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Abstract 
 

Nuclear Magnetic Resonance (NMR) has been very useful in the study of pore size distribution of porous 
materials and in molecular recognition. Important properties of the porous media have been shown to be 
very much dependent on the T1 and T2 relaxation times. The NMR transverse magnetization carries 
information on the pores’ properties. This has been demonstrated by many experiments on porous media 
but analytical expressions showing the direct relationships between the pore features and the NMR 
parameters have been quite scarce in literature.  In this study, formulation of time dependent Bloch NMR 
equation for computational analyses of nano particles in porous media has been presented. Since the nano 
particle is expected to be imaged in a nano-porous medium, we apply the transformation that makes the 

NMR transverse magnetization
 

expressible in term of  with porosity . Two new 

parameters which validate the transformation are properly defined in terms of the porosity, T1 and T2 
relaxation parameters. The results obtained in this study can have applications in functional magnetic 
resonance imaging (fMRI), Petroleum exploration and well design, geological engineering and could be a 
frontier towards a very robust way of describing porousity and permeability in systems transporting 
particles of specific shape and form. 
 

 
Keywords: Bloch NMR equations; porosity; transverse magnetization; nano particles; porous media.   
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1 Introduction 
 
The study of viscous flow through permeable media has attracted substantial interest in science, engineering, 
and technology. The flow through permeable media takes place generally in geophysical and bio-mechanical 
systems and also has many engineering applications, such as, flow in fixed beds, petroleum industry, 
hydrology etc. Due to its broad areas of applications in science, engineering and industries, many different 
theoretical and experimental models have been used for describing the viscous flow past and through bulk 
materials or porous bodies [1,2]. With porous structured in the above mentioned areas, the structure of 
porous lamina must be considered and analyzed from all point of views. For analytical study of the fluid 
flows within porous structured bodies, so called porous media, the two terms: Porosity and permeability play 
significant and vital role. The porosity is defined as the ratio of voids’ volume to that of the volume of the 
material. Theoretically, it seems that if the material has more pores (voids), it will allow the fluid to pass 
through it easily, but actually it is not so and could be understood through the permeability which is defined 
as the easiness or ability (inter connectivity of pores) of the material to allow the fluids to pass through it            
[1-3]. Various methods and models have been written to describe this phenomenon of flow through materials 
characterized by pores, but very few of them really perform well when it comes to giving quantitave 
information with high resolution. Magnetic resonance imaging (MRI) uses a powerful magnetic field along 
with radio waves and a computer to produce highly detailed pictures of virtually all internal structures of 
matter. The result enables physicians to examine parts of the body quickly and in a more detailed way. MRI 
enables physicians to see through and identify diseases in a way that are not possible with other techniques. 
 
The principal ideas behind magnetic resonance are common to both electron spin resonance (ESR) and 
nuclear magnetic resonance (NMR), but there are differences in the magnitudes and signs of the magnetic 
interactions involved, which of course lead to divergences in the experimental techniques being 
implemented. In principle, all nuclei with odd mass number possess the property of spin; the spin angular 
momentum vector which is commonly denoted by �ħ, measured in unit of ħ, and ħ is the Planck’s constant 
divided by 2π. In a macroscopic assembly of protons subjected to an external field B(x), we expect to find 
some protons with α spin and some with β spin [4].   
 
Magnetic Resonance Imaging technique for nano-particle in biological system is a multiphysics process 
involving diverse physical domains such as magnetic fields and fluid dynamics. It is also a multiscale 
investigative process suitable for materials ranging from mini dimensions of the arteries to micro dimensions 
of the capillaries and micro particles down to the nano dimensions of single domain super paramagnetic 
particles [5,6]. For example, the protein structure could be taken from the crystallographic measurements, 
though Visual Molecular Dynamics (VMD) simulations are often used to relax the crystal structure to a 
more plausible conformation for specific physiological conditions. To resolve even longer time scales, the 
protein and lipid structures could be modelled as continuum regions delimited by hard wall boundaries, and 
characterized electrically by an average permittivity and static charge distribution. Mean while, MRI, 
through correct application of NMR flow equations can achieve even more when we model signals from 
each NMR-sensitive nuclei in term of their transverse magnetization. Thus, we can formulate and study the 
movement of micro or nano materials through pores of comparable sizes, with set of coupled differential 
equations known as the Bloch’s equations with relatively small computer cost. Fig. 1 below shows the 
simulation of the movement of Deoxyribonucleic Acid (DNA) by VMD. The whole process, of course could 
be conceptualized as a nanorobot transiting through a Si3N4 membrane, which is made of pores at the 
nanoscale level. Such simulation is computationally expensive and time consuming, while similar 
information could be deduced by simulation of magnetic resonance (MR) signals from the DNA and the 
Si3N4 nuclei.  
 
Evidently there is neither a complete modelling framework nor a single software package for simulating the 
entire process. This would require the integration of multiparticle simulation, molecular simulation, 
continuum-based models, stochastic methods and nanomechanics [7,8]. Nonetheless, critical physical 
parameters are captured by the simplified model of the fundamental Bloch NMR flow equation specifically 
adopted for porous medium. The analytical solutions to the Bloch equation can provide fundamental 
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computational tools which can stimulate interest for future research at the molecular and atomic scales for 
conceptualization, characterization, development of nano particles either in the form of nanorobots or nano 
machines [9,10].  
 

 
Fig. 1. VMD and NAMD simulation of DNA translocation through a nanopore in a Si3N4 membrane 

(a) Beginning of the simulation. (b) The moment when the terminal Watson–Crick base pair is split at the narrowest part 
of the pore. (c) A moment during the time interval of 8 ns that DNA spends in the conformation shown without moving. 
(d) The moment when DNA exits the pore while one base at the DNA end remains firmly attached to the surface of the 
nanopore. (e) End of the simulation, when most of the DNA has left the pore and the ionic current has returned to the 

open pore level [7] 
 

2 Mathematical Formulation of Bloch NMR Equations 
 
The phenomenon of Nuclear Magnetic Resonance which is the underlying physics behind Magnetic 
Resonance Imaging is known to be governed by the Bloch NMR flow equations. These differential 
equations in their coupled form relate magnetization to the applied radio frequency, gradient and static 
magnetic field. It is a known fact that the body and many other materials are made up of various NMR-
sensitive nuclei, whose spatial and time variation are captured by the Bloch equations. If we consider a bulk 
magnetic moment M (also known as the magnetization vector) of large assembly of spins at a certain 
temperature, they could either be electron or nuclear spin. With the help of an external field, �∝ of them are 
in the � spin state and, ��  of them are in the �  state [4], then the macroscopic magnetization vector’s 
behaviour under any condition is given by the following set of equations in the various Cartesian coordinate: 
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The above systems of equations (1,2,3) were used to derive a generalized partial differential equation (PDE) 
that can be used for the analysis of any system composed of NMR-sensitive material by imposing suitable 
boundary conditions [11-13]. The fundamental NMR time dependent second order differential equation 
which is applicable to any fluid flow problem at any given time [11-14] is thus given by: 
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Where �� is the transverse magnetization also known as the Magnetic Resonance (MR) signal, �� � �
$%



�

$&
 , � � �

$%'$&
. �� is the spin-lattice, �� is the spin-spin relaxation time, � is the gyromagnetic ratio, ����, 
� 

is the external magnetic field and the function  
()
$%

�����, 
� is the forcing term.  

 

3 Formulation of Bloch Equation for Steady Flow in Porous Media 
 
In a study done by Storm, Arnold J, et al. [15], it was opined that the dynamics of the DNA through the 
Si3N4 was in fact not dependent on spatial distance and does not change appreciably over a large � for say a 

long time. From the knowledge of the analysis of PDE, it is thus safe to equate every 
*+

*	+ term to zero for 

such situation. Invoking this condition on equation (4), it becomes: 
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In this study, we will solve the time dependent modified Bloch NMR flow equation given in equation (5) 
using Hermite series method of solution. As a matter of fact, what comes to mind is that there are other 
methods of solution that as well can be used to derive the solution to equation (5), some of which are given 
in [12,13,15]. However, we have chosen to present our solution using series method because the addition 
operation is more computationally cheaper than many of the methods of solution that have been provided. 
Equation (5) can be reduced based on three reasonable initial conditions [3,11,12,14]: 
 

1. ; a situation which holds good in general and in particular when radio frequency B1(t) 

field is strong say of the order of 1.0 Gauss or more. 
2. Before entering the signal detector coil, nanoparticle bolus has magnetization Mx=0, My=0. 
3. B1(t) is large; B1(t) >> 1 Gauss or more so that My of the nanoparticle bolus changes appreciably 

from Mo i.e when ������
� ≪ �
$%$&

 . 

 
So that equation (5) reduces to: 
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Equation (6) can be significantly useful to analytically model the phenomenological dynamics of a nano 
particle moving through a biological porous material. Since the nano particle is expected to be imaged in a 

nano-porous medium (blood flow), we apply the transformation [3,11,16-18] that will make 

expressible in term of . This condition transforms  into a porous medium with porosity

, such that  
 

                         (7) 
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Using the product rule, the second derivative can be derived:  
 

                  (8) 

 
Using equation (7) and (8), equation (6) becomes: 
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Equation (9) can be written in the form 
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Where 
 

                                                                                                      (11) 

 

                   (12) 

 

For equation (10) to be valid, parameter a2 must be any positive integer and A must be a constant. 
 is 

the porosity.
 
For the purpose of obtaining fundamental (semi classical and quantum mechanical) information 

about the variation of porosity with time for fluid dynamics evaluation in porous media, we consider a case 
where A=0, equation (10) becomes: 
 

                 (13) 

 
Equation (13) allows us to discuss the dynamics of the NMR system quantum mechanically if we define the 
radio frequency field as: 
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Equation (13) can be solved for the case of maximum signal where the equilibrium magnetization  

and other cases where . 

 

2

22

2

2

2

2

dt

pd

dp

dM

dt

dp

dp

Md

dt

Md yyy +






=







































+



















=
202

2

2

dt

dp

dt

dp

T

dt

dp

dt

pd

A

2
2









=

dt

dp

T
a g

( )tp

)(102
22

2

2

tBMTaMa
dp

Md
y

y γ=+

00 =M

00 ≠M



 
 
 

Adeleke; BJMCS, 17(1): 1-26, 2016; Article no.BJMCS.26359 
 
 
 

6 
 

4 Solution of the Bloch NMR Flow Equations in Porous Media  
 
At maximum signal ( ), equation (13) becomes: 

 

                                                                                                                     (14) 
 

The generalization solution to equation (14) when and all is given by: 

 

                              (15)    

 

When (9: ; <, ), the generalization solution to equation (14) is given by: 

 

                             (16) 

 
Equations (15) and (16) are the two fundamental solutions of equation (14) so that by linear combination of 
solution, the general solution to equation (14) using the method of series solution becomes: 
 

+                            (17) 

 
Where =� and =� are coefficients that are not zero. 
 
The porosity p(t) suitable for equation (17) is obtained by solving the branch of differential equation (11) for 
the case where A = 0. Thus, the porosity was found [3,19-21] to be: 
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The solution to equation (19) is 

 

                                                                                                    (20) 

 
Where 
 

                                                                                               (21) 

 
and 
 

 Where n=0, 1, 2, 3…                 (21a) 

 
Equation (20) becomes 
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Equation (22) is the solution to the time dependent Bloch NMR flow equation (13) using the Hermite series 
solution method, when the equilibrium magnetization�� ; 0. We also derived a single valued solution of 
the Bloch NMR equation as:  
 

                                                                                           (23) 

 
Where H� is a constant that could be the intrinsic magnetization of the MRI system.

 
 

The general solution of equation (11) when is [3]. 
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5  Variation of M y(p) with p(t) and t (s) for Varying Values of n when 
Mo=0 and A=0 

 
Analysis of equation (17) shows that the porosity of a nano porous material varies exponentially with NMR 
signal and relaxation parameter To. This implies that at the molecular level, the porosity decreases at an 
exponential rate as time of measurement increases, starting from the intrinsic maximum porosity of the 
material at time t=0 i.e. p(t=0)=0� where 0� was chosen to be unity as shown in Figs. 2-12. A possible 
explanation for this decay is because of the free induction decay experienced by the MR signal (Transverse 
Magnetization) when the equilibrium magnetization Mo have been assumed to be equal to zero. This implies 
that the total magnetic field B1 applied to the nanoporous material is totally converted into magnetic force 
that excites the proton near the pore of the material and when the B1 field is withdrawn, the magnetic force 
come down to zero freely through an exponential decay that starts from the maximum excitation that the B1 
field was able to give to the nano porous material’s pore. 
 
A 3D plot of My(p), p(t) and time t(s) was made to visualize the behaviour of the MR signal (Transverse 
Magnetization) as the pore open or closes with time, which signifies the time or point of initiation of the 
nanoparticle’s movement through the nanopores and a point when the movement has been completed by 
varying the number of harmonics (which corresponds to the number of protons in the pore been imaged) 
present in the MR signal. It was observed that the wave signifying the nature of the movement of the pore 
was more predominant and significant when the quantum number of harmonics n=1, more so, porosity was 
consistent which invariably implies the motion of the nanoparticle through the nanopore at that instant and at 
a main field of 1.5 Tesla is consistent. The contour graph was used to simulate contrast of the MR signal as 
the porosity changes with time i.e. p(t) was plotted against t(s), and the contrast shown represents the 
intensity of the MR signal (Transverse Magnetization). In other words, the Legend shows the distribution of 
MR signal strength as porosity changes with time. This goes a long way to give handful information on 
clarity and stratification pattern of MR signals, as the pore open and closes with time, for varying quantum 
number of harmonics, and it was observed that a clearer contrast and layer (strata) was formed when the 
number of harmonics n=1,2,….,10. This tells us that the MR signal carries better information about protons 
for which n=1 and above. Hence for the second time it can be concluded that the MR signal carries more 
information about intrinsic proton of nanopores, relative to which the imaging of a nanoparticle is made. 
Also a characteristics pattern-less nature of the contour plot for n=0 implies that no MR signal emerges in 
the absence of excitation of proton. Finally, for n=2 and above, the behaviour of the MR signal alternates 
with alternating odd and even value of quantum harmonic number ‘n’.  

 
 

(a)                                                                      (b) 
 

Fig. 2. (a) 3D graph of equation (17) for M0=0, A=0, n=0 (b) Contour graph of equation (17) for Mo=0, 
A=0, n=0 
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(a)                                                                                           (b) 
 

Fig. 3. (a) 3D graph of equation (17) for Mo=0, A=0, n=1 (b) Contour graph of equation (17) for Mo=0, 
A=0, n=1 

 

 
 

(a)                                                                                           (b) 
 

Fig. 4. (a) 3D graph of equation (17) for Mo=0, A=0, n=2 (b) Contour graph of equation (17) for Mo=0, 
A=0, n=2 

 

 
(a)                                                                                           (b) 

 
Fig. 5. (a) 3D graph of equation (17) for Mo=0, A=0, n=3 (b) Contour graph of equation (17) for Mo=0, 

A=0, n=3 
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(a) 
 

(b) 
 

Fig. 6. (a) 3D graph of equation (17) for Mo=0, A=0, n=4 (b) Contour graph of equation (17) for Mo=0, 
A=0, n=4 

 

  
 

(a) 
 

(b) 
 

Fig. 7. (a) 3D graph of equation (17) for Mo=0, A=0, n=5 (b) Contour graph of equation (17) for Mo=0, 
A=0, n=5 

 

  
 

(a) 
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Fig. 8. (a) 3D graph of equation (17) for Mo=0, A=0, n=6 (b) Contour graph of equation (17) for Mo=0, 
A=0, n=6 
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(b) 
 

Fig. 9. (a) 3D graph of equation (17) for Mo=0, A=0, n=7 (b) Contour graph of equation (17) for Mo=0, 
A=0, n=7 
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Fig. 10. (a) 3D graph of equation (17) for Mo=0, A=0, n=8 (b) Contour graph of equation (17) for 
Mo=0, A=0, n=8 
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Fig. 11. (a) 3D graph of equation (17) for Mo=0, A=0, n=9 (b) Contour graph of equation (17) for 
Mo=0, A=0, n=9 
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Fig. 12. (a) 3D graph of equation (17) for Mo=0, A=0, n=10 (b) Contour graph of equation (17) for 
Mo=0, A=0, n=10 

 

6 Variation of My(p) with p(t) and t(s) for Varying  Values of n and a 
when  

 
From a thorough characterization and vivid observation of Figs. 13-17 that describe equation (22), it was 
observed that for n=0 and A=1, there was no MR signal (Transverse Magnetization). This also shows that 
the transverse magnetization does not pick up as pore of nanoporous material opens or closes. Under this 
consideration, the porosity is not a pure exponential function of time, but a mixture of natural logarithm and 
exponential function of both the spin-lattice and spin-spin relaxation time. It was observed that as ‘n’ 
increases to 1, the behaviour of the MR signal changes and indicates that the pore is either opening or 
closing with time. The magnitude of MR signal increases slightly with time up to 0.6 sec after which the rate 
increases linearly. As ‘n’ increases to 2, the MR signal starts from a peak value for a single proton and 
decrease slowly with time up to 0.6 sec, where the signal start to decrease linearly. The MR signal maintain 
this trend as the pore opens with time until n=4 where the MR signal exhibit a full wave behaviour after a 
short ‘blankness’ for about 0.3 sec. As the pore opens towards its intrinsic porosity, the MR signal rapidly 
and linearly increases. The MR signal maintain the same trend even for n=5. 
 
As ‘A’ increases to 2, the behaviour of MR signal generally is similar to that observed when A was equal to 
1. Nonetheless, it is worthy of note that in some specific cases, some particular behaviours were observable, 
that include the fact that the full wave behaviour of MR signal slightly become less significant and that the 
magnitude of the MR signal become greater than is observable when A=1. More so, it was observed that as 
‘A’ increases, the maximum porosity of the pore found on a nanoporous material decreases. This implies 
that as ‘A’ increases, the maximum diameter with which the pore open up decreases. This is evident in the 
solution given by equation (24), which gives no expression, about the surface’s maximum porosity 
(otherwise known as the porous material’s intrinsic porosity).  
 
On a more broad term, it can be concluded based on the behaviour of these graphs that increase or decrease 
in the value of A only increases or decreases the maximum porosity observed respectively, which in turn 
increases the MR signal and make it behave similar to analysis given above as time of observation increases. 
Though there were exceptional cases where the MR signal decreases as in the case where quantum number 
‘n’ equal 2 and 3. 
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Fig. 13. 3D & 2D graph of equation (22) for A=1, Mo≠0, (a) n=0, (b) n=0, (c) n=1, (d) n=1, (e) n=2,                

(f) n=2, (g) n=3, (h) n=3, (i) n=4, (j) n=4, (k) n=5, (l) n=5, for 3D and 2D respectively 
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Fig. 14. 3 D & 2 D graph of equation (22) for A=2, Mo≠0, (a) n=0(b) n=0, (c) n=1, (d) n=1, (e) n=2,          
(f) n=2, (g) n=3, (h) n=3, (i) n=4, (j) n=4, (k) n=5, (l) n=5, for 3D and 2D respectively 
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Fig. 15. 3D & 2D graph of equation (22) for A=3, Mo≠0, (a) n=0(b) n=0, (c) n=1, (d) n=1, (e) n=2,                       
(f) n=2, (g) n=3, (h) n=3, (i) n=4, (j) n=4, (k) n=5, (l) n=5, for 3D and 2D respectively 

  

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

0.4

0.6

0.8

1.0

1.2

0.1
0.2

0.3
0.4

M
y(

p)

Ti
m

e 
(s

)
P(t)

3D Graph of My(p), P(t) and t(s) for n=3, A=3

4.8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 
6.2 

2D Graph of My(p), P(t) and t(s) for n=3, A=3

P(t)

0.0 0.1 0.2 0.3 0.4 0.5

M
y(

p)

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

-2e+12

0

2e+12

4e+12

6e+12

8e+12

1e+13

0.4

0.6

0.8

1.0

1.2

0.1
0.2

0.3
0.4

M
y(

p)

Ti
m

e 
(s

)

P(t)

3D Graph of My(p), P(t) and t(s) for n=4, A=3

-2e+12 
0 
2e+12 
4e+12 
6e+12 
8e+12 
1e+13 

2D Graph of My(p) and P(t) for n=4, A=3

P(t)

0.0 0.1 0.2 0.3 0.4 0.5

M
y(

p)

0

1e+12

2e+12

3e+12

4e+12

5e+12

-2e+12

0

2e+12

4e+12

6e+12

8e+12

1e+13

0.4

0.6

0.8

1.0

1.2

0.1
0.2

0.3
0.4

M
y(

p)

Ti
m

e 
(s

)

P(t)

3D Graph of My(p), P(t) and t(s) for n=5, A=3

-2e+12 
0 
2e+12 
4e+12 
6e+12 
8e+12 
1e+13 

2D Graph of My(p) and P(t) for n=5, A=3

P(t)

0.0 0.1 0.2 0.3 0.4 0.5

M
y(

p)

0

1e+12

2e+12

3e+12

4e+12

5e+12



 
 
 

Adeleke; BJMCS, 17(1): 1-26, 2016; Article no.BJMCS.26359 
 
 
 

19 
 

(a) 

 
 

(b) 

 

(c) 

 
 
 

(d) 

 

(e)                                                                 

 

 (f) 

 
 

  

-0.5

0.0

0.5

1.0

0.6

0.8

1.0

1.2

1.4

0.05
0.10

0.15
0.20

0.25
0.30

M
y(

p)

Ti
m

e 
(s

)
P(t)

3D Graph of My(p), P(t) and t(s) for n=0, A=4

-0.5 
0.0 
0.5 
1.0 

2D Graph of My(p) and P(t) for n=0, A=4

P(t)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

M
y(

p)

-0.5

0.0

0.5

1.0

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

1.68

0.6

0.8

1.0

1.2

1.4

0.05
0.10

0.15
0.20

0.25

M
y(

p)

Ti
m

e 
(s

)

P(t)

3D Graph of My(p), P(t) and t(s) for n=1, A=4

1.52 
1.54 
1.56 
1.58 
1.60 
1.62 
1.64 
1.66 
1.68 

2D Graph of My(p) and P(t) for n=1, A=4

P(t)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

M
y(

p)

1.54

1.56

1.58

1.60

1.62

1.64

2.6

2.7

2.8

2.9

3.0

3.1

3.2

0.6

0.8

1.0

1.2

1.4

0.05
0.10

0.15
0.20

0.25

M
y(

p)

Ti
m

e 
(s

)

P(t)

3D Graph of My(p), P(t) and t(s) for n=2, A=4

2.6 
2.7 
2.8 
2.9 
3.0 
3.1 

2D Graph of My(p) and P(t) for n=2, A=4

P(t)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

M
y(

p)

2.6

2.7

2.8

2.9

3.0

3.1

3.2



 
 
 

Adeleke; BJMCS, 17(1): 1-26, 2016; Article no.BJMCS.26359 
 
 
 

20 
 

(g) 

 

(h)  

 
(i) 

 

(j) 

 
(k) 

 

(l) 

 
 

Fig. 16. 3D & 2D graph of equation (22) for A=4, Mo≠0, (a) n=0(b) n=0, (c) n=1, (d) n=1, (e) n=2,                
(f) n=2, (g) n=3, (h) n=3, (i) n=4, (j) n=4, (k) n=5, (l) n=5, for 3D and 2D respectively 
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Fig. 17. 3D & 2D graph of equation () for A=5, Mo≠0, (a) n=0(b) n=0, (c) n=1, (d) n=1, (e) n=2,                  
(f) n=2, (g) n=3, (h) n=3, (i) n=4, (j) n=4, (k) n=5, (l) n=5, for 3D and 2D respectively 
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7 Variation of p(t) with t(s) for Varying Values of ‘A’ and T 2 

 
A transformation process in the quest to adapt the Bloch time dependent NMR equation (6) to a porous 
material gave rise to equation (11). The solution for a case where ‘A’ = 0 defined the porosity. Equation (11) 
was solved for a physical case when A is not equal to zero and a solution in equation (24) was obtained [3] 
to describe the influence of parameter A and spin-spin relaxation time (T2) on porosity in porous media as 
shown in Fig. 18(a - h). The choice of T2 relaxation time of 0.01 to 0.5 is typical of spin-spin relaxation time 
for blood flow.  
 
It was observed that porosity become exponential for T2 relaxation time =0.091 sec, while the constant A is 
varied from 1 to 5. A less significant full wave oscillation was also observed between time t=0.3 sec and 0.5 
sec, as porosity increases, the time t for which porosity become measurable increases from 0.1 to 0.2 sec. 
This is a consequence of porosity becoming discontinuous at t=0 and 0.1 sec. Porosity again become more 
exponential for T2 relaxation time = 0.172 sec while the constant A is varied from 1 to 5. A less significant 
oscillation was observed between time t=0.3 sec and 0.5 sec.  
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Fig. 18. Influence of parameter A and spin-spin relaxation time (T2) on porosity in porous media 
 

8 Conclusion 
 
We have presented analytical solution to time dependent Bloch equation for computational analysis of nano 
particles in porous media. Since the nano particle is expected to be imaged in a nano-porous medium (blood 

flow), we apply the transformation which make the transverse magnetization in time domain

measurable in the porous medium as
 

based on the condition that a2 in equation (10) must be a 

positive integer and ‘A’ must be a constant. These conditions transforms  in a porous medium with 

porosity . The computational analyses of our results are also presented, which show the influence of 
parameter A on both the NMR transverse magnetization and the porosity P (t). The parameter ‘A’ and ‘a’ 
can give a lot of insight into other factors affecting the MR signal (��). We believe that with this solution in 
place, experts can now model bunch of parameters which a conventional fluid flow equation did not capture 
into the ‘A’ parameter, just like the exchange correlation functional in the density functional theory, which 
can then be evaluated numerically, through various approximation methods while optimizing the system. 
The results obtained in this study can have applications in functional magnetic resonance imaging (fMRI), 
Petroleum exploration and well design, geological engineering and could be a frontier towards a very robust 
way of describing porosity and permeability in systems transporting particles of specific shape and form. 
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The detailed possible application of this fundamental solution to explain and solve real life flow problems in 
which NMR -sensitive materials are transported through a small sized pore will be presented separately.  
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