British Journal of Mathematics & Computer Science

17(1): 1-26, 2016, Article no.BJMCS.26359
ISSN: 2231-0851

SCIENCEDOMAIN international

www.sciencedomain.org SCIENCEDOMAIN

Formulation of Time Dependent Bloch NMR Equations fo
Computational Analyses of Nano Particles in Poroubledia

A. A. Adeleke"”

'Department of Physics and Engineering Physics, UniversiBaskatchewan, Saskatoon, Canada.
Author’s contribution
The sole author designed, analyzed and interpreted and prefiaadanuscript.

Article Information

DOI: 10.9734/BIMCS/2016/26359
Editor(s):
(1) Dariusz Jacek Jakébczak, Chair of Computem8ei@nd Management in this Department,
Technical University of Koszalin, Poland.
Reviewers:
(1) Eugene Mananga, The City University of New YaJgA.
(2) Bharat Raj Jaiswal, AKS University, Satna, India.
Complete Peer review Historhitp://sciencedomain.org/review-history/14872

Received: 18 April 2016

— _ Accepted: 2% May 2016
| Original Research Article Published: ' June 2016

Abstract

Nuclear Magnetic Resonance (NMR) has been very usefokistudy of pore size distribution of porous
materials and in molecular recognition. Important propedfebe porous media have been shown tq be
very much dependent on thg @nd T, relaxation times. The NMR transverse magnetization esyri
information on the pores’ properties. This has been denatedtby many experiments on porous media
but analytical expressions showing the direct relationshipseeetvihe pore features and the NMR
parameters have been quite scarce in literature. Istimy, formulation of time dependent Bloch NMR
equation for computational analyses of nano particles in poneds has been presented. Since the nano
particle is expected to be imaged in a nano-porous medavenapply the transformation that makes the

NMR transverse magnetizatidil , (t) expressible in term d¥1 (p) with porosify(t) . Two new

parameters which validate the transformation are propkfined in terms of the porosity, Bnd T
relaxation parameters. The results obtained in this studyhage applications in functional magnetic
resonance imaging (fMRI), Petroleum exploration and wedigite geological engineering and could bg a
frontier towards a very robust way of describing porguaihd permeability in systems transporting
particles of specific shape and form.
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1 Introduction

The study of viscous flow through permeable media has ttiaabstantial interest in science, engineering,
and technology. The flow through permeable media takes gierally in geophysical and bio-mechanical
systems and also has many engineering applications, sudtowsin fixed beds, petroleum industry,
hydrology etc. Due to its broad areas of applicationsciance, engineering and industries, many different
theoretical and experimental models have been used farldegahe viscous flow past and through bulk
materials or porous bodies [1,2]. With porous structuredhe above mentioned areas, the structure of
porous lamina must be considered and analyzed from all powiewk. For analytical study of the fluid
flows within porous structured bodies, so called porous médawo terms: Porosity and permeability play
significant and vital role. The porosity is definedtlas ratio of voids’ volume to that of the volume of the
material. Theoretically, it seems that if the maleni@s more pores (voids), it will allow the fluid to pass
through it easily, but actually it is not so and could be wtded through the permeability which is defined
as the easiness or ability (inter connectivity of ppdsthe material to allow the fluids to pass through it
[1-3]. Various methods and models have been written toiedtris phenomenon of flow through materials
characterized by pores, but very few of them reallyfoper well when it comes to giving quantitave
information with high resolution. Magnetic resonance imaging ljMRes a powerful magnetic field along
with radio waves and a computer to produce highly detailedrpg of virtually all internal structures of
matter. The result enables physicians to examine phttse body quickly and in a more detailed way. MRI
enables physicians to see through and identify diseasesdy that are not possible with other techniques.

The principal ideas behind magnetic resonance are common to bottoelspin resonance (ESR) and
nuclear magnetic resonance (NMR), but there are diffeseincthe magnitudes and signs of the magnetic
interactions involved, which of course lead to divergences him éxperimental techniques being
implemented. In principle, all nuclei with odd mass nunmbessess the property of spin; the spin angular
momentum vector which is commonly denotedlhymeasured in unit df, andh is the Planck’s constant
divided by 2. In a macroscopic assembly of protons subjected to @nnaxtfield B(x), we expect to find
some protons with spin and some witp spin [4].

Magnetic Resonance Imaging technique for nano-particleidlogical system is a multiphysics process
involving diverse physical domains such as magnetic fiali$ fluid dynamics. It is also a multiscale
investigative process suitable for materials ranginonfnaini dimensions of the arteries to micro dimensions
of the capillaries and micro particles down to the nancedsions of single domain super paramagnetic
particles [5,6]. For example, the protein structure co@lddken from the crystallographic measurements,
though Visual Molecular Dynamics (VMD) simulations arften used to relax the crystal structure to a
more plausible conformation for specific physiological dibans. To resolve even longer time scales, the
protein and lipid structures could be modelled as contintegions delimited by hard wall boundaries, and
characterized electrically by an average permittivityl atatic charge distribution. Mean while, MRI,
through correct application of NMR flow equations can aahieven more when we model signals from
each NMR-sensitive nuclei in term of their transversgmegization. Thus, we can formulate and study the
movement of micro or nano materials through pores of comparatals, svith set of coupled differential
equations known as the Bloch’s equations with relatively soatiputer cost. Fig. 1 below shows the
simulation of the movement of Deoxyribonucleic Acid (DN#) VMD. The whole process, of course could
be conceptualized as a nanorobot transiting throughsMd, Siembrane, which is made of pores at the
nanoscale level. Such simulation is computationally esipe and time consuming, while similar
information could be deduced by simulation of magnetic @som (MR) signals from the DNA and the
SizN4 nuclei.

Evidently there is neither a complete modelling framewonkansingle software package for simulating the
entire process. This would require the integration of ipaiticle simulation, molecular simulation,
continuum-based models, stochastic methods and nanomechanits N@r@theless, critical physical
parameters are captured by the simplified model of the foedtal Bloch NMR flow equation specifically
adopted for porous medium. The analytical solutions t Bloch equation can provide fundamental
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computational tools which can stimulate interest for futasearch at the molecular and atomic scales for
conceptualization, characterization, development of memticles either in the form of nanorobots or nano
machines [9,10].

Fig. 1. VMD and NAMD simulation of DNA translocation through a nanopore in a SN, membrane
(a) Beginning of the simulation. (b) The momentwihe terminal Watson—Crick base pair is splitta harrowest part
of the pore. (c) A moment during the time intenfeé8 ns that DNA spends in the conformation shoitmowt moving.
(d) The moment when DNA exits the pore while ose bathe DNA end remains firmly attached to théase of the
nanopore. (e) End of the simulation, when mosh®fINA has left the pore and the ionic current tesrned to the
open pore level [7]

2 Mathematical Formulation of Bloch NMR Equations

The phenomenon of Nuclear Magnetic Resonance which is therlyindephysics behind Magnetic
Resonance Imaging is known to be governed by the BlocR NMw equations. These differential
equations in their coupled form relate magnetization to the appdidio frequency, gradient and static
magnetic field. It is a known fact that the body and matmgromaterials are made up of various NMR-
sensitive nuclei, whose spatial and time variation aptucad by the Bloch equations. If we consider a bulk
magnetic momenM (also known as the magnetization vectof)large assembly of spins at a certain
temperature, they could either be electron or nuclear spih. thé help of an external fielé/, of them are

in thea spin state andy; of them are in th¢ state [4], then the macroscopic magnetization vector’s
behaviour under any condition is given by the following setqufations in the various Cartesian coordinate:

dM, M, M, M, .
ac ot Vax T M
dM, oM, oM, M,

Ty TV " Y — yM.B,(x) — -2 2
it 5 TV x — M 1(x) T, (2)
dM, oM, oM, M, — M,

a ot TV % ——VMzB1(x)——T1 3

The above systems of equations (1,2,3) were used to degmeeaalized partial differential equation (PDE)
that can be used for the analysis of any system compodelgfsensitive material by imposing suitable
boundary conditions [11-13]. The fundamental NMR time dependsstng order differential equation
which is applicable to any fluid flow problem at anyeyimime [11-14] is thus given by:
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M, _ 9°M, oM, . OM, 0°My
v? +2v—2 4+ vT, a— tTho— -+ 55 + (T, + ¥*B2(x,t))M,

_ Mo B,(x,t) (4
ox2 oxot =, AW *)

Ty

WhereM,, is the transverse magnetization also known as the MagRetonance (MR) signdl, = l+

1

T, 9= TitTs

is the external magnetic field and the functreﬁ]yBl(x, t) is the forcing term.
1

. T, is the spin-latticeT, is the spin-spin relaxation timg,is the gyromagnetic ratuB,l(x t)

3 Formulation of Bloch Equation for Steady Flow inPorous Media

In a study done by Storm, Arnold J, et al. [15], &saopined that the dynamics of the DNA through the
SisN, was in fact not dependent on spatial distance and doehaoge appreciably over a largéor say a
long time. From the knowledge of the analysis of PDEs thus safe to equate evet;;; term to zero for
such situation. Invoking this condition on equation (4), ddmees:

d*M y M, MyyB; (t)
P 4 2 -7
2 T Y+ (T, +v2B2(t))M, - T (5)

In this study, we will solve the time dependent modifiedcBINMR flow equation given in equation (5)

using Hermite series method of solution. As a matter cf f&hat comes to mind is that there are other
methods of solution that as well can be used to deriveolh&a to equation (5), some of which are given
in [12,13,15]. However, we have chosen to present ourigolusing series method because the addition
operation is more computationally cheaper than manjne)frnethods of solution that have been provided.

1. M, # M,; a situation which holds good in general and in particular whdio frequency Kt)

field is strong say of the order of 1.0 Gauss or more.
2. Before entering the signal detector coil, nanoparticleis has magnetization,&D, M,=0.
3. Bqy(t) is large; B(t) >> 1 Gauss or more so that, Mf the nanoparticle bolus changes appreciably

from M, i.e wheny?BZ(t) « ~
TiT2

So that equation (5) reduces to:

d?M M, Moy B, ()
—dt +To—" YT M, - S 6)

Equation (6) can be significantly useful to analyticallpdel the phenomenological dynamics of a nano
particle moving through a biological porous material. Sincendm® particle is expected to be imaged in a

nano-porous medium (blood flow), we apply the transformat®il[16-18] that will makel\/ly(t)
expressible in term d¥1 (p) . This condition transforik, (t) intpagous medium with porosity
p(t) , such that

dM, dM, dp
dt dp dt

()
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Using the product rule, the second derivative can be derived:

dzMy _dzMy(dpj2+dMy dzp g
dt>  dp® \dt dp dt? ®)
Using equation (7) and (8), equation (6) becomes:
d*M, (dp\*> dM,d%p dM,, dp _ MyyB(t)
27 (@) * gy et Ty a0+ v B O, = = ©)
Equation (9) can be written in the form
d*Mm. am
dpzy +A d—py + a?M,, = a’T,MyyB; (t) (10)
Where
(&), (&
dt? dt
- )y, A (11)
@ (@
dt dt
T
a’=—2>2 (12)

For equation (10) to be valid, parame#@must be any positive integer and A must be a consl%(&.ls

the porosityFor the purpose of obtaining fundamental (semi classical aatgm mechanical) information
about the variation of porosity with time for fluid dymics evaluation in porous media, we consider a case
where A=0, equation (10) becomes:

2

M
dpzy +a’M y = aszM OJ'Bl(t) (13)

Equation (13) allows us to discuss the dynamics of the NMEegyquantum mechanically if we define the
radio frequency field as:

w; =yB,(t) = p*M,(p) <

1
VLT,

Equation (13) can be solved for the case of maximum sigheteathe equilibrium magnetizatiddl , = 0

and other cases whelé, # 0
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4 Solution of the Bloch NMR Flow Equations in Poros Media
At maximum signa( M, = 0), equation (13) becomes:

d*Mm
——>+a’M, =0

P (14)
The generalization solution to equation (14) wtgn= 0,8, # 0, anégll, =0  vingby:

2n 2n

M, (p) = ( ) Z( ) (15)

When(a; # 0,n =2n-1a, # 0), the generalization solution to equation (14) is given by:

2n-142(n-1)

pT a
M, (p) = (- )QZ -1 (16)

Equations (15) and (16) are the two fundamental solutions of equd#) so that by linear combination of
solution, the general solution to equation (14) using the rdaihseries solution becomes:

2n ~2n 2n -1 2(n -1)

M, (p)=(- )Coia( p) + (- )qZ @D )

n=0

WhereC, andC, are coefficients that are not zero.

The porosity p(t) suitable for equation (17) is obtained byisglthe branch of differential equation (11) for
the case where A = 0. Thus, the porosity was found [3,19-214:to

P = p(t) = P exp(Tot) (18)
Solution to equation (13) for a physical case where theilbguih magnetizatiolM , # 0 leads to an

equation similar in form to Schrédinger wave equation faingple harmonic oscillator and the Hermite
differential equation as below:

Wr(x) + (ZmE mkxzjw() 0

Y"(x) = 2xXY'(x) + 2nY(X) =

M
TZy+a2(1—|v|oT2p2)|v|y =0 (19)
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The solution to equation (19) is

MMm=H4mw{ﬂ%j

120
Where
o 1 1
H,(p)=>.C,(T,M,)+a2p(t)
n=0 (22)
and
a
2n+1=—— Wheren=0, 1, 2, 3... (21a)
TZ M 0
Equation (20) becomes
M yn( p) = ch(-l-Zl\/Io)A'a'2 p(t)exp{_7j (22)
n=0

Where the recursion formula is given as

_ (n+U)-(U+Q)
C"+2 _( (n+2)(n+1) )C"

a

andQ=(m

Equation (22) is the solution to the time dependent Bloch NiR équation (13) using the Hermite series
solution method, when the equilibrium magnetizaigr= 0. We also derived a single valued solution of
the Bloch NMR equation as:

11
- UZ), U= (TzMo)ZaE

1

T,M_)zap?
M, (p) = D, exg (Me):20
(23)
WhereD; is a constant that could be the intrinsic magnetizatfdhe MRI system.
The general solution of equation (11) wh&a 0 is [3].
1
p(t) =~ {In[exp0)] - In[(K, explTet) - A} +c, (24)

For cases where A was assumed to be zero, the popbéity system was obtained using equation (18) and
equation (24) for cases where A is assumed not to be eqaid.
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5 Variation of My(p) with p(t) and t (s) for Varying Values of n when
M,=0 and A=0

Analysis of equation (17) shows that the porosity ohao porous material varies exponentially with NMR
signal and relaxation parameteg. This implies that at the molecular level, the porositgrelases at an
exponential rate as time of measurement increases, gtardim the intrinsic maximum porosity of the
material at time t=0 i.e. p(t=0)p5 wherep, was chosen to be unity as shown in Figs. 2-12. A possible
explanation for this decay is because of the free indudigaay experienced by the MR signal (Transverse
Magnetization) when the equilibrium magnetizatiop hMve been assumed to be equal to zero. This implies
that the total magnetic field B1 applied to the namops material is totally converted into magnetic force
that excites the proton near the pore of the material ard wWie B field is withdrawn, the magnetic force
come down to zero freely through an exponential decay that tam the maximum excitation that the B1
field was able to give to the nano porous material’s pore.

A 3D plot of M(p), p(t) and time t(s) was made to visualize the behavof the MR signal (Transverse
Magnetization) as the pore open or closes with time, wsighifies the time or point of initiation of the
nanoparticle’s movement through the nanopores and a point Wwhemdvement has been completed by
varying the number of harmonics (which corresponds to the nuoihgmotons in the pore been imaged)
present in the MR signal. It was observed that the wave giggithe nature of the movement of the pore
was more predominant and significant when the quantum nuofiltermonics n=1, more so, porosity was
consistent which invariably implies the motion of the namniggla through the nanopore at that instant and at
a main field of 1.5 Tesla is consistent. The contour graphused to simulate contrast of the MR signal as
the porosity changes with time i.e. p(t) was plotted ragai(s), and the contrast shown represents the
intensity of the MR signal (Transverse Magnetization). heeptvords, the Legend shows the distribution of
MR signal strength as porosity changes with time. This gokmsg way to give handful information on
clarity and stratification pattern of MR signals,the pore open and closes with time, for varying quantum
number of harmonics, and it was observed that a cleardrast and layer (strata) was formed when the
number of harmonics n=1,2,....,10. This tells us that thesi@Ral carries better information about protons
for which n=1 and above. Hence for the second time it can bdudad that the MR signal carries more
information about intrinsic proton of nanopores, relativenvhich the imaging of a nanoparticle is made.
Also a characteristics pattern-less nature of the comglmarfor n=0 implies that no MR signal emerges in
the absence of excitation of proton. Finally, for n=2 and apthe behaviour of the MR signal alternates
with alternating odd and even value of quantum harmonic eaumb
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Fig. 2. (a) 3D graph of equation (17) for N=0, A=0, n=0 (b) Contour graph of equation (17) for M=0,
A=0, n=0
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Fig. 12. (a) 3D graph of equation (17) for Mo=0, A=0, n=1®) Contour graph of equation (17) for
Mo=0, A=0, n=10

6 Variation of My(p) with p(t) and t(s) for Varying Values of n and a
when M, #0

From a thorough characterization and vivid observation of Figs.71tBdt describe equation (22), it was

observed that for n=0 and A=1, there was no MR signalnfmerse Magnetization). This also shows that
the transverse magnetization does not pick up as pore of nanspwaterial opens or closes. Under this
consideration, the porosity is not a pure exponential functidgime, but a mixture of natural logarithm and

exponential function of both the spin-lattice and spin-spin atlex time. It was observed that as ‘n’

increases to 1, the behaviour of the MR signal changedndichtes that the pore is either opening or
closing with time. The magnitude of MR signal increadightly with time up to 0.6 sec after which the rate
increases linearly. As ‘n’ increases to 2, the MR sigitaits from a peak value for a single proton and
decrease slowly with time up to 0.6 sec, where the sigadltstdecrease linearly. The MR signal maintain
this trend as the pore opens with time until n=4 whereMResignal exhibit a full wave behaviour after a

short ‘blankness’ for about 0.3 sec. As the pore opens tswt intrinsic porosity, the MR signal rapidly

and linearly increases. The MR signal maintain the saemel even for n=>5.

As ‘A’ increases to 2, the behaviour of MR signal genwiialsimilar to that observed when A was equal to
1. Nonetheless, it is worthy of note that in some specédises, some particular behaviours were observable,
that include the fact that the full wave behaviour of MRhalgslightly become less significant and that the
magnitude of the MR signal become greater than is obserwdi@le A=1. More so, it was observed that as
‘A’ increases, the maximum porosity of the pore found on roparous material decreases. This implies
that as ‘A’ increases, the maximum diameter with whieh pore open up decreases. This is evident in the
solution given by equation (24), which gives no expression, abimitsurface’s maximum porosity
(otherwise known as the porous material’s intrinsic pibyh

On a more broad term, it can be concluded based on the behafvtbase graphs that increase or decrease
in the value of A only increases or decreases the maxiparosity observed respectively, which in turn
increases the MR signal and make it behave similan#édysis given above as time of observation increases.
Though there were exceptional cases where the MR sigeatakes as in the case where quantum number
‘n’ equal 2 and 3.

12
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7 Variation of p(t) with t(s) for Varying Values of ‘A’and T ,

A transformation process in the quest to adapt the Blooh dependent NMR equation (6) to a porous
material gave rise to equation (11). The solution faaiseavhere ‘A’ = 0 defined the porosity. Equation (11)
was solved for a physical case when A is not equalrm aed a solution in equation (24) was obtained [3]
to describe the influence of parameter A and spin-spixagtan time () on porosity in porous media as
shown in Fig. 18(a - h). The choice of fElaxation time of 0.01 to 0.5 is typical of spin-spghaxation time
for blood flow.

It was observed that porosity become exponential foelBxation time =0.091 sec, while the constant A is
varied from 1 to 5. A less significant full wave oscillatimas also observed between time t=0.3 sec and 0.5
sec, as porosity increases, the time t for which pgrdstome measurable increases from 0.1 to 0.2 sec.
This is a consequence of porosity becoming discontinuous at t=0 lasdd.Porosity again become more
exponential for T relaxation time = 0.172 sec while the constant A iseeafiom 1 to 5. A less significant
oscillation was observed between time t=0.3 sec and 0.5 sec.
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Fig. 18. Influence of parameter A and spin-spin relaxatiotime (T2) on porosity in porous media

8 Conclusion

We have presented analytical solution to time dependent Bipahition for computational analysis of nano
particles in porous media. Since the nano partickxpected to be imaged in a nano-porous medium (blood

flow), we apply the transformation which make the transvensgnetization in time domalmy(t)
measurable in the porous mediumMsy(p) based on the condition thaf in equation (10) must be a
positive integer and ‘A’ must be a constant. These itiond transformsM y(t) in a porous medium with

porosityp(t) . The computational analyses of our results arepkssented, which show the influence of

parameter A on both the NMR transverse magnetization lengdrosity P (t). The parameter ‘A’ and ‘a’
can give a lot of insight into other factors affecting g signal {4,). We believe that with this solution in
place, experts can now model bunch of parameters whiohaentional fluid flow equation did not capture
into the ‘A’ parameter, just like the exchange correlafiomctional in the density functional theory, which
can then be evaluated numerically, through various approximatiethods while optimizing the system.
The results obtained in this study can have applications iridnat magnetic resonance imaging (fMRI),
Petroleum exploration and well design, geological engineesitigcould be a frontier towards a very robust
way of describing porosity and permeability in systerasdporting particles of specific shape and form.
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The detailed possible application of this fundamerahlt®n to explain and solve real life flow problems in
which NMR -sensitive materials are transported througimall sized pore will be presented separately.
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