                                               (6) 

 
When 3,n = it gives the Simpson 3

8
 rule of; 

 

[ ]4 0 1 2 3

3
( ) 3 ( ) 3 ( ) ( )

8
A f x f x f x f x

∆= + + + .                                                   (7) 

 

When 4n = , it gives the Boole’s rule of; 
 

[ ]5 0 1 2 3 4

2
7 ( ) 32 ( ) 12 ( ) 32 ( ) 7 ( )

45
A f x f x f x f x f x

∆= + + + + .                           (8) 

 

When 6n = , it gives the Weddle’s rule of; 
 

[ ]6 0 1 2 3 4 5 6

3
( ) 5 ( ) ( ) 6 ( ) ( ) 5 ( ) ( )

10
A f x f x f x f x f x f x f x

∆= + + + + + +  .  (9) 

 
Details of other numerical integration methods like Richardson’s extrapolation, Romberg rule, Gauss 
quadrature rule, Euler method and so forth can be found in [8,9]. 
 
The main objective of this paper is to propose a numerical integration method that provides improved 
estimates as compared to the Newton-Cotes methods of integration. 
 

2 Materials and Methods  
 
2.1 Proposed numerical integration formula 
 

Suppose the interval [ ],a b  is subdivided into ( )n n z+∈  equal divisions each of width  ∆ =  $-%
� . Define 

�� by �� = . + 
∆, 
 = 0,1,2, … , �. Then /� = . and /� = 0  Let �� = �(��), 
 = 0,1,2, … , � be the ordinate 
at �� , 
 = 0,1,2, … , � of the function �.  
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Suppose also that the interval 1�� , ��"�2, 
 = 0, 1, 2, … , � is divided into k  equispaced points �� + 3
�∆, 4 =

1, 2, … ,  ;  then the corresponding ordinates of f  are given by ��"6
7

= � 8�� + 3
�∆9 , 4 = 1, 2, … ,  ;  
 =

0,1,2, … , � − 1. Clearly when 4 =  , �� + �
�∆ = ��"� and ��"7

7
= ��"�.  

 

 
 

   Fig. 1a. Monotone decreasing function of :          Fig. 1b. Monotone increasing function of : 
Source: own research 

 

As shown in Fig. 1a and Fig. 1b, the area under the curve for the thi strip is estimated as 
 

1
*

1
1

2 , 0,1,2,..., 1; 1,2,...
2

k

i i t i
i

t k

A f f f i n k
k

−

++=

 ∆= + + = − = 
 

∑                             (10) 

 

when 1k = , we have  
 

[ ]*
12i i iA f f +

∆= + .                                                                                                                    (10a) 

 
When 2,k = we have  

 

*
1 1
2

2
4i i i

i
A f f f ++

 ∆= + + 
 

 .                                                                                                   (10b) 

 
 
When 3,k =  it becomes 
 

*
1 2 1
3 3

2
6i i i

i i
A f f f f ++ +

  ∆= + + +  
    .

                                       (10c) 

 

Here we show the relationship in (10) for 2k = . The relationship in (10) for 3k ≥  can similarly be 

obtained. We have left out the case of 1k =  because it is the same as the Trapezium Rule. Now, when 
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2k =  an estimate of the area of the thi strip under the curve is given by (the sum of areas of two triangles 
(approximate) and two rectangles as shown in the diagrams (Figs.1a and 1b) for f monotone increasing and 
decreasing. 
 

*
1 1 1 1 1 1 1

2 2 2

min( , ) min( , ) min( , ) max( , )
2 4 4i i i i i i i i i

i i i
A f f f f f f f f f f f+ + + ++ + +

     ∆ ∆ ∆= ∆ + − + − + −     
     

     

(11) 
 
If f  is monotone increasing over (�� , ��"�), equation (11) reduces to 
  

*
1 1 1 1
2 2 22 4 4i i i i i

i i i
A f f f f f f f++ + +

     ∆ ∆ ∆= ∆ + − + − + −     
     

  

       1 1 1 1
2 2 2

4 2 2
4 i i i i

i i i
f f f f f f f++ + +

 ∆= − − + − + − 
 

  

1 1
2

2
4 i i

i
f f f ++

 ∆= + + 
 

 .                                                                                                    (11a) 

 
When the function f  is monotone decreasing over (�� , ��"�), equation (11) reduces to 

 

*
1 1 1 1 1 1

2 2 22 4 4i i i i i
i i i

A f f f f f f f+ + ++ + +

     ∆ ∆ ∆= ∆ + − + − + −     
     

 

     1 1 1 1 1 1

2 2 2

4 2 2
4 i i i i

i i i
f f f f f f f+ + ++ + +

 ∆= + − + − + − 
 

 

      1 1

2

2
4 i i

i
f f f+ +

 ∆= + + 
 

 

    1 1

2

2
4 i i

i
f f f ++

 ∆= + + 
 

 .                 (11b) 

 
Clearly, the results are the same irrespective of whether f  is monotone increasing or decreasing; hence 
result. 
 
2.2 Proposed composite numerical integration method 
 
The proposed composite method provides a formula for estimating numerically the area under the curve of 

f  and above the horizontal axis between the intervals [ ],a b . It is the sum of the areas of all the n  strips 

each of width 
b a

n

−∆ =  and k  sub-divisions at the top as indicated in the diagram (Figs. 1a and 1b). Thus 

the proposed composite numerical integration method is given by; 
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1 1 1

0
1 0 1

2 2
2

n n k

n i t n
i

i i t k

A f f f f
k

− − −

+= = =

 ∆= + + + 
 

∑ ∑∑  .                                                                     (12) 

 

Where the subscript in nA  means the area estimation is based on n  segments in the interval 1., 02. The 

symbols in (12) are as previously defined. 
 

The derivation follows trivially by summing the * ( 0,1,2,..., 1)
i

A i n= −  in equation (10). 

 
When 2k = , equation (12) reduces to 
 

1 1

0 1
1 0 2

2 2
4

n n

n i n
i

i i

A f f f f
− −

+= =

 ∆= + + + 
 

∑ ∑
. 

 
When 3,k =  we have 
 

1 1 1

0 1 2
1 0 03 3

2 2 2
6

n n n

n i n
i i

i i i

A f f f f f
− − −

+ += = =

 ∆= + + + + 
 

∑ ∑ ∑
. 

 

The cases for 4k ≥ can similarly be generated.  
 
Example 
 
As an illustration, we will use the exact method and the various numerical methods mentioned to estimate 
the following integral: 
 

# ;)<&�=
�

 

 
Method 1: “Exact” Integration 
 

2
2 2 2

00 0 !

n
x

n

x
e dx dx

n

∞

=
= ∑∫ ∫   

        
2 2

0 0 !

n

n

x
dx

n

∞

=

=∑∫   

2 1

0

2

(2 1) !

n

n n n

+∞

=

=
+∑   

3 5 7 232 2 2 2
2 ...

3 5(2!) 7(3!) 23(11!)
= + + + + + .    

=16.45263 
 
Now to estimate the given integral by the various methods mentioned above, we choose � = 12 divisions of 

the interval 10,22  from which we obtain ∆ =  $-%
�= =  =-�

�= = 0.1667 together with consequent �� = . +
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∆ values and the corresponding ordinates, �� = ;)@< (
 = 0, 1, 2, … , 12) shown in Table 1 in the appendix 
section.  
 
Method 2: Trapezium rule 
 
The estimate of the integral by the trapezium rule is given by  
 

[ ]0.1667
1 2(1.0282 1.1175 ... 16.0832 28.8212) 54.5982

2
= + + + + + +   

[ ]1
1 2(73.9196) 54.5982

12
= + +

 
203.4374

16.95311
12

= = . 

 

Method 3: Simpson’s 13  rule 

 

Using Simpson’s 13  rule, the estimate of the integral is given by 

 

[0.16667
1 4(1.0282 1.2840 2.0026 3.9005 9.4877 28.8212)

3
= + + + + + + +   

]2(1.1175 1.5596 2.7183 5.9167 16.0832) 54.5982+ + + + +   

[ ]1
1 4(46.5243) 2(27.3954) 54.5982

18
= + + +   

296.4859
16.47144

18
= = . 

 

Method 4: Simpson’s 38  rule 

 

By the Simpson’s 38  rule, the estimate of the integral is 

 

[3(0.16667)
1 3(1.0282 1.1175 1.5596 2.0026 3.9005 5.9167

8
= + + + + + + +    

]16.0832 28.8212) 2(1.2840 2.7183 9.477) 54.5982+ + + + +   

[ ]1
1 3(60.4296) 2(13.4900) 54.5982

16
= + + +   

263.8669
16.49168

16
= = . 
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Method 5: Boole’s rule 
 
Using Boole’s rule, the estimate is 
 
 

[2(0.16667)
7(1 54.5982) 32(1.0282 1.2840 ... 9.4877 28.8212)

45
= + + + + + + +  

]12(1.1175 2.7183 16.0832) 14(1.5596 5.9167)+ + + +   

[ ]1
7(55.5982) 32(46.5243) 12(19.91904) 14(7.4763)

135
= + + +   

2221.66
16.45674

135
= = . 

 
Method 6: Weddle’s rule 
 
Using Weddle’s rule, the estimate is 
 

[3(0.16667)
1 5(1.0282 3.9005) (1.1175 5.9167) 6(1.2840 9.4877)

10
= + + + + + + +   

](1.5596 16.0832) 5(2.0026 28.8212) 2(2.7183)54.5982+ + + + +   

[ ]1
1 5(33.0187) 6(10.7717) 2(2.7183) 24.677 54.5982

20
= + + + + +   

329.1048
16.45524

20
= = . 

 
Method 7: Proposed Numerical Integration Method  
 

For this method, the values of �� and ��"*
<, together their corresponding ordinates �� = ; )@< and ��"*

< = ;)@A*< ,

 = 0, 1, … 12  are shown in Table 1 in the appendix. The values are based on  = 2 for the proposed 
method. As indicated early on,  = 1 is the same as the Trapezium rule. Thus by the proposed method for  = 2, an estimate of the integral is given as follows 
 

[ ](0.1667)
1 2(1.0070 1.0282 1.0645 ... 39.3939) 54.5982

4
= + + + + + +  

[ ]1
1 2(171.1452) 54.5982

24
= + +   

397.8886
16.57869

24
= = . 

 

Generally, when 8,9,...,14,k =  the values for the Proposed Integration method for evaluating 
2

2

0

xe dx∫  

taking 12 segments are given in Table 1. 
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Table 1. Estimates of the area using numerical integration method with 12 segments 
 

Integration method Area True 
error 

Absolute relative 
true errors, |C%| m 

Exact (Numerical integration) 16.452630 -   
Trapezium rule 16.953110 0.500480 3.0419% 1 
Simpson’s 1/3 16.471440 0.018810 0.1143% 3 
Simpson’s 3/8 16.491680 0.039050 0.2373% 2 
Boole’s rule 16.456740 0.004110 0.0250% 3 
Weddle’s rule 16.455240 0.002610 0.0159% 4 
Proposed method when k=8 16.460530 0.007900 0.0480% 3 
Proposed method when k=9 16.458870 0.006240 0.0379% 3 
Proposed method when k=10 16.457680 0.005050 0.0307% 3 
Proposed method when k=11 16.456810 0.004180 0.0254% 3 
Proposed method when k=12 16.456140 0.003510 0.0213% 3 
Proposed method when k=13 16.455620 0.002990 0.0182% 4 
Proposed method when k=14 16.455210 0.002580 0.0157% 4 
Proposed method when k=15 16.454870 0.002240 0.0136% 4 
Proposed method when k=16 16.454600 0.001970 0.0120% 4 
Proposed method when k=17 16.454380 0.001750 0.0106% 4 
Proposed method when k=18 16.454190 0.001560 0.0095% 4 
Proposed method when k=19 16.454030 0.001400 0.0085% 4 
Proposed method when k=20 16.453890 0.001260 0.0077% 4 

* m = the number of significant digits at least correct 
Source: own research 

 
The entries in the last columns of Table 1 are obtained as follows. 
 

C% = D�.E4 − !FFGH�
I.4;
D�.E4   

 

I = 2 − log M |C%|
0.02N 

 

3 Results and Discussion 
 
Comparing the Proposed Numerical Integration Method to the various numerical integration formulas from 

Table 1 above using the absolute relative true errors, when 1k = , the area under the curve is 16.95311 

which is the same as the area under the curve using the Trapezium rule. Also when 2k =  and above, the 
estimates of the area under the curve are better than the Trapezium rule. That is, the Trapezium rule yields 
the highest absolute relative true error of 3.0419% as compared to the “exact” integration. Furthermore, 
when k = 6 and above, the estimates of the area under the curve are better than the Simpson 1

3
 and 3

8
 

rule. When 11k = and above, the estimates of the area under the curve are better than Boole’s rule and 
when k = 13 and above, the estimates of the area under the curve are better than Weddle’s rule. The 
proposed method with smaller divisions of the interval gives a better estimate with lesser errors as compared 
to the Trapezium rule, Simpson 1

3
and 3

8
 rule, Boole’s and Weddle’s rule. Similar results for different 

number of segments are evident in Tables 2 to 7.  
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Given an absolute relative true error bound of ≤ 0.02% clearly from Tables 1 to 7 as the ∆  decrease, k  
decreases. Hence it suffices to determine the relationship between andk ∆  so that for the function in (12), 

one can determine   the number of divisions at the top to arrive at the desired estimate with the stated 
absolute relative true error bound.  
 
 To find the equation, a scatter plot was drawn to find the relationship as shown in Fig. 2. It resulted in a 
regression equation of onk ∆  as  = 80.7240 × ∆ with a coefficient of determination of 0.9892.  

 
Hence, to estimate the area under the curve of our example with 20 segments, the number of divisions,   at 
the top of each segment required to obtain an absolute relative true error less than 0.02% is given by 

 = 80.7240 8=-�
=� 9 ≈ 8.  

 
Further research can be made on several groups of functions to show whether the same relationship exists as 

the function in the example so that when k   is decreasing, ∆  is decreasing. 
 

4 Draw Backs 
 
The Proposed Numerical Integration Method is simple and gives accurate estimates in definite integration 
but requires computing more ordinates than in the case of the other methods with the same number of 
segments. Nevertheless, with the help of computers, one can go around this drawback by developing 
algorithms which will do the computations with ease. 
 

5 Conclusion 
 
The proposed method with smaller segmentation give better estimates with smaller errors than the 
trapezium, Boole’s, Weddle’s and Simpson’s rules. It also provided a formula for the number of divisions 
required at the top of each segment to obtain an estimate with an absolute relative true error less than a stated 
tolerance.  
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Appendix A 
 

Table 2. Estimates of the area using numerical integration method with 8 segments 
 

Integration method Area True error Absolute relative true 
errors, |C%| m 

“Exact” Integration 16.45263 -   
Trapezium rule 17.56509 1.11246 6.76159% 1 
Simpson’s 1/3 rule 16.53859 0.08596 0.52247% 2 
Simpson’s 3/8 rule 
 

- - - - 
Boole’s rule 
 

16.48426 0.03163 0.19225% 3 
Weddle’s rule - - - - 
Proposed method when k=8 16.47039 0.01776 0.10795% 3 
Proposed method when k=9 16.46667 0.01404 0.08534% 3 
Proposed method when k=10 16.46400 0.01137 0.06911% 3 
Proposed method when k=11 16.46203 0.00940 0.05713% 3 
Proposed method when k=12 16.46053 0.00790 0.04802% 3 
Proposed method when k=13 16.45936 0.00673 0.04091% 3 
Proposed method when k=14 16.45843 0.00580 0.03525% 3 
Proposed method when k=15 16.45768 0.00505 0.03069% 3 
Proposed method when k=16 16.45707 0.00444 0.02699% 3 
Proposed method when k=17 16.45656 0.00393 0.02389% 3 
Proposed method when k=18 16.45614 0.00351 0.02133% 3 
Proposed method when k=19 16.45578 0.00315 0.01915% 4 
Proposed method when k=20 16.45547 0.00284 0.01726% 4 

* m = the number of significant digits at least correct 
Source: own research 

 
Table 3. Estimates of the area using numerical integration method with 9 segments 

 
Integration method Area True error Absolute relative true 

errors, |C%| m 

“Exact” Integration 16.45263 -   
Trapezium rule 17.33562 0.88299 5.36686% 1 
Simpson’s 1/3 rule - - - - 
Simpson’s 3/8 rule 
 

16.56296 0.03163 0.19225% 3 
Boole’s rule 
 

- - - - 
Weddle’s rule - - - - 
Proposed method when k=8 16.46667 0.01777 0.10801% 3 
Proposed method when k=9 16.46372 0.01404 0.08534% 3 
Proposed method when k=10 16.46161 0.01137 0.06911% 3 
Proposed method when k=11 16.46005 0.00940 0.05713% 3 
Proposed method when k=12 16.45887 0.00624 0.03793% 3 
Proposed method when k=13 16.45795 0.00532 0.03234% 3 
Proposed method when k=14 16.45721 0.00458 0.02784% 3 
Proposed method when k=15 16.45662 0.00399 0.02425% 3 
Proposed method when k=16 16.45614 0.00351 0.02133% 3 
Proposed method when k=17 16.45574 0.00311 0.01890% 4 
Proposed method when k=18 16.45540 0.00277 0.01684% 4 
Proposed method when k=19 16.45512 0.00249 0.01513% 4 
Proposed method when k=20 16.45487 0.00224 0.01361% 4 

* m = the number of significant digits at least correct 
Source: own research 
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Table 4. Estimates of the area using numerical integration method with 10 segments 
 

Integration method Area True error Absolute relative 
true errors, |C%| m 

“Exact” Integration 16.45263 -   
Trapezium rule 17.17021 0.71758 4.36149% 1 
Simpson’s 1/3 rule 16.49020 0.03758 0.22841% 2 
Simpson’s 3/8 rule - - - - 
Boole’s rule - - - - 
Weddle’s rule - - - - 
Proposed method when k=8 16.46400 0.01109 0.06741% 3 
Proposed method when k=9 16.46161 0.00899 0.05464% 3 
Proposed method when k=10 16.45991 0.00728 0.04425% 3 
Proposed method when k=11 16.45864 0.00602 0.03659% 3 
Proposed method when k=12 16.45768 0.00505 0.03069% 3 
Proposed method when k=13 16.45693 0.00430 0.02614% 3 
Proposed method when k=14 16.45634 0.00371 0.02255% 3 
Proposed method when k=15 16.45586 0.00323 0.01963% 4 
Proposed method when k=16 16.45547 0.00284 0.01726% 4 
Proposed method when k=17 16.45515 0.00252 0.01532% 4 
Proposed method when k=18 16.45487 0.00224 0.01361% 4 
Proposed method when k=19 16.45464 0.00201 0.01222% 4 
Proposed method when k=20 16.45445 0.00182 0.01106% 4 

* m = the number of significant digits at least correct 
Source: own research 

 

Table 5. Estimates of the area using numerical integration method with 11 segments 
 

Integration method Area True error Absolute relative 
true errors, |C%| m 

“Exact” integration 16.45263 -   
Trapezium rule 17.04713 0.59450 3.61340% 1 
Simpson’s 1/3 rule - - - - 
Simpson’s 3/8  rule - - - - 
Boole’s rule - - - - 
Weddle’s rule - - - - 
Proposed method when k=8 16.46203 0.00940 0.05713% 3 
Proposed method when k=9 16.46005 0.00743 0.04516% 3 
Proposed method when k=10 16.45864 0.00602 0.03659% 3 
Proposed method when k=11 16.45760 0.00497 0.03021% 3 
Proposed method when k=12 16.45681 0.00418 0.02541% 3 
Proposed method when k=13 16.45619 0.00356 0.02164% 3 
Proposed method when k=14 16.45570 0.00307 0.01866% 4 
Proposed method when k=15 16.45530 0.00267 0.01623% 4 
Proposed method when k=16 16.45498 0.00235 0.01428% 4 
Proposed method when k=17 16.45471 0.00208 0.01264% 4 
Proposed method when k=18 16.45448 0.00185 0.01124% 4 
Proposed method when k=19 16.45429 0.00166 0.01009% 4 
Proposed method when k=20 16.45413 0.00150 0.00912% 4 

* m = the number of significant digits at least correct 
Source: own research 
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Table 6. Estimates of the area using numerical integration method with 13 segments 
 

Integration method Area True error Absolute relative true 
errors, |C%| m 

“Exact” Integration 16.45263 -   
Trapezium rule 16.87970 0.42708 2.59582% 1 
Simpson’s 1/3 rule - - - - 
Simpson’s 3/8 rule - - - - 
Boole’s rule - - - - 
Weddle’s rule - - - - 
Proposed method when k=8 16.45936 0.00673 0.04091% 3 
Proposed method when k=9 16.45795 0.00532 0.03234% 3 
Proposed method when k=10 16.45693 0.00431 0.02620% 3 
Proposed method when k=11 16.45619 0.00356 0.02164% 3 
Proposed method when k=12 16.45562 0.00299 0.01817% 4 
Proposed method when k=13 16.45518 0.00255 0.01550% 4 
Proposed method when k=14 16.45483 0.00220 0.01337% 4 
Proposed method when k=15 16.45454 0.00191 0.01161% 4 
Proposed method when k=16 16.45431 0.00168 0.01021% 4 
Proposed method when k=17 16.45412 0.00149 0.00906% 4 
Proposed method when k=18 16.45396 0.00133 0.00808% 4 
Proposed method when k=19 16.45382 0.00119 0.00723% 4 
Proposed method when k=20 16.45370 0.00107 0.00650% 4 

* m = the number of significant digits at least correct 
Source: own research 

 
Table 7. Estimates of the area using numerical integration method with 14 segments 

 
Integration method Area True error Absolute relative 

true errors, |C%| m 

“Exact” Integration 16.45263 -   
Trapezium rule 16.82130 0.36868 2.24086% 1 
Simpson’s 1/3 rule 16.46302 0.01039 0.06315% 3 
Simpson’s 3/8 rule - - - - 
Boole’s rule - - - - 
Weddle’s rule - - - - 
Proposed method when k=8 16.45843 0.00580 0.03525% 3 
Proposed method when k=9 16.45721 0.00458 0.02784% 3 
Proposed method when k=10 16.45634 0.00371 0.02255% 3 
Proposed method when k=11 16.45500 0.00307 0.01866% 4 
Proposed method when k=12 16.45521 0.00258 0.01568% 4 
Proposed method when k=13 16.45483 0.00220 0.01337% 4 
Proposed method when k=14 16.45452 0.00189 0.01149% 4 
Proposed method when k=15 16.45428 0.00165 0.01003% 4 
Proposed method when k=16 16.45408 0.00145 0.00881% 4 
Proposed method when k=17 16.45391 0.00128 0.00778% 4 
Proposed method when k=18 16.45377 0.00114 0.00693% 4 
Proposed method when k=19 16.45366 0.00103 0.00626% 4 
Proposed method when k=20 16.45356 0.00093 0.00565% 4 

* m = the number of significant digits at least correct 
Source: own research 
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Table A1. Abscissas RS , RS"T
U
 and corresponding ordinates :S , :S"T

U
 

 
 �� �� ��"*
<  ��"*

<  

0 0 1 0.0833 1.0070 1 0.1667 1.0282 0.2500 1.0645 2 0.3333 1.1175 0.4167 1.1896 3 0.5000 1.2840 0.5833 1.4053 4 0.6667 1.5596 0.7500 1.7551 5 0.8333 2.0026 0.9167 2.3170 6 1.0000 2.7183 1.0833 3.2336 7 1.1667 3.9005 1.2500 4.7707 8 1.3333 5.9167 1.4167 7.4405 9 1.5000 9.4877 1.5833 12.2674 10 1.6667 16.0832 1.2750 21.3809 11 1.8333 28.8212 1.9167 39.3939 12 2.0000 54.5982   
Source: own research 

 

 
 

Fig. 2. A regression plot of X on Y 
Source: own research 
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