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Abstract

The main objective of this paper is to propose a nunmidntegration method that provides improved
estimates as compared to the Newton-Cotes methods gfdtie. The method is an extension |of
trapezoidal rule where after segmentation, the top padgaoh segment was further subdivided into

rectangles and/or squares and triangles (approximate)arBaeof each segment is then obtained as the
sum of areas of these geometric shapes and the artea @bwn part of the segments which is usually a
rectangle. The process resulted in an improved formula for nceth@rtegration which we derived in the
paper. The proposed method was compared with some Newton-Cdfesdsef integration and it

outperformed. With the proposed method, one can provide estimitegredetermined desired absolute
relative true errors.
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1 Introduction

As indicated by Kaw and Keteltas [1], integration is fitecess of measuring the area under a function
plotted on a graph. The process also known as integrallaalhas countless applications in a wide range of
fields including engineering, statistics, finance, adalacience, etc. [2-4,1,5] and biostatistics to edgma
guantiles and various distribution functions. Numericabgration has increased greatly in estimating
likelihoods and posterior distributions using Bayesian methods [6].

Sometimes, the evaluation of expressions involving thesgreds can become very difficult, if not
impossible. Due to this reason, a number of different nuademethods (numerical integration) have been
developed to simplify the integral [7]. For example irtistes, emphasis in recent years on Bayesian and
empirical Bayesian methods and on mixture models hasygirateased the importance of such numerical
integration for computing likelihoods and posterior disitions and associated moments and derivatives [7].

Numerical integration involves the approximation of numericaleskthat cannot be integrated analytically
[7]. It is sometimes referred to as quadrature whichlirgoreplacing the area under a curve by an area of a
square. Several numerical integration methods such asoN&dtes, Romberg integration, Gauss
Quadrature and Monte Carlo integration are used to evathate functions that can’t be integrated
analytically. Newton-Cotes methods use interpolating rpmiyials. Newton-Cotes methods such as the
Trapezium rule, Simpsoh/3 rule, Simpsor3/8 rule and Boole’s rule are special cases of 1st, 2uidadd

4th order polynomials used respectively and the Weddle's isuleiso a special case of th& 6rder
polynomial. The Trapezium rule and the numerical intikgmamethod we are proposing have no restriction
on the number of segmentation. The number of segmenthddBimpsori/3 rule must be even and for
Simpson3/8 rule, the number of segments must be a multiple of B.tlk® Boole’s rule the number of
segments must be a multiple of 4 and for Weddle’s rulatingber must be a multiple of 6.

The Newton-Cotes formula is a frequently used interpolatoctfon in the form of a polynomial. This
formula involves points in the interva[a, b] with N—1 order polynomial which passes through the

abscissa; (i =0,1,...,n) equally spaced. Approximating the area under the cyrwe f(X) from
X=a to X=b, the closed Newton-Cotes formula employs Lagrange iol@ipg when fitting

(b-a)
n

polynomials. Lettingx, = a, X, = bandA = , we have

fu0) = D FODLG). &

i=0

wheren in f,,(x) stands for the order polynomial that approximates the famgti= f (x) given atn + 1
data points aéx,, vo), (1, Y1), -, (Xn, ) and

n
X —X
Li(x) =  i=012.,n. )
Xi — X
k=1,izk b K

whereL;(x) is a weighting function that includes a productrof- 1 terms with terms of = k omitted [1].

Integrating f (X) over[a, b] and choosingk = a+M we have the Newton-Cotes rule;
n
b n
Aua D) = [ f@ =Y wir ). ®
a i=0
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where the weighW is determined by;

b T x - X .
w; = f Li(x)dx = f dx,i=0,1,.2,..,1n. 4)
a R A

When n =1, we have a simple trapezoidal rule of;

A= 21100+ 109)]. ®

When n =2, it gives the Simpso% rule of;

A= 2100 +AT00+ 1(x)]. ®

When n = 3, it gives the Smpsor% rule of;

3A
A, =§[ F(%) +3F(x)+3F(x)+ f(%)]. ™
When N =4, it gives the Boole’s rule of;

:%[7f(xo)+32f(xl)+ 12f (x, )+ 32f (6 )} 7 (x, ). @

When N=6, it gives the Weddle’s rule of;

= B[ 100) +5F00)+ T06)+6 F(x)+ (x)+5 100+ fOx]. ©

Details of other numerical integration methods liR&chardson’s extrapolation, Romberg rule, Gauss
quadrature rule, Euler method and so forth carobed in [8,9].

The main objective of this paper is to propose aemical integration method that provides improved
estimates as compared to the Newton-Cotes metliod®gration.

2 Materialsand M ethods
2.1 Proposed numerical integration formula

Suppose the interva[la, b] is subdivided inton(nD Z+) equal divisions each of width = b%a Define

x;byx; =a+iAi=012,..,n.ThenX, = aandX, = b Letf;, = f(x;),i =0,1,2,.. ,n be the ordinate
atx;, i =0,1,2,...,n of the functionf.
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Suppose also that the interya}, x;,,],i = 0,1,2, ...,n is divided intoK equispaced points +£A,t =
1,2,...,k; then the corresponding ordinates 6f are given byfi+£ = f(xl- +£A),t =12,..,ki=
k

0,1,2,...,n— 1. Clearly whert =k, x; + %A =X andeE = fii1-
k

I fi + i1

S \ :ﬁ_ )

N

» Ji+] ﬁ

Xi X+t Xi+l Xi X+ Xi+l

Fig. 1a. Monotone decreasing function of f Fig. 1b. Monotoneincreasing function of f
Source: own research

As shown in Fig. 1a and Fig. 1b, the area undectinee for thei " strip is estimated as
) A k-1
:E f|+22 fi+£+ﬁ+l ,i:0,1,2,...n_ ]k: 1,2,... (10)
t=1 k

whenk =1, we have

*

=20+ ). (102

When k =2, we have

A =%[fi +2f 4 fm} : 10p)
2

When k = 3, it becomes

A :%{f. +2{ fi+1 + fi+2}+ fi+l:| (10c)
3

Here we show the relationship in (10) fkr= 2. The relationship in (10) fok =3 can similarly be
obtained. We have left out the casekof 1 because it is the same as the Trapezium Rule. Mdwn
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K =2 an estimate of the area of thtgstrip under the curve is given by (the sum of adasvo triangles
(approximate) and two rectangles as shown in tagrdims (Figs.1a and 1b) fomonotone increasing and
decreasing.

A =Amin(f, fm)%[ f

a7 min(f ’t+1):|+%|: f_+}_ min(f vf+1):|+é4|: max( f., ) f.+1:|

(11)
If f is monotone increasing ovéx;, x;,,), equation (11) reduces to
x A A A
=Af+—| f —-f |[+—=|f - f|+— - f
A i 2|: i+% |:| 4|: i+—; |:| 4|:f+l i+;:|
=é|:4fi -2f -2fi+f  —f+f - f 1}
4 i i+ i+
=é[fi +2f  + fiﬂ} . (11a)
4 i+
When the functionf is monotone decreasing ouet, x;..;), equation (11) reduces to
x A A A
S R s & [
_A
=2 4fi+1+2fi+; - 2f, + fi+}— f,+f- fi+71
02t o]
=é[fi +2f L+ fm} . (11b)
4 i+E

Clearly, the results are the same irrespective loétiwer f is monotone increasing or decreasing; hence
result.

2.2 Proposed composite numerical integration method

The proposed composite method provides a formul@$timating numerically the area under the curfve o
f and above the horizontal axis between the inter[\aJ b] . It is the sum of the areas of all thk strips

each of widthA = a and K sub-divisions at the top as indicated in the diag(Figs. 1a and 1b). Thus

n
the proposed composite numerical integration methgilven by;
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n-1 n-1 k-1
A = 2k[f+22f+2 dof o+ } (12)
=1

i=0 t=1 '+E

Where the subscript i, means the area estimation is basedlosegments in the intervid, b]. The
symbols in (12) are as previously defined.

The derivation follows trivially by summing thé\i* (1=0,1,2,...n— 1in equation (10).

When k =2, equation (12) reduces to

{f+22f+2§f_; }

When k =3, we have

A1=é[fo+2§fi+2§fll+22f2 }
6 i=1 iz0 '3 i *3 _

The cases foK = 4 can similarly be generated.
Example

As an illustration, we will use the exact methodl d@ine various numerical methods mentioned to estima
the following integral:

2 2
fexdx
0

Method 1: “Exact” Integration

iexz dxzf X’ o
0 0

n=0

0 2n+1

r,Z:(2n+1)nI
23 2 2 °
—+ +...+ .
"3 5(2I) 7(3) 23(11)

=16.45263

Now to estimate the given integral by the variowsthods mentioned above, we choase 12 divisions of

the interval[0,2] from which we obtailA = bre - = 0.1667 together with consequent = a +

12 1



Mettle et al.; BJMCS, 17(1): 1-15, 2016; Article.BGMCS.23048

iA values and the corresponding ordinafes; exi (i=0,1,2,..,12) shown in Table 1 in the appendix
section.

Method 2: Trapezium rule

The estimate of the integral by the trapezium isilgiven by

0.1667
2

= 1—12[1+ 2(73.9196) 54.594:

1+2(1.0282 1.1175 + 16.0832 28.82%2) 54.5¢

- 2550 160531

Method 3: Simpson’% rule

Using Simpson’s 3 rule, the estimate of the integral is given by

= 010667, 41,0282+ 1.2840 2.0026 3.9085 9.4877 28.92

2(1.1175+ 1.5596 2.7183 5.9167 16.0832) 542?

=%3[1+ 4(46.5243) 2(27.3954) 54.59F

_ 296.4859
18

=16.4714<

Method 4: Simpson’% rule
By the Simpson’s% rule, the estimate of the integral is

=3(L86667{1+3(1.0282l- 1.117% 1.559% 2.0026 3.9605 5.9%
16.0832+ 28.8212) 2(1.2840 2.7183 9.4¥7) 58@!

=1—16[1+ 3(60.4296) 2(13.4900) 54.59F

- 263.8669 16.4916¢
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Method 5: Boole’s rule

Using Boole’s rule, the estimate is

=%{7a+ 54.5082) 32(1.0282 1.2840 +.. 9.4877 283p
12(1.1175 2.7188 16.0832) 14(1.5506 5.93

=§3[7(55-5982)+ 32(46.5243) 12(19.91904) 14(%3)

- 2221.66_ 16.4567<
135

Method 6: Weddle’s rule

Using Weddle’s rule, the estimate is

:%{usa.ozw 3.9005) (1.1175 5.9167) 6(1.2840487.7)+
(1.5596+ 16.0832) 5(2.0026 28.8212) 2(2.7183%.5983

:2—10[1+5(33.0187)i- 6(10.7713) 2(2.7188) 24.677 H8Y

_329.1048_,¢ /550,
20

Method 7: Proposed Numerical Integration Method

X,
For this method, the values ngandxi%, together their corresponding ordinafes: exi andfi% =e ”%,
i=0,1,..12 are shown in Table 1 in the appendix. The valuestmsed ok = 2 for the proposed

method. As indicated early ok,= 1is the same as the Trapezium rule. Thus by thegsexp method for
k = 2, an estimate of the integral is given as follows

=_(0-1f67)[1+ 2(1.0070+ 1.0282 1.0645 +. 39.3939) 54.5
:2_14[1+ 2(171.1452% 54.59§;

- 397.8886_ 16.5786¢.

2
Generally, wherk =8,9,...,14 the values for the Proposed Integration methodefmluatingj eX2 dx
0

taking 12 segments are given in Table 1.
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Table 1. Estimates of the area using numerical integration method with 12 segments

Integration method Area True Absoluterelative m
error trueerrors, ||

Exact (Numerical integration) 16.452630 -

Trapezium rule 16.953110 0.500480  3.0419% 1
Simpson’s 1/3 16.471440 0.018810 0.1143% 3
Simpson’s 3/8 16.491680 0.039050  0.2373% 2
Boole’s rule 16.456740 0.004110 0.0250% 3
Weddle’s rule 16.455240 0.002610  0.0159% 4
Proposed method when k=8 16.460530 0.007900  0.0480% 3
Proposed method when k=9 16.458870 0.006240  0.0379% 3
Proposed method when k=10 16.457680 0.005050  (2@307 3
Proposed method when k=11 16.456810 0.004180 (%0254 3
Proposed method when k=12 16.456140 0.003510 (@213 3
Proposed method when k=13 16.455620 0.002990 (@182 4
Proposed method when k=14 16.455210 0.002580 (20157 4
Proposed method when k=15 16.454870 0.002240 (20136 4
Proposed method when k=16 16.454600 0.001970 (%0120 4
Proposed method when k=17 16.454380 0.001750 (20106 4
Proposed method when k=18 16.454190 0.001560 (20095 4
Proposed method when k=19 16.454030 0.001400 (20085 4
Proposed method when k=20 16.453890 0.001260 (20077 4

* m = the number of significant digits at least cect
Source: own research

The entries in the last columns of Table 1 areinbthas follows.

Exact — Approximate
&g =

Exact

&
m=2—log<(|)g;>

3 Results and Discussion

Comparing the Proposed Numerical Integration Mettwothe various numerical integration formulas from
Table 1 above using the absolute relative truergrnohenk =1, the area under the curve is 16.95311
which is the same as the area under the curve tisingrapezium rule. Also wheli =2 and above, the

estimates of the area under the curve are betterttie Trapezium rule. That is, the Trapezium yiddds
the highest absolute relative true error of 3.04188%acompared to the “exact” integration. Furthememor

when k = 6 and above, the estimates of the arearuhe curve are better than the Simp%nand%

rule. Whenk =11and above, the estimates of the area under the @rev better than Boole’s rule and
when k = 13 and above, the estimates of the aréaruthe curve are better than Weddle's rule. The
proposed method with smaller divisions of the iméigives a better estimate with lesser errorsoaspared

to the Trapezium rule, Simps%and% rule, Boole’'s and Weddle’s rule. Similar results flifferent

number of segments are evident in Tables 2 to 7.
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Given an absolute relative true error bounddf.02% clearly from Tables 1 to 7 as the decreasek
decreases. Hence it suffices to determine theioakitip betweerk andA so that for the function in (12),

one can determink the number of divisions at the top to arrive at thesired estimate with the stated
absolute relative true error bound.

To find the equation, a scatter plot was drawfirtd the relationship as shown in Fig. 2. It resdlin a
regression equation don/ ask = 80.7240 x A with a coefficient of determination of 0.9892.

Hence, to estimate the area under the curve oéxample with 20 segments, the number of divisiéreg,
the top of each segment required to obtain an atesoklative true error less than 0.02% is given by

k = 80.7240 (%) ~ 8.

Further research can be made on several groupmcfiéns to show whether the same relationshipeais
the function in the example so that whkn is decreasing/\ is decreasing.

4 Draw Backs

The Proposed Numerical Integration Method is singsld gives accurate estimates in definite integmati
but requires computing more ordinates than in tagecof the other methods with the same number of
segments. Nevertheless, with the help of computame, can go around this drawback by developing
algorithms which will do the computations with ease

5 Conclusion

The proposed method with smaller segmentation dieder estimates with smaller errors than the
trapezium, Boole’s, Weddle’s and Simpson’s rulésldo provided a formula for the number of divigo
required at the top of each segment to obtain tim&® with an absolute relative true error lessith stated
tolerance.
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Appendix A

Table 2. Estimates of the area using numerical integration method with 8 segments

Integration method Area Trueerror Absoluterelativetrue m
errors, |&,l
“Exact” Integration 16.45263 -
Trapezium rul 17.5650! 1.1124¢ 6.761599 1
Simpson’s 1/3 rule 16.53859 0.08596 0.52247% 2
Simpson’s 3/8 rule - - - -
Boole’s rule 16.48426 0.03163 0.19225% 3
Weddle’s rule - - - -
Proposemethodwhen k=¢ 16.4703! 0.0177¢ 0.107959 3
Proposed method when k=9 16.46667 0.01404 0.08534% 3
Proposed method when k=10 16.46400 0.01137 0.06911% 3
Proposemethodwhen k=1: 16.4620: 0.0094( 0.05713% 3
Proposed method when k=12 16.46053 0.00790 0.04802% 3
Proposemethodwhen k=1: 16.4593| 0.0067: 0.040919 3
Proposed method when k=14 16.45843 0.00580 0.03525% 3
Proposed method when k=15 16.45768 0.00505 0.03069% 3
Proposemethodwhen k=1¢ 16.4570° 0.0044- 0.026999 3
Proposed method when k=17 16.45656 0.00393 0.02389% 3
Proposemethodwhen k=1¢ 16.4561- 0.0035: 0.021339 3
Proposed method when k=19 16.45578 0.00315 0.01915% 4
Proposed method when k=20 16.45547 0.00284 0.01726% 4
* m = the number of significant digits at least cect
Source: own research
Table 3. Estimates of the area using numerical integration method with 9 segments
Integration method Area Trueerror Absoluterelativetrue m
errors, &,
“Exact” Integration 16.45263 -
Trapezium rule 17.33562 0.88299 5.36686% 1
Simpson’s 1/3 rul - - - -
Simpson'’s 3/8 rule 16.56296 0.03163 0.19225% 3
Boole’s rule - - - -
Weddle’s rule - - - -
Proposed method when k=8 16.46667 0.01777 0.10801% 3
Proposed method when k=9 16.46372 0.01404 0.08534% 3
Proposed method when k=10 16.46161 0.01137 0.06911% 3
Proposemethodwhen k=1 16.4600! 0.0094( 0.057139 3
Proposed method when k=12 16.45887 0.00624 0.03793% 3
Proposed method when k=13 16.45795 0.00532 0.03234% 3
Proposed method when k=14 16.45721 0.00458 0.02784% 3
Proposed method when k=15 16.45662 0.00399 0.02425% 3
Proposemethodwhen k=1t 16.4561. 0.0035: 0.02133% 3
Proposed method when k=17 16.45574 0.00311 0.01890% 4
Propoedmethodwhen k=1t 16.45541 0.0027° 0.016849 4
Proposed method when k=19 16.45512 0.00249 0.01513% 4
Proposed method when k=20 16.45487 0.00224 0.01361% 4

* m = the number of significant digits at least cect

Source: own resear

12
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Table 4. Estimates of the area using numerical integration method with 10 segments

Integration method Area Trueerror Absoluterelative m
trueerrors, ||
“Exact” Integration 16.45263 -
Trapezium rule 17.17021 0.71758 4.36149% 1
Simpson’s 1/3 rule 16.49020 0.03758 0.22841% 2
Simpson'’s 3/8 rule - - - -
Boole’s rule - - - -
Weddle’s rule - - - -
Proposed method when k=8 16.46400 0.01109 0.06741% 3
Proposed method when k=9 16.46161 0.00899 0.05464% 3
Proposed method when k=10 16.45991 0.00728 0.04425% 3
Proposed method when k=11 16.45864 0.00602 0.03659% 3
Proposed method when k=12 16.45768 0.00505 0.03069% 3
Proposed method when k=13 16.45693 0.00430 0.02614% 3
Proposed method when k=14 16.45634 0.00371 0.02255% 3
Proposed method when k=15 16.45586 0.00323 0.01963% 4
Proposed method when k=16 16.45547 0.00284 0.01726% 4
Proposed method when k=17 16.45515 0.00252 0.01532% 4
Proposed method when k=18 16.45487 0.00224 0.01361% 4
Proposed method when k=19 16.45464 0.00201 0.01222% 4
Proposed method when k=20 16.45445 0.00182 0.01106% 4
* m = the number of significant digits at least cect
Source: own research
Tableb5. Estimates of the area using numerical integration method with 11 segments
Integration method Area Trueerror Absoluterelative m
trueerrors, |g,|
“Exact” integration 16.45263 -
Trapezium rule 17.04713 0.59450 3.61340% 1
Simpson’s 1/3 rule - - - -
Simpson’s 3/8 rule - - - -
Boole's rule - - - -
Weddle’s rule - - - -
Proposed method when k=8 16.46203 0.00940 0.05713% 3
Proposed method when k=9 16.46005 0.00743 0.04516% 3
Proposed method when k=10 16.45864 0.00602 0.03659% 3
Proposed method when k=11 16.45760 0.00497 0.03021% 3
Proposed method when k=12 16.45681 0.00418 0.02541% 3
Proposed method when k=13 16.45619 0.00356 0.02164% 3
Proposed method when k=14 16.45570 0.00307 0.01866% 4
Proposed method when k=15 16.45530 0.00267 0.01623% 4
Proposed method when k=16 16.45498 0.00235 0.01428% 4
Proposed method when k=17 16.45471 0.00208 0.01264% 4
Proposed method when k=18 16.45448 0.00185 0.01124% 4
Proposed method when k=19 16.45429 0.00166 0.01009% 4
Proposed method when k=20 16.45413 0.00150 0.00912% 4

* m = the number of significant digits at least oect
Source: own research

13
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Table 6. Estimates of the area using numerical integration method with 13 segments

Integration method Area Trueerror Absoluterelativetrue m
errors, |&,4|

“Exact” Integration 16.45263 -

Trapezium rule 16.87970 0.42708 2.59582% 1

Simpson’s 1/3 rule - - - -
Simpson'’s 3/8 rule - - - -

Boole’s rule - - - -
Weddle’s rule - - - -
Proposed method when k=8 16.45936 0.00673 0.04091% 3
Proposed method when k=9 16.45795 0.00532 0.03234% 3
Proposed method when k=10 16.45693 0.00431 0.02620% 3
Proposed method when k=11 16.45619 0.00356 0.02164% 3
Proposed method when k=12 16.45562 0.00299 0.01817% 4
Proposed method when k=13 16.45518 0.00255 0.01550% 4
Proposed method when k=14 16.45483 0.00220 0.01337% 4
Proposed method when k=15 16.45454 0.00191 0.01161% 4
Proposed method when k=16 16.45431 0.00168 0.01021% 4
Proposed method when k=17 16.45412 0.00149 0.00906% 4
Proposed method when k=18 16.45396 0.00133 0.00808% 4
Proposed method when k=19 16.45382 0.00119 0.00723% 4
Proposed method when k=20 16.45370 0.00107 0.00650% 4
* m = the number of significant digits at least oect
Source: own research
Table 7. Estimates of the area using numerical integration method with 14 segments
I ntegration method Area Trueerror Absoluterelative m
trueerrors, |g,|
“Exact” Integration 16.45263 -
Trapezium rule 16.82130 0.36868 2.24086% 1
Simpson’s 1/3 rule 16.46302 0.01039 0.06315% 3
Simpson’s 3/8 rule - - - -
Boole’s rule - - - -
Weddle’s rule - - - -
Proposed method when k=8 16.45843 0.00580 0.03525% 3
Proposed method when k=9 16.45721 0.00458 0.02784% 3
Proposed method when k=10 16.45634 0.00371 0.02255% 3
Proposed method when k=11 16.45500 0.00307 0.01866% 4
Proposed method when k=12 16.45521 0.00258 0.01568% 4
Proposed method when k=13 16.45483 0.00220 0.01337% 4
Proposed method when k=14 16.45452 0.00189 0.01149% 4
Proposed method when k=15 16.45428 0.00165 0.01003% 4
Proposed method when k=16 16.45408 0.00145 0.00881% 4
Proposed method when k=17 16.45391 0.00128 0.00778% 4
Proposed method when k=18 16.45377 0.00114 0.00693% 4
Proposed method when k=19 16.45366 0.00103 0.00626% 4
Proposed method when k=20 16.45356 0.00093 0.00565% 4

* m = the number of significant digits at least oect
Source: own research
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Table Al. Abscissas x; (X1 and cor responding ordinates f; .
2 2

t Xi fi xi+% fi+%

0 0 1 0.0833 1.0070
1 0.1667 1.0282 0.2500 1.0645
2 0.3333 1.1175 0.4167 1.1896
3 0.5000 1.2840 0.583¢ 1.405:

4 0.6667 1.5596 0.7500 1.7551
5 0.8333 2.0026 0.9167 2.3170
6 1.0000 2.7183 1.083: 3.233¢

7 1.1667 3.9005 1.2500 4.7707
8 1.3333 59167 1.4167 7.4405
9 1.5000 9.4877 1.5833 12.2674
10 1.6667 16.0832 1.275( 21.380¢
11 1.8333 28.8212 1.9167 39.3939
12 2.0000 54.5982

Source: own research

_ _

OO N B O
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Fig. 2. Aregression plot of kon A
Source: own research
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