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Abstract 
 

In the 70s and 80s years of the past century, the new positional numeral systems, called Fibonaссi                  
p-codes and codes of the golden p-proportions, as new informational and arithmetical foundations of 
computer science and digital metrology, was considered as one of the most important directions of Soviet 
computer science and digital metrology for mission-critical applications. The main advantage of this 
direction was to improve the information reliability of computer and measuring systems. This direction 
has been patented abroad widely (more than 60 patents of US, Japan, England, France, Germany, Canada 
and other countries). Theoretical basis of this direction have been described in author’s books 
"Introduction into the Algorithmic Measurement Theory" (1977), and "Codes of the Golden Proportion" 
(1984). Unfortunately, these books didn’t be translated into English and, therefore, the Soviet scientific 
achievements in this field were virtually unknown for Western and world experts in computer science and 
digital metrology. Under author’s leadership, a number of interesting engineering developments have 
been carried out. Some of them (self-correcting 18-bit analog-to-digital and digital-to- analog converters) 
exceeded the world level. Unfortunately, after the collapse of the Soviet Union in 1991, government 
funding of these developments was stopped. However, theoretical developments in this area continued. 
The purpose of this article is to state the history and the main scientific and engineering achievements in 
this field, as one of the important direction in the improvement of informational reliability of computer 
and measuring systems for mission-critical applications. 
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1 Instead Introduction: "Trojan Horse" of Computers for Mission
critical Applications 

 
1.1 The main disadvantage of the binary system 
 
As is known, the binary system was introduced into the computer science by 
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Instead Introduction: "Trojan Horse" of Computers for Mission

1.1 The main disadvantage of the binary system  

As is known, the binary system was introduced into the computer science by John von Neumann
(together with von Neumann’s colleagues at the Princeton Institute for Advanced Study) in 1946. 

 
 

Fig. 1. John von Neumann 
and applied mathematician, physicist, inventor, computer scientist and polymath
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Unfortunately, microelectronics was forced to adopt all technical solutions of the classical computer 
technology, along with the binary system. In this field, the "Trojan horse" of binary system (zero 
redundancy) has moved to microprocessors and microcontrollers. 
 
Currently, the binary system together with its "Trojan horse" begins to take its firm positions in nano-
electronics [3] what can lead to unpredictable consequences for the further development of information 
technology. Reducing the size of electronic components increases the probability of random errors and faults 
what is the reason for the reduction of noise immunity of electronic systems. Therefore, a digital micro-
electronics and nano-electronics in particular has become one of the mission-critical areas for the use 
of the binary system. 
 

1.2 The first author’s publications on the redundant positional numeral systems   
 
For the first time, the study on the redundant methods of positional representation of numbers was performed 
by the author in the early 70s of the 20th century in the Taganrog Radio Engineering Institute (Russia) 
(1971-1977) [4]. At the same time, the first author’s articles [5-7] on the Fibonacci p-codes had been 
published. In 1978 author has introduced a concept of the codes of the golden p-proportions [6,7]. The 
fundamentals of the Fibonacci p-codes and codes of the golden p-proportions were analyzed in author’s 
articles and books [8-15]. 
 

1.3 Fibonacci patenting  
 
In 1976 the author worked as Visiting-Professor of the Vienna University of Technology (Austria). At the 
final stage of the stay in Austria, the author made the speech "Algorithmic measurement theory and 
foundations of computer arithmetic’s" at the joint meeting of the Austrian Cybernetics and Computer 
Societies. The speech aroused great interest of Austrian scientists. In this connection, the Soviet Ambassador 
in Austria Efremov had written to the Soviet State Committee on Science and Technology the letter, which 
contained the following proposal: 
 

"Taking into consideration the interest of the Austrian scientists in Prof. Stakhov invention in the field of 
new numeral system, based on Fibonacci numbers, it would be appropriate speeding up the process of 
patenting invention by Prof. Stakhov abroad what will preserve a priority of Soviet science in this 
computer field and possibly will give  economic benefit. " 

 
The proposal of the USSR Ambassador in Austria was approved on the higher governmental and scientific 
levels of Soviet Union and, since 1976, the widespread patenting of author’s inventions in the field of  
"Fibonacci computers" was launched in all the leading countries-producers of computer technology (USA, 
Japan. England, Germany, France, Canada and other countries). 
 
The main purpose of patenting was to protect a priority of Soviet science in the field of “Fibonacci 
computers” and to make a technological leap in the mission-critical computer applications (in particular for 
space systems). 
 
New computer arithmetic was the subject of patenting. But in accordance with the patent laws of most 
countries, it is impossible to patent mathematical achievement, in particular, computer arithmetic and codes 
based on Fibonacci numbers or “golden ratio”. 
 
That is why, it was decided protecting new computer arithmetic and codes, based on Fibonacci numbers and 
“golden ratio," by using specialized original device, which could implement this arithmetic and codes. With 
this purpose, the specialized operating device for Fibonacci p-codes and codes of the golden p-proportions 
was designed. It was pioneering invention, which allowed implementing all other operating computer and 
measuring devices (registers, counters, adders, analog-to-digit and digit-to-analog converters and so on). As 
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a result of these reasoning’s, there appeared the idea of multi-section invention formula, where the first 
section described the pioneering invention for Fibonacci and "golden" computing and measuring systems. 
 

What are the results of this unprecedented patenting? Soviet inventions in the field of "Fibonacci's and 
“golden” computing and measuring systems" were protected with more than 60 patents of USA, Japan, 
England, France, Germany, Canada and other countries. This patenting showed that the idea of the 
"Fibonacci and “golden” computing and measuring systems" is a completely new and original, but these 
patents [16-28] are official legal documents confirming the priority of Soviet science (and the author of this 
article) in the creation of new direction in the field of computer technology and digital metrology. 
 

In June 1989, on the initiative of the President of the Ukrainian Academy of Sciences Boris Paton, this 
direction was discussed at a special meeting of the Presidium of the Ukrainian Academy of Sciences. 
 

1.4 The dramatic fate of Fibonacci’s and “golden” developments in the Soviet Union  
 
Unfortunately, the so-called "Gorbachev's perestroika" and the collapse of the Soviet Union in 1991, when 
Soviet Union broke up into a number of independent states (Russia, Ukraine, Belarus, etc.) caused 
irreparable blow on this scientific direction. Since 1989, governmental funding of this direction was sharply 
reduced and then completely stopped in 1991. But this does not mean that the conception of "Fibonacci 
computers" is obsolete. On the contrary, at the present stage of the development of computer technology and 
digital metrology, this conception has become even more relevant in the modern field of computer 
technology and digital metrology, especially in microprocessor and nano-electronic technology. This 
circumstance became the main motive to return again to these ideas [29-34], developed by the author in the 
70s-80s of the 20th century (see author's books [14,15]). 
 

In conclusion, it should be noted that along with the Soviet studies on "Fibonacci Arithmetic" and 
"Fibonacci computers", in the same period, such studies have been performed in the United States 
(University of Maryland) [35-40].   
 

Studies of the American [35-40], Soviet [4-28] and also Ukrainian and Canadian [29-34] scientists in this 
field are confirmation of the fact that, since 70s years of the 20th century, the terms "Fibonacci code,” 
“Fibonacci arithmetic” and “Fibonacci computer" became widely known both in the American, Soviet, 
Ukrainian and Canadian scientific and technical literature. 
 

2 Fibonacci p-codes and Their Peculiarities  
 
2.1 Pascal triangle and Fibonacci numbers  
 
In the book [41], the famous American mathematician and populariser of mathematics George Polya            
(1887 - 1985) has found a surprising connection between Fibonacci numbers and “diagonal sums” of 
Pascal’s triangle (see Table 1)  
 

Table 1. Diagonal sums of Pascal’s triangle 
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If we calculate the sums of binomial coefficients standing on the diagonals:  
 

1=1, 1=1, 2=1+1, 3=1+2, 5=1+3+1, 8=1+4+3, 13=1+5+6+1, 21=1+6+10+1, …, we get the Fibonacci 
sequence, that is, Pascal’s triangle is a “generator” of the Fibonacci numbers! 

 
At first glance, it seems that finding this connection is so simple and so “elementary” what it hardly worthy 
the attention of mathematicians. However, this mathematical result, which, as say, "lay on the surface," for 
several centuries was the "big secret" for Blaise Pascal (1623–1662) and other mathematicians who studied 
Fibonacci numbers and Pascal's triangle. However, the surprisingly simple mathematical connection 
between Fibonacci numbers and Pascal triangle opens the way to the deep union of two important 
mathematical theories, the theory of Fibonacci numbers [42-44] and combinatorics and this union can 
become a fruitful source for new mathematical ideas and generalizations. 
 

2.2 Fibonacci p-numbers  
 
The development of Polya’s idea [41] led the author [14] to the discovery of the surprising generalized 
recurrence relation, which “generates” an infinite number of the new recurrence sequences, Fibonacci p-
numbers (p=0,1,2,3,…) given by the following recurrence relation: 
 

     1 1p p pF i F i F i p      for 1i p                                                          (1) 

 
at the following initial terms: 
 

     1 2 ... 1 1p p pF F F p     .                                             (2) 

 

Here the numbers p=0,1,2,3,… correspond to the different inclinations of diagonals in Pascal’s Triangle (see 
Table 1).  
 
Note that the recurrence relation (1) at the seeds (2) generates many remarkable numerical sequences, in 
particular, the binary sequence for the case p=0: 
 

1,2,4,8,16,32,64,…,2n-1,…,                                                           (3) 
 

and the Fibonacci sequence for the case p=1: 
 

1,1,2,3,5,8,13,21,34,55,…, Fn,…                                                                               (4) 
 

2.3 The “golden” p-proportions   
 
A study of the limit of the ratios of two adjacent Fibonacci p-numbers [14,31] led to the following algebraic 
equation: 
 

1 1 0p px x    ,                                                                 (5) 
 

which is a generalisation of the “golden” algebraic equation 2 1 0x x   with the positive root 

 (the golden ratio).  

 

In general, the positive roots p  of the equation (5) are new mathematical constants called the golden p-

proportions (p=0,1,2,3,…) that are a generalization of the classical golden proportion .  

1 5
2




1 5
2



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Table 2. Partial cases of p  

 

 

 
Thus, we have every right to claim that Pascal's triangle is a "universal generator" of new recurrent 

sequences  pF n , which are a generalization of the classical Fibonacci numbers 1,1,2,3,5,8,13,… and new 

mathematical constants p  (see Table 2), which are a generalization of the classical golden ratio. These 

mathematical concepts underlie the “theory of the Fibonacci p-numbers and golden p-proportions,” [4-15], 
which is a generalization of the classical "theory of Fibonacci numbers and golden ratio" [41-43]. 
 

2.4 Definition of the Fibonacci p-codes  
 

It is proved in [14] that for the given integer  0,1,2,3,...p , any natural number N can be represented as 

the following sum:  
 

       1 11 ... ... 1n p n p i p pN a F n a F n a F i a F       ,                             (6) 

 

where  0,1ia   is a bit of the i -th digit of the positional representation (6); n  is a number of bits of the 

code (6).;   1,2,3,...,pF i i n  is the Fibonacci p-number, the weight of the i -th digit of the positional 

representation (6).  
 
The sum (6) is called Fibonacci p-code [14]. 
 
In the Fibonacci p-code (6), the weights of digits are linked with the recurrence relation (1), which 
“generates” Fibonacci p-numbers starting from the seeds (2). 
 
Abridged notation of the sum (6) looks as follows: 
 

1 1... ...n n iN a a a a .                                                            (7) 

 

The abridged notation (7) is called Fibonacci representation of natural number N. 
 

2.5 Partial cases of the Fibonacci p-codes  
 
Note that the sum (6) includes an infinite number of different binary (0,1) positional representations, because 

every  0,1,2,3,...p p   "generates" its own positional representation of the kind (6). 

 

Let 0p  . For this case, Fibonacci (p=0)-numbers  0F i  coincide with the "binary" numbers, ie, 

  1
0 2iF i   and therefore the sum (6) takes the form of the classical binary code for natural numbers: 

 

 1 2 1 0
1 12 2 ... 2 ... 2n n i

n n iN a a a a  
      .                                           (8) 

 
 
 

0 1 2 3 4
2 1.618 1.4656 1.3802 1.3247p

p

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Let 1p  . For this case, Fibonacci (p=1)-numbers  1F i  coincide with the classical Fibonacci numbers, 

ie,  1 iF i F  and for this case the sum (6) takes the following form: 

 

1 1 1 1... ...n n n n i iN a F a F a F a F       .                                            (9) 
 

Recall that the weight of i-th digits iF  in the classical Fibonacci code (9) are linked by the classical 

Fibonacci recurrence relation: 
 

1 2 1 2; 1i i iF F F F F     .                                                          (10) 

 

Let now p   . For this case all Fibonacci ( p   )-numbers, given by (1), (2) are equal to 1 identically, 

ie, for any i  we have:   1pF i  . For this case, the sum (6) takes the following form, called “unitary 

code”:  
 

N
N

   1 1 1...   .                                                                        (11) 

 

Thus, the Fibonacci p -codes (6) is a wider generalization of the “binary code” (8) (the case 0p  ). The 

classical Fibonacci code (9) ( 1p  ) and “unitary code” (11)  p    are partial cases of the Fibonacci p

-codes (6).  
 
The next important conclusions follow from this consideration:  
 

1) The first conclusion is the fact that the Fibonacci p-codes (6) are a generalization of the “unitary 

code” (11)  p   . But, by its form the “unitary code” (11) coincides with Euclidean definition 

of natural numbers, which gives beginning of number theory, one of fundamental theories of 
mathematics. We can hypothesize from this fact that the Fibonacci p-codes (6) can be viewed as a 
new definition of natural numbers, which implies the idea of new number theory, based on 
Fibonacci p-numbers.    

2) The second conclusion is the fact that the Fibonacci p-codes (6) are generalization of the “binary 

system” (8) ( 0p  ). But we should not forget that the binary system (8) is the basis of modern 

computers! But then we came to the following idea. Because the Fibonacci p-codes (6) are new 
method of the binary (0,1) positional representation of numbers, this means that we can come to a 
new class of computers, Fibonacci computers as a new direction in the development of computer 
technology!  

3) Because the Fibonacci p-codes (6) are based on the Fibonacci p-numbers, which follow from the 
Pascal Triangle, this means that the Fibonacci p-codes (6) are new unique mathematical object, 
which unites three fundamental conceptions of modern science: number theory, which is the basis 
of mathematics, combinatorics, based on the Pascal Triangle, and finally, computer science, based 
on the binary system (8). 

 

3 Properties of Fibonacci Representations 
 
3.1 A range of number representation in binary code  
 
Consider the set of the n-digit binary words. A number of them is equal to 2n. For the classical binary code 
(8) (p = 0) the mapping of the n-digit binary words onto the set of natural numbers has the following 
peculiarities: 
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a)  Uniqueness of mapping. This means that for the infinite n there is one-to-one correspondence 
between natural numbers and sum (7), that is, each integer N has the only representation in the form 
(7). 

b)  For the given n, by using the binary code (8) we can represent all integers in the range from 0 to              
2n – 1, that is, the range of number representation is equal to 2n. 

c)  The minimal number 0 and the maximal number 2n – 1 have the following binary representations in 
the binary code (8), respectively: 

 
0 = 0 0 ... 0 

2n – 1 = 1 1 ... 1 
 

3.2 A range of number representation in the Fibonacci p-codes  
 
For the Fibonacci p-code (6) the mapping of the n-digit binary words onto natural numbers has distinct 
peculiarities for the case p > 0. 
 
Let n =5. Then for the cases p =1 and p =2 the mappings of the 5-digit Fibonacci p-code (6) onto the natural 
numbers have the form, represented in Tables 3 and 4, respectively.  
 

Table 3. Mapping of the Fibonacci 1-code onto natural numbers 
 

CC 5 3 2 1 1 N CC 5 3 2 1 1 N 
A0 0 0 0 0 0 0 A16 1 0 0 0 0 5 
A1 0 0 0 0 1 1 A17 1 0 0 0 1 6 
A2 0 0 0 1 0 1 A18 1 0 0 1 0 6 
A3 0 0 0 1 1 2 A19 1 0 0 1 1 7 
A4 0 0 1 0 0 2 A20 1 0 1 0 0 7 
A5 0 0 1 0 1 3 A21 1 0 1 0 1 8 
A6 0 0 1 1 0 3 A22 1 0 1 1 0 8 
A7 0 0 1 1 1 4 A23 1 0 1 1 1 9 
A8 0 1 0 0 0 3 A24 1 1 0 0 0 8 
A9 0 1 0 0 1 4 A25 1 1 0 0 1 9 
A10 0 1 0 1 0 4 A26 1 1 0 1 0 9 
A11 0 1 0 1 1 5 A27 1 1 0 1 1 10 
A12 0 1 1 0 0 5 A28 1 1 1 0 0 10 
A13 0 1 1 0 1 6 A29 1 1 1 0 1 11 
A14 0 1 1 1 0 6 A30 1 1 1 1 0 11 
A15 0 1 1 1 1 7 A31 1 1 1 1 1 12 

 
The analysis of Tables 3 and 4 allows finding the following peculiarities of the binary representations of 
natural numbers in the Fibonacci p-codes (6). By using the 5-digit Fibonacci 1-code (Table 2) we can 
represent 13 integers in the range from 0 to 12, inclusively. Note that the number 13 is the Fibonacci 1-
number with the index 7, i.e. F1(7) = F7 = 13 . We can see from Table 3 that by using the 5-digit Fibonacci 
2-code  we can represent 9 integers in the range from 0 to 8, inclusively, at that the number 9 is the 
Fibonacci 2-number with the index 8,  i.e. F2(8) = 9. The results of this consideration are partial cases of the 
following theorem [31]. 
 
Theorem 1. For the given integers n  0 and p  0 by using the n-digit Fibonacci p-code we can represent 
Fp(n+p+1) integers in the range from the minimal number 0 to the maximal number Fp(n+p+1) – 1, 
inclusively. 
 
Note that for the case p=0 F0(n+1) = 2n and Theorem 1 is reduced to the well-known theorem about the 
number representation range, equal to 2n for the n-digit binary code (8) . 
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Table 4. Mapping of the Fibonacci 2-code onto natural numbers 
 

CC 3 2 1 1 1 N CC 3 2 1 1 1 N 
A0 0 0 0 0 0 0 A16 1 0 0 0 0 3 
A1 0 0 0 0 1 1 A17 1 0 0 0 1 4 
A2 0 0 0 1 0 1 A18 1 0 0 1 0 4 
A3 0 0 0 1 1 2 A19 1 0 0 1 1 5 
A4 0 0 1 0 0 1 A20 1 0 1 0 0 4 
A5 0 0 1 0 1 2 A21 1 0 1 0 1 5 
A6 0 0 1 1 0 2 A22 1 0 1 1 0 5 
A7 0 0 1 1 1 3 A23 1 0 1 1 1 6 
A8 0 1 0 0 0 2 A24 1 1 0 0 0 5 
A9 0 1 0 0 1 3 A25 1 1 0 0 1 6 
A10 0 1 0 1 0 3 A26 1 1 0 1 0 6 
A11 0 1 0 1 1 4 A27 1 1 0 1 1 7 
A12 0 1 1 0 0 3 A28 1 1 1 0 0 6 
A13 0 1 1 0 1 4 A29 1 1 1 0 1 7 
A14 0 1 1 1 0 4 A30 1 1 1 1 0 7 
A15 0 1 1 1 1 5 A31 1 1 1 1 1 8 
 

3.3 Plurality of number representation  
 
Plurality of number representation in the form (6) is the next peculiarity of the Fibonacci p-codes (6) for the 
cases p > 0. By excepting the minimal number 0 and the maximal number Fp(n+p+1) – 1, the rest integers 
from the range [0, Fp(n+p+1) – 1] have more than one representation in the form (6). This means that all 
integers in the range [1, Fp(n+p+1) – 2] have multiple representations in the Fibonacci p-codes (6) for the 
cases p > 0 . 
 
Consider now the mapping of integers onto the 5-digit binary code combinations A in accordance with 
Tables 3 (p = 1) and Table 4 (p = 2).  

 
Table 5. Mapping of natural numbers on binary code words for the Fibonacci 1- and 2-codes 

 
p = 1 p = 2 
0   = {A0} 
1   = {A1, A2} 
2   = {A3, A4} 
3   = {A5, A6, A8} 
4   = {A7, A9, A10} 
5   = {A11, A12, A16} 
6   = {A13, A14, A17, A18} 
7   = {A15, A19, A20} 
8   = {A21, A22, A24} 
9   = {A23, A25, A26} 
10 = {A27, A28} 
11 = {A29, A30} 
12 = {A31} 

0 = {A0} 
1 = {A1, A2, A4} 
2 = {A3, A5, A6, A8} 
3 = {A7, A9, A10, A12, A16} 
4 = {A11, A13, A14, A17, A18, A20} 
5 = {A15, A19, A21, A22, A24} 
6 = {A23, A25, A26, A28} 
7 = {A27, A29, A30} 
8 = {A31} 

 
Note that for the arbitrary p the minimal and the maximal numbers have the only binary representations in 
the n-digit Fibonacci p-codes:  
 

0 00...0min

n

N                                                             (12) 



 
 
 

Stakhov; BJMCS, 17(1): 1-49, 2016; Article no.BJMCS.25969 
 
 
 

10 
 
 

 max 1 11...1p
n

N F n p                                                             (13) 

 

3.4 “Convolution” and “devolution” of the Fibonacci digits  
 
The different Fibonacci representations (7) of one and the same integer N in the Fibonacci p-codes (6) for 
the cases p>0 may be obtained each from other by means of the peculiar code transformations called  
“convolution” and “devolution” of the binary digits. These code transformations are performed in scope of 
one Fibonacci representations (7) and follow from the basic recurrence relation (1), which connects the 
adjacent digit weights of the Fibonacci p-code (6). The general idea of these code transformations is 
described in [31].  
 
It is most simply to demonstrate the “convolution” and “devolution” of the Fibonacci representation (7) for 
the case p=1. In this case these operations are performed over the three adjacent digits, namely over the lth , 
(l-1)th and (l-2)th digits. Consider the fulfillment of these operations for the Fibonacci 1-code (classical 
Fibonacci code (9)): 
 

(a) Convolution 

                                                                             (14) 

 
(b) Devolution 

0 0

5 0 1

0 1 0 1 1









1 0 0

1 0 0                                                            (15) 

 
A procedure, which consists in the fulfillment of all possible “convolutions” or “devolutions” in the 
Fibonacci representation (7), is named a “code convolution” or “code devolution”, respectively. It is easy to 
prove that the fulfillment of the “code convolution” or “code devolution” results in the so-called “convolute” 
or “devolute” Fibonacci representation of natural number N. 
 
For the case p=1, the “convolute” and “devolute” Fibonacci representations of the number N have peculiar 
indications. In particular, in the “convolute” Fibonacci representation two bits of 1 together do not meet  
and in the “devolute” Fibonacci representation two bits of 0 together do not meet, starting from the highest 
1 of the Fibonacci representation (7). 
 
A rule of the “convolution-devolution inversion” is of great importance for technical applications. This rule 
consists of the following: the “convolution” of the initial Fibonacci representation is equivalent to the 
“devolution” of the inverse Fibonacci representation and conversely. By using this rule, we can fulfill the 
reduction to the “convolute” form for the example (14) as follows:  
 

 (a) Inversion of the initial Fibonacci representation 0 1 1 1 1:  
 

1 0 0 0 0 
 

(b) “Code devolution” of the inverse Fibonacci representation: 
 

0 1 0 1 1 
 

(c) Inversion of the obtained Fibonacci representation: 
 

1 0 1 0 0 (the “convolute” form of the Fibonacci representation 0 1 1 1 1). 

1 1
7 1 0

1 0 1 0 0








0 1 1

0 1 1
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Consider now peculiarities of the “convolution” and “devolution” for the lowest digits of the Fibonacci 1-
code. As is well-known in the case p = 1 the weights of the two lowest digits of the Fibonacci 1-code is 
equal to 1 identically, that is, F1 = F2 = 1. And then the operations of the “devolution” and “convolution” for 
these digits are performed as follows:  
 

 1 0 = 0 1 (“devolution”) and 0 1 = 1 0 (“convolution”). 
 

3.5 The radix of the Fibonacci p-code  
 
For the case p = 0 the radix of the binary system (8) is calculated as the ratio of the adjacent digit weights, 
that is, 
 

2

2
21

k

k  . 

 
Apply this principle to the Fibonacci p-code (6) and consider the ratio 
 

 
)1(

)(

kF

kF

p

p
 .                                                                         (16) 

 
A limit of the ratio (16) is named a radix of the Fibonacci p-code (6). It is easy to prove that 
 

( )
lim

( 1)
p

pk
p

F k

F k



 ,                                                                                (17) 

 

where p  is the golden p-proportion.  

 

This means that the radix of the Fibonacci p-code (6) for the case p>0 is irrational number p . 

 

3.6 A minimal form of the Fibonacci p-code  
 
The following theorem is of great importance for a theory of the Fibonacci p-codes [31]. 
 
Theorem 2. For the given integers p0 and np+1 the arbitrary integer N can be represented in the 
following unique form: 
 

N = Fp(n) + R1,                                                                                    (18) 
 

where  
 

0  R1 < Fp(n-p).                                                                                       (19) 
 

Note that for the case p=0 we have: 
 

F0(n) = 2n-1 
 
and then the expressions (18) and (19) take the following well-known form (for the “binary” arithmetic): 
 

N = 2n-1 + R1,   0  R1 < 2n-1.                                                        (20) 
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If we represent the integer N according to the formula (18) and then represent all remainders R1, R2, ..., Rk , 
arising as result of this representation, according to the same formula (18) up to obtaining the remainder 
equal to 0, we get a peculiar representation of the integer N in the Fibonacci p-code (6). Its peculiarity 
consists of the fact that in the Fibonacci representation of the integer N given by (7) no less than p bits of 0 
follow after every bit al = 1 from the left to the right, that is,  
 

al-1 = al-2 = ... = al-p = 0. 
 
Such Fibonacci representation of the integer N is called MINIMAL FORM or minimal Fibonacci 
representation of the integer N in the Fibonacci p-code (6). This name reflects the fact that for the case p = 1 
the MINIMAL FORM of the integer N has a minimal number of the bits of 1 in the Fibonacci 
representation of the Fibonacci 1-code (9) among all Fibonacci representations of the same integer N. 
 
For example, by using the above algorithm, we can obtain the following MINIMAL FORMS of the number 
25 for the Fibonacci 1- and 2-codes (Table 6). 
 

Table 6. MINIMAL FORMS for the Fibonacci 1- and 2-codes  
 

 F1(i) 55 34 21 13 8 5 3 2 1 1 
p = 1 25  = 0 0 1 0 0 0 1 0 1 0 
 F2(i)  19 13 9 6 4 3 2 1 1 1 
p = 2 25  = 1 0 0 1 0 0 0 0 0 0 
 
A peculiarity of the Fibonacci representations of the number 25, given by Table 6, consists in the following. 
For the case p=1 not less then one bit of 0 follows after every bit of 1 from the left to the right in the 
Fibonacci representation of the number 25; for the case p=2 not less then two bits of 0 follow after every bit 
of 1 from the left to the right in the Fibonacci representation of the same number 25. 
 
Corollary from Theorem 2. For a given p (p=0, 1, 2, 3, …) every integer N has the only minimal form in 
the Fibonacci p-code.  
 
This means that there is one-to-one mapping of natural numbers onto the minimal forms of the Fibonacci p-
code (6). 
 
Note that for the case p=0 (the classical binary code) every integer N has the only binary representation in 
the form (7). This means that every binary representation (7) is its “minimal form”.  
 
The following theorem is proved in [31]. 
 
Theorem 3. For a given integer p0 in the minimal form of the n-digit Fibonacci p-code we can represent 
Fp(n+1) integers in the range from 0 to Fp(n+1)-1, inclusively. 
 
For the case p=1 the MINIMAL FORM of the Fibonacci (p=1)-code has very simple indication: in the 
MINIMAL FORM two bits of 1 together do not meet. But the “convolute” Fibonacci representation, 
considered above, has the same property. This means that for the Fibonacci (p=1)-code the “convolute” form 
coincides with the MINIMAL FORM and the reduction of the Fibonacci representation for the Fibonacci 
(p=1)-code (9) to its MINIMAL FORM can be performed by using “convolutions”. The example (14) 
demonstrates a process of the reduction of the Fibonacci representation for the Fibonacci (p=1)-code (9) to 
the MINIMAL FORM. Also the notion of the MAXIMAL FORM is very important for the Fibonacci (p=1)-
code. The MAXIMAL FORM can be obtained from the initial Fibonacci representation (7) by using 
“devolutions” and the MAXIMAL FORM coincides with the “devolute” form. The example (15) 
demonstrates a process of the reduction of the minimal Fibonacci representation 10000 to the maximal 
Fibonacci representation 01011. Note that the operations of the reduction of the Fibonacci representations to 
their MINIMAL or MAXIMAL FORMS are the most important operations of the Fibonacci arithmetic.  
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3.7 Code redundancy of the Fibonacci p-codes  
 
For the case p=0 the Fibonacci (p=0)-code (classical binary code) is non-redundant. But for the case p>0 all 
Fibonacci p-codes are redundant. And their redundancy shows itself in plurality of the Fibonacci 
representations of one and the same integer N. Theorems 1 and 2 allow calculating the code redundancy of 
the Fibonacci p-codes for the cases p>0 in comparison with the classical binary code (p = 0).  
 

We can calculate the relative code redundancy r by the following formula [45]: 
 

r = 1


m

n

m

mn
,                                                                       (21) 

 

where n and m are the code length of the redundant and non-redundant codes, respectively. Note that the 
code redundancy definition, given by (21), characterizes a relative increasing of the code length of the 
redundant code in the comparison to the non-redundant code for the representation of one and the same 
number range. 
 

Theorems 1 and 2 determines the ranges of number representations in Fibonacci p-codes for two cases: (a) 
when we use all possible Fibonacci representations (Theorem 1) and (b) when we use only MINIMAL 
FORMS of Fibonacci representations (Theorem 2). For the case (a) we can represent Fp(n+p+1) integers, for 
the case (b) we can represent Fp(n+ 1) integers  
 

For the code representation of numbers in the number range Fp(n+p+1) or Fp(n+1), it is necessary to use 
either m1  log2Fp(n+p+1) or m2  log2Fp(n+1) binary digits of the non-redundant code, respectively. Using 
(21) we can obtain the following formulas for the calculation of the relative code redundancy of the 
Fibonacci p-code (for the case p=1 and p=2, respectively): 
 

r1 = 1
)1(log2


 pnF

n

p

 ;                                                         (22) 

 

r2 = 
n

F n pplog ( )2 1
1

 
 .                                                         (23) 

 

The simplest redundant Fibonacci p-code is the code, corresponding to the case p=1. We can calculate the 
limiting value of the relative redundancy for this code. For this case the formulas (22), (23) take the 
following forms, respectively: 
 

r1 = 1
log 22


nF

n
 ;                                                                       (24) 

 

r2 = 
n

Fnlog2 1

1


 ,                                                                         (25) 

 

where Fn+2, Fn+1 are the classical Fibonacci numbers. 
 

We can represent the Fibonacci numbers Fn+2 and Fn+1 by using Binet formulas [31]:   
 

                                                                       (26) 
2 1;

5

2
5

n n

n n n

for n k
F

for n k












 
 


 


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For a large n we can write Binet formulas (26) in the following approximate form:  
 

5

n

nF


                                                                           (27) 

 
Using (27) and substituting the approximate values for Fn+2 and Fn+1 into the formulas (24) and (25), we can 
obtain the following formulas:  
 

1
2 2

1
( 2)log log 5

n
r

n
 

 
;                                                        (28) 

 

2
2 2

1
( 1)log log 5

n
r

n
 

 
.                                                         (29) 

 
If we aim n in the expressions (28) and (29), we can see that they coincide for the case n. Here the 
limiting value of the relative code redundancy for the Fibonacci 1-code (9) is determined by the following 
expression: 
 

2

1
1 0.44

log
r   


.                                                         (30) 

 
Thus, the limiting value of the relative code redundancy of the Fibonacci 1-code is a constant value equal to 
0.44 (44%). 
 

4 Fibonacci Arithmetic 
 
4.1 Comparison of numbers in the Fibonacci p-codes  
 
As it is shown above, Fibonacci p-codes (6) are a new class of positional numeral systems. Fibonacci                        
p-codes (6) are similar to the binary system and are its generalization. Therefore, all the well-known 
properties of the positional numeral systems, in particular, the binary system, can be used to create the 
Fibonacci arithmetic, although the difference consists of the fact that we should take into consideration 
fundamental features of the Fibonacci p-codes, in particular, such as the plurality of number representation 
and MINIMAL FORM. 
 
Let us begin from the comparison of numbers in the Fibonacci p-codes. A comparison of Fibonacci 
representations A and B is carried out in the Fibonacci p-codes similarly to the classical binary code, if 
before the comparison we reduce the compared Fibonacci representations to the MINIMAL FORM. This 
property (simplicity of number comparison) is one of the important arithmetical advantages of the Fibonacci 
p-codes. 
 
For example we need to compare two Fibonacci representations A = 00111101101 and B = 00111110110, 
represented in the Fibonacci (p=1)-code (9) (the classical Fibonacci code). The comparison of numbers is 
performed in two steps: 
 

1. Reduction of  the compared Fibonacci representations to the MINIMAL FORM: 
 

A = 01010010010 and B = 01010100000.                                                         (31) 
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2. Digit-by-digit comparison of the MINIMAL FORMS (31), starting  since the highest digit until 
obtaining first pair of the distinct bits: 

 
A = 01010010010; 
B = 01010100000. 

 
We can see that the first distinct pair of bits for the compared Fibonacci representations A and B contains the 
bit of 0 in the MINIMAL FORM of the first Fibonacci representation A and the bit of 1 in the MINIMAL 
FORM of the second Fibonacci representation  B. This means that B>A. 
 

4.2 Fibonacci counters  
 
Algorithm of the Fibonacci summing counter is based on the following rule: 
 

1)  Before adding of bit 1 to LSB, the initial Fibonacci representation, corresponding to the number N, 
is reduced to such a form that the value of LSB will be equal to 0.  

2)  After that, we add the bit 1 to LSB what leads to increasing of number in the Fibonacci counter to 
the value N+1. 

3)  We repeat point 1 and 2 until overflowing Fibonacci counter. 
 
Let us demonstrate this algorithm in the following Example 1.  

 
Example 1. Algorithm of the Fibonacci summing counter 
 

                                         (32) 

 
Here we single out in bold in parentheses those situations where we can perform “convolutions” in 
Fibonacci representations. Consider, for example, the situation of the transition of the Fibonacci 
representation of the number 8 to the Fibonacci representation of the number 9. In this case, while recording 
of it 1 to LSB of Fibonacci representation, we carry out convolution of bits 1 from the 2nd and 3rd digits in 

the 4th digit of Fibonacci representation ( 011 100 ) what results to the Fibonacci representation of the 

number 9 ( ).Note that the bottom row of the table (32) corresponds to the 

overflow of Fibonacci counter. 

000000 1 0000 000010 1

000010 1 000 000100 2

000100 1 0001 000110 3

00 0 1 0010 001010 4

001010 1 001 001100 5

0 00 1 0100 010010 6

010010 1 010 010100 7

010100 1 0101 010110 8

01 0 1

   

   

   

   

   

   

   

   



01

011

01

011 01

011

011 01

011

01

011 0 100010 9

100010 1 100 100100 10

100100 1 1001 = 100110 = 11

10 0 1 1010 101010 12

101010 1 101 1 00 000 000000

  

   

 

   

    

011 01

011

01

011 01

011 011 110

00 00011 01 100 10 = 9
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Subtraction of 1’s in the Fibonacci code (9) is carried out by subtracting of bit 1 from the LSB of the 
Fibonacci representation of the number N, where the value of the LSB is equal to 1. Consider the Example 2 
of the functioning of the Fibonacci subtracting counter. 
 
Example 2. Algorithm of the Fibonacci subtracting counter 
 

                                                         (33) 

 
Here we single out in bold in parentheses those situations, when we can realize “devolutions” in Fibonacci 
representations. Thus, a feature of the Fibonacci subtracting counter consist of the fact that in any situation 
the transition from the Fibonacci representation of the number N to the Fibonacci representation of the 
number N-1 is performed during sequential operations of the “devolutions.” 
 
The above algorithms of summing and subtracting Fibonacci counters show that these counters the 
prerequisites for the construction of high-speed Fibonacci counters (without the use of complex schemes of 
group transfer). That is, these simple examples shows certain advantages of the Fibonacci code (9) in 
comparison to the classical binary code (8). 
 
It is necessary to pay attention to the latest development in the field of Fibonacci counters [32,33]. A 
peculiarity of new Fibonacci counter, described in [32,33], lies in the fact that here we use only minimal 
Fibonacci representations what improves noise-immunity of Fibonacci counter. 
 

4.3 Fibonacci summation and subtraction   
 
It is well known, the classical binary summation is based on the following elementary identity for the binary 
numbers: 
 

12 2 2k k k                                                                          (34) 
 

where 12 ,2k k  are the weights of the k-th  and (k+1)-th digits of the binary code (8), respectively . 

 
The “deduction” of the Fibonacci p-summation rule begins from the analysis of the sum: 
 

   p pF k F k                                                                         (35) 

 
where Fp(k) is the weight of the k-th digit of the Fibonacci p-code (6). 
 
Let p = 1. For this case we have  
 

Fp(k) = Fk ,                                                                        (36) 
 

where Fk is the classical Fibonacci numbers: 1,1,2,3,5,8,13,…, given by the recurrence relation (10). By 
using (10), we can represent the sum (35) as follows: 

1111 1 11 1101 6

1101 1 1 1011 5

1011 1 10 1001 4

1 1 0110 0101 3

0101 1 0 0011 2

0011 1 00 0001 1

0001 1 0000 0

   

   

   

   

   

   

  

10

100

10

100

100

10
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(a) Fk + Fk  = Fk + Fk-1 + Fk-2                                                                                   (37) 
 

(b) Fk + Fk  = Fk+1 + Fk-2                                                                                                         (38) 
 
It follows from (37), (38) the following table for the Fibonacci summation (p=1) of the two binary digits ak 
+ bk with the same index k. 
 

Table 7. Fibonacci summation for the case p=1 
 

0 + 0 =    0 
0 + 1 =    1 
1 + 0 =    1 
1 + 1 =    1 1 1   (a) 
1 + 1 = 1 0 0 1   (b) 

 
 
It follows from Table 7 that the rules of the Fibonacci summation (p=1) coincide with the binary summation 
for the cases: 0+0=0, 0+1=1, 1+0=1; but for the case 1+1, the rules of the Fibonacci summation (p=1) don’t 
coincide with the binary summation. For the case 1+1, the rules of the Fibonacci summation (p=1) are 
reduced to the following:  
 
Rule 1. At the summation of the binary 1’s of the k-th digit of the summand Fibonacci representations, the 
carry-out of two bits of 1 from the k-th digit to the other two digits arises. 
 
Rule 2. There are two methods of carry-over formation. For the method (a) the bit of 1 is written to the k-th 
digit of the intermediate sum and the two carry-over's of 1 arise  to the next two lower digits, namely to the 
(k-1)-th and (k-2)-th digits.   
 
The method (b) assumes another rule of the Fibonacci summation (p=1) of the summand Fibonacci 
representations. The bit 0 is written to the k-th digit of the intermediate sum and the two carry-over’s of 1 
arise to the other digits, namely to the (k+1)-th and (k-2)-th digits.   
 
The summation of the multi-digit numbers in the Fibonacci code (p=1) is fulfilled in accordance with the 
Table 7. However, we should follow the following rules: 
 
Rule 3. Before the summation the summand Fibonacci representations are reduced to the MINIMAL 
FORM. 
 
Rule 4. In accordance with Table 7 it is necessary to form multi-digit intermediate sum and multi-digit 
carry-over. 
 
Rule 5. The multi-digit intermediate sum is reduced to the MINIMAL FORM and then is summarized with 
the multi-digit carry-over. 
 
Rule 6. The summation process continues in accordance with the rules 4, 5 until obtaining the multi-digit 
carry-over equal to 0. The last intermediate sum, reduced to the MINIMAL FORM is the result of Fibonacci 
summation. 
 
For the above Fibonacci summation we need to add the following additional rule. 
 
Rule 7. Consider the case when we have two binary 1’s in the kth digits of the summand Fibonacci 
representations. It follows from the property of the MINIMAL FORM that the bits of the (k+1)-th and (k-1)-
th digits of the both summand Fibonacci representations are always equal to 0. It is clear that for this case the 
intermediate sums, arising at the addition of the (k+1)-th and (k-1)-th digits of the both summand Fibonacci 
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representations, are always equal to 0. This means that we can place one of the carry-over’s, arising at the 
summation of the k-th significant digits (1+1), at once to the (k-1)-th digit of the intermediate sum (for the 
(a)-method of the Fibonacci summation) or to the (k+1)-th digit of the intermediate sum (for the (b)-method 
of the Fibonacci summation). 
 
We can demonstrate the above summation rules by the following example. 
 
Example 3. Fibonacci summation of multi-digit Fibonacci representations 
 
Sum the Fibonacci representations 31=10011011 and 22=01011010, represented in the Fibonacci code (9): 
 

1.  Reduction of the summand Fibonacci representations to the MINIMAL FORM: 
 

31 = 1 0 1 0 0 1 0 0 
22 = 1 0 0 0 0 0 1 0. 
 

2.  Formation of the multi-digit intermediate sum S1 and multi-digit carry-over C1 in accordance with 
the method (a) of Table 7: 

 

 
 

3.  Reduction of the intermediate sum S1 to the MINIMAL FORM: 
 

  S1 = 100101000 
 

4.  Summation of S1 and C1: 
 

 

 
5.  Reduction of the intermediate sum S2 to the MINIMAL FORM: 
 

S2 = 101001000  
     

6.  Summation of S2 and C2: 
 

 

 
7.  Reduction of the intermediate sum S3 to the MINIMAL FORM: 

 
S3 = 101010000 

1

1

31 10100100

22 10000010

11100110

00100000

S

C









2

1

1

2

100101000

000100000

100111000

000001000

S

C

S

C 







2

2

3

3

101001000

000001000

101001100

000000010

S

C

S

C








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8.  Summation of S3 and C3:  
 

3

3

4

4

101010000

000000010

101010010

000000000

S

C

S

C









 

 
The summation is over because carry-over C4 =0.  
 
As it is well-known, the method of the «direct» number subtraction in the classical binary arithmetic (p = 0) 
is based on the following property of the binary numbers: 
 

2n+k - 2n = 2n+k-1 + 2n+k-2 + ... + 2n.                                                                                       (39) 
 

Write now the similar identity for the Fibonacci (p=1)-numbers: 
 

Fn+k - Fn = Fn+k-2 + Fn+k-3 + ... + Fn-1.                                                        (40) 
 
Using the identity (40) and Fibonacci recurrence relation (10), we can construct the following Fibonacci 
subtraction table: 
 

Table 8. Fibonacci subtraction table for the case p=1 
 

0 - 0 =    0 
1 - 1 =    0 
1 - 0 =    0 1 1 

1 0 - 1 =    0 1 
1 0 0 - 1 =    1 1  

1 0 0 0 - 1 = 1 1 1 
 

The direct Fibonacci subtraction of multi-digit numbers uses the following rules: 
 

Rule 8. Before subtraction the subtracted Fibonacci representations are reduced to the MINIMAL FORM. 
 

Rule 9. The subtracted MINIMAL FORMS are compared by their value according to the rules of Fibonacci 
representations comparison and then in accordance with Table 8, the lesser Fibonacci representation is 
subtracted from the bigger Fibonacci representation.  
 

Note that these arithmetic algorithms are new technical solutions. They were developed by the author in the 
early 70s of the 20th century and these algorithms have been used as a basis of comparison devices, addition 
and subtraction devices, as well as summing and subtracting Fibonacci counters, patented abroad [16-28]. 
 

It should not be assumed that the above rules of arithmetical operations in the Fibonacci code (9) is the only 
possible rules. In the book [31], the rules of Fibonacci subtraction based on the use of the concepts of 
additional and inverse Fibonacci codes are developed. In the same book [31] the original methods of the 
Fibonacci summation and subtraction, based on the use of the so-called "basic micro-operations," are 
suggested. 
 

4.4 Fibonacci multiplication and division 
  
4.4.1 Fibonacci multiplication  
 
The analysis of the Ancient Egyptian multiplication [46] led us to the following method of the p-Fibonacci 
multiplication.   
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Consider now the product P = A×B, where the numbers A and B are represented in the Fibonacci p-code (6). 
Using the representation of the multiplier B in the Fibonacci p-code (6), we can write the product P = A× B 
in the following form: 
 

P = A×bnFp(n) + A×bn-1Fp(n-1) + … + A×biFp(i) + … + A×b1Fp(1),                                         (41) 
 
where Fp(i) is the Fibonacci p-number.  
 
The following algorithm of the p-Fibonacci multiplication follows from the expression (41). The 
multiplication is reduced to the summation of the partial products of the kind A×biFp(i). They are formed 
from the multiplier A according to the special procedure that reminds the Ancient Egyptian multiplication 
[46]. Demonstrate now the “Fibonacci multiplication” for the case of the simplest Fibonacci p-code (p=1).   
 
Example 4. Example of Fibonacci multiplication: 41×305.  
 

1. Construct the table consisting of the three columns: F, G and P (see Table 9).   
2. Insert the Fibonacci 1-sequence (the classical Fibonacci numbers) 1, 1, 2, 3, 5, 8, 13, 21, 34 to the 

F-column of Table 9. 
3. Insert the generalized Fibonacci 1-sequence: 305, 305, 610, 915, 1525, 2440, 3965, 6505, 10370, 

which is formed in the G-column from the first multiplier 305 according to the “Fibonacci 
recurrence relation.”   

4. Mark by the inclined line (/) and fat all the F-numbers that give the second multiplier in the sum (41 
= 34 + 5 + 2). 

5. Mark by fat all the G-numbers corresponding to the marked F-numbers and rewrite them to the P-
column.   

6. Summarizing all the P-numbers, we obtain the product: 41×305 = 12 505. 
 

Table 9. Fibonacci multiplication for the case p=1 
 

F G P 
1 305  
1 305  
/2 610   610 
3 915  
/5 1 525   1 525 
8 2 440  
13 3 965  
21 6 505  
/34 10 370   10 370 
41=34+5+2 41×305 =    12 505 

 
The above Fibonacci multiplication algorithm is easily generalized for the case of the Fibonacci p-codes (6).   

 
4.4.2 Fibonacci division  
 
Consider the Example 5 of the Fibonacci division for the case p=1. 
 
Example 5. Divide the number 481 (the dividend) by the number 13 (the divisor) in the Fibonacci code 
(9) (p=1).  
 

1. Construct the table consisting of three columns: F, G and D (see Table 10).  
2. Insert the Fibonacci 1-sequence (the classical Fibonacci numbers) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 to 

the F-column of Table 10. 
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3. Insert the generalized Fibonacci 1-sequence: 13, 13, 26, 39, 65, 104, 169, 273, 442, 615, formed 
from the divisor 13 according to the “Fibonacci recurrence relation,” to the G-column.  

4. Compare sequentially every G-number with the dividend 481, inscribed into the D-column, and fix 
the result of comparison (≤ or >) until when we obtain the first comparison result of the kind (>): 
615>481. 

5. Mark by the incline line (/) and fat the F-number 34, corresponding to the preceding G-number 442, 
and mark the letter by fat.  

6. Calculate the difference: R1 = 481 – 442 = 39.    
 

Table 10. The first stage of the Fibonacci division 
 

F G D 
1 13 ≤481 
1 13 ≤481 
2 26 ≤481 
3 39 ≤481 
5 65 ≤481 
8 104 ≤481 
13 169 ≤481 
21 273 ≤481 
/34 442 ≤481 
55 615 >481 
R1 =  481 – 442 = 39  

 
The second stage of the Fibonacci 1-division is a repetition of the first stage but we use instead the dividend 
481 the difference R1 = 39 (see Table 11).  
 

Table 11. The second stage of the Fibonacci division 
 

F G D 
1 13 ≤39 
1 13 ≤39 
2 26 ≤39 
/3 39 ≤39 
5 65 >39 
R2 = 39 – 39 = 0  

 
Because the second difference R2 = 39 – 39 = 0, this means the 1-Fibonacci division is over. The result of the 
division is equal to the sum of all the fatted F-numbers obtained on all stages (see Tables 10, 11), that is:   
 

 

 

5 Original Fibonacci Devices 
 
5.1 The device for reduction of Fibonacci representations to MINIMAL FORM 
 
The “convolution” and “devolution” devices play an important role in the technical realization of 
arithmetical operations over the Fibonacci representations. They can be designed on the base of the binary 
register having special logical circuits to perform “convolutions” and “devolutions”. Each digit of the 
register contains binary flip-flop" (trigger) and logical elements. The operations of “convolution”                  
(011 = 100) and “devolution” (100 = 011) can be performed by means of the inversion of the "flip-flops" 
(triggers). 

481 : 13 = 34 + 3 = 37
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One of the possible variants of the “convolution” register or “the device for reduction of the Fibonacci code 
to the minimal form” is shown in Fig. 2. 
  

 
Fig. 2. The device for reduction of the Fibonacci code to the MINIMAL FORM 

 
The device in Fig. 1 consists of the five R-S-triggers and the logical elements AND, OR, which are used to 
perform the “convolutions”. The “convolution” is performed by using the logical gates AND1 - AND5 and 
corresponding logical gate OR, standing before the R- and S-inputs of the triggers. The logical gate AND1 
performs the “convolution” of the 1-st digit to the 2-d digit. Its two inputs are connected with the direct 
output of the trigger T1 and the inverse output of the trigger T2. The 3-d input is connected with the 
synchronization input C. The logical gate AND1 analyzes the states Q1 and Q2 of the triggers T1 and T2. If Q1 
= 1 and Q2 = 0, this means that the convolution condition is satisfied for the 1-st and 2-d digits. The 
synchronization signal C = 1 causes the appearance of the logical 1 at the output of the gate AND1 . The latter 
causes switching the triggers T1 and T2. This results to the “convolution” (01 = 10). 
 
The logical gate ANDk  of the k-th digit (k=2, 3, 4, 5) performs the “convolution” of the (k-1)-th and k-th 
digits to the (k+1)-th digit. Its three inputs are connected with the direct outputs of the triggers Tk-1 and Tk 
and the inverse output of the trigger Tk+1. The 4-th input is connected with the synchronization input C. The 
logical gate ANDk analyzes the states Qk-1, Qk, and Qk+1 of the triggers Tk-1, Tk, and Tk+1. If Qk-1 = 1, Qk,= 1, 
and Qk+1 = 0, this  means that the “convolution” condition is satisfied. The synchronization signal C = 1 

1
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results switching triggers Tk-1, Tk, and Tk+1. The “convolution” of the corresponding digits (011 = 100) is 
over. 
 
Notice that all the gates AND1 - AND5 are connected through the common logical gate ORc with the check 
output of the “convolution” register. 
 
The device for bringing of the Fibonacci code to the MINIMAL FORM in Fig. 1 operates in the following 
manner. The input code information is sent to the information inputs 1 - 5 of the “convolution” register and 
enters the S-inputs of the triggers through the corresponding logical gates OR. Let the initial slate of the 
convolution register be in the following state: 
 

5 4 3 2 1 
0 1 0 1 1  

 
It is clear that the “convolution” condition is satisfied only for the 1-st, 2-d and 3-d digits. The first 
synchronization signal C = 1 results in the passage of the “convolution” register to the following state: 
 

5 4 3 2 1 
0 1 1 0 0. 

 
Here the “convolution” condition is satisfied for the 3-d, 4-s and 5-th digits. The next synchronization signal 
C = 1 results in the passage of the “convolution” register to the following state: 
 

5 4 3 2 1 
1 0 0 0 0. 

 
The “convolution” is over. 
 

5.2 The “convolution” register as self-checking device  
 
The outputs of the logical gates AND1 - AND5 of the “convolution” registers in Fig. 1 are connected with the 
register check output through the common gate OR. This output plays an important role as the check output 
of the “convolution” register. 
 
It follows from the functioning principle of the “convolution” register that the logical 1 appears on the check 
output only for two situations: 
 

(1)  The binary code word, written into the “convolution” register, is not MINIMAL FORM. This 
means that the “convolution” condition is satisfied at least for one triple of the adjacent triggers of 
the “convolution” register. This causes the appearance of the logical 1 at the output of the 
corresponding gate AND. Hence in this case the appearance of the logical 1 at the check output of 
the “convolution” register indicates the fact that the “convolution” process is not over. This means 
that we have a possibility to indicate the termination of the “convolution” process by means of 
observing the check output of the “convolution” register. 

(2)  The appearance of the constant logical 1 at the check output is an indication of the fault in the 
“convolution” register. Hence the “convolution” register is a natural self-checking device what is 
important for the improvement of informational reliability of Fibonacci computer. 

 

There are other variants of implementation of such device, described in the book [31].  
 

5.3 Device for checking MINIMAL FORM   
 
Fig. 3 shows a device for checking MINIMAL FORM. The device consists of the n logical gates AND. Their 
outputs are connected with the inputs of the common logic gate OR. If the initial Fibonacci representation 
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has a violation of the MINIMAL FORM, that is, has two adjacent bits of 1 or the bit 1 in the lower digit, 
there appears the logical 1 at least at one input of the logical gate AND. It results in the appearance of the 
logical 1 at the output of the common gate OR and this logical 1 is the error indication. 

 
Fig. 3. The logical circuit for checking the minimal form 

 

6 Conception of Fibonacci Computer and Its Advantages 
 
6.1 The main principles of Fibonacci computer 
 
We can formulate the following main principles of the Fibonacci computer: 
 

1.  We use in Fibonacci computer the redundant Fibonacci p-codes. However, Fibonacci (p=1) –code, 
having the least code redundancy, is the most suitable in terms of hardware cost. 

2.  We use the MINIMAL FORM of the Fibonacci (p=1)–code for error detection at all stages of data 
transformation, including arithmetic operations, data transfer and storage. 

 
Fibonacci computer has a number of important advantages in comparison with classic binary computers. The 
most important of these is the high ability to detect errors in functional units of Fibonacci computer.  
 

6.2 Error detection  
 
6.2.1 “Soft” and “hard” errors  
 
As it is well-known, all errors, arising in functional devices of computer, can be divided into two groups: 1) 
the "soft errors" that result from random effects on electronic elements and the "hard errors" that result from 
constant failures of electronic elements. Both types of errors are dangerous and may lead to "false" data on 
the computer. 
 
As for the "hard errors", they can be detected by the register for reduction of Fibonacci code to the 
MINIMAL FORM. This register is an important device of all arithmetic units and thanks to this device all 
Fibonacci arithmetic devices become self-checking devices. This is the first important advantage of the 
Fibonacci computer. 
 
6.2.2 Formula for error-detecting ability for “soft errors”  
 
Let us consider now the error detection in such an important computer unit as an electronic memory. Error-
detecting ability of the Fibonacci p-codes is determined by the relationship between the allowed and 
forbidden code combinations. Note that the set of the allowed combinations of the n-bit Fibonacci p-code 
coincides with the set of the n-bit MINIMAL FORMS. This means that the number of the n-bit allowed 

& & & & &
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combinations is equal to  1 1pN F n  . Then, the number of the forbidden code combinations is equal to 

 2 12 p
n F nN   , where 2n  is the number of the possible n-bit binary combinations. Then the 

ERROR-DETECTING ABILITY 
dS  of the Fibonacci p-code (for the case of the MINIMAL FORM), is 

determined as follows: 
 

 
 2

1
1

2 2
p

n nd p
F nN

S


   .                                                       (42) 

 
For example, for the case of the 24-bit Fibonacci p-codes (p=1 and p=2) we have the following numerical 
values for the range of representations, respectively: 
 

                                           (43) 

 
24

1: (25) 6450, 2 16777216F  2p = .                                             (44) 

 
By using (42) - (44), we can calculate the ERROR-DETECTING ABILITY of the 24-bit Fibonacci 1- and 2-
codes, respectively: 
 

                                                            (45) 

 
6.2.3 Fibonacci parity code  
 
As seen from the example (45), the potential error detecting ability of the Fibonacci p-codes is enough high.  
In order to improve the potential error-detection ability of the Fibonacci code, we can use the so-called 
Fibonacci Parity Code (FPC) by adding a PARITY BIT para  to the MINIMAL FORM (MF) of the 

Fibonacci code: 
 

1 2 1... ...n parin

PBMF

a a a a a a
                                                         (46) 

 
The FIBONACCI PARITY CODE (46) significantly improves the error-detecting ability of the Fibonacci p-
code. In this case, the main feature of the FPC is ensuring the 100% detection of all odd-bit errors, in 
particular, the single-bit errors. It is easy to prove [31] that the POTENTIAL ERROR-DETECTING 
ABILITY of the FPC (46) is calculated by the formula:  
 

 
 

1

1
1 .

2

p

d n

F n
S FPC




                                                           (47) 

 
For example, for the case of the 24-bit Fibonacci p-codes (p=1 and p=2) we have the following data ranges 
for the FIBONACCI-PARITY CODES (p=1 and p=2), respectively: 
 

25
1(25) 62215, 2 33554432F                                                    (48) 

 
25

2(25) 6450, 2 33554432F   .                                                   (49) 

 

24
1: (25) 62215, 2 16777216F  1p =

   
   

1 0.9963 99.63%

2 0.9996 99.96%

d

d

S p

S p

 

 
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By using (47) for the cases (48), (49), we can calculate the ERROR-DETECTING ABILITY of the 
FIBONACCI-PARITY CODES (p=1 and p=2), respectively, as follows: 
 

   , 1 0.9981459 99.8%dS FPC p                                             (50) 

 

   , 2 0.9998078 99.98%dS FPC p   .                                         (51) 

 
This means that the FIBONACCI-PARITY CODE can provide the continuous detection of errors in 
Fibonacci microcontroller or microprocessor at various stages of storage, transmission and processing of 
data with the error detection coefficient equal to 99.8-99.98%. 
 
6.2.4 Energy consumption and power dissipation in ROM   
 
It is known that for certain types of electronic memory (EM) there is some asymmetry between bits 1 and 0 
at their storage in different kinds of electronic memory, for example, ROM. In particular, the recording of 
the bit 1 and its reading from the ROM requires more energy consumption, than for the bit 0. From this point 
of view, the MINIMAL FORM of the Fibonacci representations is an optimal binary representations from 
the point of view of energy consumption and power dissipation, because the bits 1 are separated always 
with bits 0 (in general, in the MINIMAL FORM, two bits 1 are separated by no less then p bits 0). 
 
It is clear, in the array of the MINIMAL FORMS, the bits 1 and 0 are distributed non-uniformly; in this case, 
always the number of the bits 0 exceeds the number of the bits 1. This creates "comfortable" conditions for 
electronic memory, in particular, ROM, from the point of view of the energy consumption and power 
dissipation. The ROM’s with fusible links or electrically programmable ROM’s are examples of such kind 
of electronic memory. For such ROM’s only the bits 1 determine energy consumption and power dissipation. 
 
In order to estimate the decrease of energy consumption in ROM, when the data is stored in the MINIMAL 
FORM of the Fibonacci p-codes (6), we consider the following reasoning’s. When we store in ROM the 
numbers, represented with the m-bit binary code, the maximal energy consumption appears at recording and 
reading of the following binary code combination:  
 

 max 11...1
m

N m  .                                                          (52) 

 
If the storage of one bit of 1 demands the energy consumption 

1P , then we can express the maximal energy 

consumption  maxP m  for the storage of the code combination (65) as follows: 

 

 max 1P m mP  .                                                                      (53) 

 
With the m-bit binary code we can represent 2m  positive integers, that is, the range of the number 
representation is equal:  
 

2mD  .                                                                                         (54) 
 
If we will represent the positive integers in the MINIMAL FORM of the Fibonacci p-code (6), then, due its 
code redundancy, for the storage of the same range of positive integers, given by (54), we need to increase 
the number of digits of the Fibonacci p-code (6) proportionally to its relative code redundancy r . In this 
case, the number of the Fibonacci’s bits n for the storage of the number range (54) is equal approximately to: 
 

 1n m r  .                                                                       (55) 
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The formula (5568) shows that the number of the bits n in the Fibonacci p-code (6) increases by  1 r  times in 

comparison with the number of the bits m for the binary system, necessary for the representation of the same number range 

(54).  In this case, the n-bit Fibonacci representation of the maximal number maxN  in the MINIMAL FORM 

of the Fibonacci p-code (6) looks as follows: 
 

max 100...0100...0 ...100...0 ...100...0
p p p p

N      .                                         (56) 

 
In particular, for the case p=1 we have:  
 

max 1010...10...10N  .                                                                        (57) 

 

We can see that the Fibonacci representation (56) consists of the k groups of the kind 100..0
p

 , which 

contains one bit of 1 and p bits of 0, where k is the number of the bits of 1 in the representation (56). By 
using (55) and (56), we can express the number of k as follows:  
 

 1

1 1

m Rn
k

p p


 

 
.                                                          (58) 

 
It follows from (58) that the maximal energy consumption for the storage of the n-bit Fibonacci representation is determined 
by the expression: 
 

 
max 1 1

1

1
f

m r
P kP P

p


 


.                                                                         (59) 

 
Consider now the ratio:  
 

max

max

1
1f

P p
RP


  


.                                                                        (60) 

 

Because R<1 and 1p  , then the coefficient   describes the decrease of the energy consumption in ROM, if we 

use the Fibonacci p-codes (6).  
 

Table 12 sets forth the values of   for the cases p=1, 2. 

 

Table 12. The values of   

 

 

 
Thus, for the case p=2 the improvement in energy consumption is about 2 times, despite the fact that the number of digits in 
Fibonacci 2-code increases by about 1.5 times compared with the classical binary system. It follows from Table 12 that the 
gain in the energy consumption in the ROM increases with increasing p. This result could have great significance for the 
future of nano-computers and microelectronics, where decreasing energy consumption and optimizing power dissipation is 
becoming one of the central problems. 
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6.2.5 Fibonacci p-codes as self-synchronization codes  
 
A distinction of the bits 1 and 0 in sequentially transmitted binary data relates to a serious technical problem, 
called problem of synchronization. To solve this problem, special synchronization signals, clock-signals, 
need to be used. One of the effective ways for improving of the synchronization of transmitted data (without 
special clock-signals of synchronization) is to use self-synchronisation codes (see diagram B in Fig. 4). 
 

  
Fig. 4. Fibonacci code as self-synchronization code 

 

The diagrams A, B represent a widespread method transmitting binary data. Switching two electrical 

currents performs the transmission of bits: the high level current 
highI  and the low level current lowI . The 

switching from one level to another is performed only for the bit 0; the switching is not performed for the bit 
of 1. The diagram A shows the electrical signal, which is generated during the transmission of the classic 
binary code combination without self-synchronization mechanism. The greatest difficulty in the transmission 
of the signal arises when the transmitted binary sequence contains a long "packet," consisting of bits 1. 
 

The problem of distinction of bits 1 and 0 in this method is greatly simplified if we impose certain 
restrictions on the length of the "packets," consisting of the consecutive bits of 1. The simplest solution is to 
use the codes, in which two bits of 1 do not appear together. This restriction is a basic property for 
MINIMAL FORMS of all the Fibonacci p-codes (20). For the first time, American engineer W.H. Kautz 
paid attention to such use of the Fibonacci code for synchronization control [47].  
 

The diagram B shows the example of the formation of the digital signal by using simplest Fibonacci code 
(p=1).

 
Denote by T the period of the original code sequence. Analysis of the digital signal, generated from 

the MINIMAL FORM of the Fibonacci code (p=1), shows that this digital signal contains only two pulse 
durations T and 2T. This digital signal is called dual-frequency signal. It is easy to form clock-signals from 
the dual-frequency signal. This fact is a confirmation of the self-synchronization property of the Fibonacci p-
codes (p=1,2,3,…).  
  

7 Codes of the Golden p-proportions, Bergman’s System and Their 
Applications  

 
7.1 Definition of the codes of the golden p-proportions  
 
The Fibonacci p-codes (6) are intended for representation of natural numbers. In author’s publications [6-
8,11,15], the so-called codes of the golden p-proportions, intended for positional representation of real 
numbers, have been introduced.  
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Let us consider the binary code for real numbers:  
 

 2 0, 1, 2, 3,...i

i
i

A a i     ,                                             (61) 

where the digit weights  2 0, 1, 2, 3,...i i      are connected with the following well-known identities: 

 

 1 12 2 2i i i summing identity                                                (62) 

 

 12 2 2i i multiplicative identity                                                (63) 

 
The binary code (61) allows the following generalization. Consider the set of the following standard line 
segments:  
 

11 0 1{..., , ,..., ,..., 1, ,..., ,...}n pn n k
p p p p p p

                                                     (64) 

 

where  0,1,2,3,...p p   are the golden p-proportions, which are real roots of the golden p-ratio 

equation (5). The powers of the golden p-proportions  0,1,2,3,...; 0, 1, 2, 3,...n
p p n       are 

connected by the remarkable identities: 
 

                                           (65) 

 

 1
p

n n
p p multiplicative identity                                              (66) 

 
By using (64), we can obtain the following positional binary method of real numbers representation called 
the code of the golden p-proportions [6-8,11,15,31]: 
 

; 0,1,2,3,...; 0, 1, 2, 3,...i
pi

i

A a p i       ,                                           (67) 

 

where  0,1ia   is the bit of the i-th digit; i
p  is the weight of the i-th digit; p  is the base of the numeral 

system (67). 
 
The abridged notation of any real number A for the code of the golden p-proportion (67) is called the 
“golden” representation and has the following form: 
 

 1 1 0 1 2 1
... , ... ...m m kk

A a a a a a a a a    
                                            (68) 

 
Note that the formula (67) gives an infinite number of new positional numeral systems with irrational bases, 

since all their bases  1,2,3,...p p   are irrational numbers (excepting for the base 0 2p  , 

corresponding to the case p=0).  
 
Note that the codes of the golden p-proportions (67) for the first time were introduced by the author in the 
1978- and 1980-articles [6-8]. Theory of the codes of the golden p-proportions and their applications at 
digital metrology and computer science is described in author’s 1978-articles [6,7] and 1984- and 2009-
books [15,31]. 

 11 n pn n
p p p sum m ing identity     
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7.2 Bergman’s system  
 
Let us consider the partial cases of the sum (67). It is clear that for the case p=0 0 2p   and we get the 

classical binary representation of real numbers, given with (61). 
 
For the case p=1, we get very unexpected result. Really, for this case we have: 
 

 1
1 5

2p the golden ratio


                                             (69) 

 
and we get from (67) and (69) the following remarkable expression:  
 

 1 5
0, 1, 2, 3,...

2
i

i i
i i

A ia a 
       ,                                        (70) 

 

where the powers of the golden ratio  0, 1, 2, 3,...n n      are connected with the following identities: 

 
                                           (71) 

 

 1n n multiplicative identity  .                                           (72) 

 
The unexpectedness of the result (70) consists of the following. The formula (70) was obtained for the first 
time in 1957 by the American mathematician George Bergman, who published this result in the article A 
number system with an irrational base [48].  
 
On the first view, there aren’t particular distinctions between the formula (70) for Bergman’s system and the 
formula (61) for the binary system. However, it is only on the first view.  
 
The principal distinction of the numeral system (70) from the binary system (61) consists of the fact that the 

irrational number  1 5 2    (the golden ratio) is used as the base of the numeral system (70). 

Although Bergman’s article [48] presents a result of fundamental importance for number theory and 
computer science, the mathematicians and experts in computer science did not take notice to Bergman’s 
system in that period. They simply ignored this mathematical discovery, which predicted a new direction in 
the development of computer science called the "Golden" Computers. In the conclusion of his paper [48] 
George Bergman wrote the following pessimistic conclusion: “I do not know of any useful application for 
systems such as this, except as a mental exercise and pastime, though it may be of some service in algebraic 
number theory.” 
 
Analyzing Bergman’s system (70) and comparing it to the codes of the golden p-proportions (67) by using 
historical-mathematical approach, we come to the following conclusions: 
 

1. Bergman’s system (70) is the first in the mathematical literature numeral system with an 
irrational base (the golden ratio).  

2. Bergman’s system is possibly the most important mathematical discovery in the field of 
numeral systems after the discoveries of the positional principle of number representation 
(Babylon, c. 2000 B.C.E.) and the decimal system (India, 5th century AD). The importance of 
Bergman’s system for the development of numeral systems can be compared with the introduction 
of irrational numbers by Pythagoreans in Ancient Greece. 

 1 2n n n summ ing identity     
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3. Bergman’s system (79) and its generalization, codes of the golden p-proportions [6, 8], return 
mathematics to its historical sources (Babylon, Ancient Egypt), when numeral systems were in the 
center of mathematics and determined its content [46]. 

4. The most surprising conclusion consists of the fact that George Bergman made his mathematical 
discovery at the age of 12! This case is unprecedented in the history of mathematics! 

5. The codes of the golden p-proportions (67), introduced and studied by the author in the works [6-
8,11,15,31], are generalization of the two great mathematical achievements: 

 
1)  On the one hand, the codes of the golden p-proportions are generalization of the binary system 

(61), which is the basis of modern computer science. 
2)  On the other hand, they are generalization of the Bergman’s system (70) as new definition of 

real numbers what has fundamental importance for the development of number theory and 
mathematics.  

 
6.   Notice that a number of the codes of the golden p-proportions is theoretically infinite because every 

 0,1,2,3,...p p   "generates" its own positional binary (0,1) representation of the kind (67). 

Excepting of the case p=0, all other bases of numeral systems (67) are irrational. This means that 
the expression (67) defines an infinite number of numeral systems with irrational bases. The 
traditional binary system (61) (p=0) with the base of 2 is the only exception from the new class of 
numeral systems with irrational bases, given with (67).  

 
The following directions of applications of Bergman’s system and codes of the golden p-proportions follow 
from the above conclusions: 
 

1.  “Golden” number theory [34]. 
2.  “Golden” arithmetic for computer science [15,31]. 
3.  “Golden” ternary mirror-symmetrical arithmetic [29]. 
4.  “Golden” self-correcting digital metrology [6]. 

 
Let us consider the above “golden” applications more in detailed. 
 

7.3 A conception of the “golden” number theory  
 
The detailed description of this concept is given in 2015 article [34] and the book [31]. As it is well-known, 
the elementary number theory, described in Euclid’s Elements, begins from Euclidean definition of natural 
numbers, given with (11).   
 
The “golden” number theory [31,34] treats Bergman’s system (70) and codes of the golden p-proportions 
(67) as a new definition of real numbers. Such approach leads us to new unexpected properties of natural 
numbers, proved in [31,34]: 
 

1.  The “golden” representation (67) for any natural number N in Bergman’s system (70) and codes of 
the golden p-proportions (67) has always finite number of digits that is far not trivial.  

2. Z-property [31,34]:  
 

                                    (73) 

Therefore, the above properties 1 and 2 and other properties (D-property, F-code and L-code), described in 
[31,34], are true only for natural numbers and can be considered  as new properties of natural numbers. 
This means that the conception of the “golden” number theory [31,34] led us to previously unknown 
properties of natural numbers, the theoretical study of which began 2.5 millennia ago, at least starting from 

 : 0 0, 1, 2, 3,...

i i
i i

i

i i
i

For any N a after substitution F

we get a F i

  

    







Euclid’s Elements. These properties are of great intere
science.  
 

7.4 “Golden” arithmetic for computer science  
 
Comparing the properties of the codes of the golden 
Bergman’s system (70), given by (71), (72), to t
(10), which determine arithmetical properties of the Fibonacci 
code (70) and the codes of the golden 
the conclusion that the “golden” arithmetic is similar to the Fibonacci arithmetic and can use the same 
technical solutions, in particular, the same 
representations to the MINIMAL FORM (Fig.
(Fig. 2). 
 

On the other hand, comparing the properties (71), (72) of Bergman's code (70) and the properties (65), (66) 
of the codes of the golden p-proportions (67) to the properties 
conclude that the "golden" arithmetic is similar to the classical binary arithmetic when performing certain 
arithmetic operations, such as multiplication and division.
 
A detailed description of the "golden" a
 

8 “Golden” Ternary Mirror
Arithmetic 

 
8.1 Brief introduction  
 
In 2002 “The Computer Journal” (British Computer Society) has published author’s article 
ternary principle, Bergman’s number system and ternary mirror
from the title of the article [29], the main purpose of the article [29] was to develop 
symmetrical arithmetic based on Bergman’ system 
Nikolay Brousentsov (1925 —2014
(Moscow University). The article [29] 
The prominent American mathematician and a world
Knuth (see Fig. 5) was the first outstanding scientist who congratulated the author with the publication of 
the article [29]. In his letter, he informed the author about his intention to include a description of the 
“golden” mirror-symmetrical arithmetic 
 

American mathematician and expert in computer science, author of the world
Computer Programming” (1968, 1969, and 1973
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. These properties are of great interest for number theory and can be used in computer 

“Golden” arithmetic for computer science   

Comparing the properties of the codes of the golden p-proportions (67), given by (65) and (66), and 
Bergman’s system (70), given by (71), (72), to the properties of the Fibonacci p-codes, given by (1), (2) and 
(10), which determine arithmetical properties of the Fibonacci p-codes (6), we conclude that Bergman’s 
code (70) and the codes of the golden p-proportions (67) are similar to Fibonacci p-codes (6). This leads s to 
the conclusion that the “golden” arithmetic is similar to the Fibonacci arithmetic and can use the same 

tions, in particular, the same device for the reduction of the Fibonacci 
FORM (Fig. 1) and the same device for checking MINIMAL FORM 

On the other hand, comparing the properties (71), (72) of Bergman's code (70) and the properties (65), (66) 
proportions (67) to the properties (62), (63) of the classic binary code (61), we 

conclude that the "golden" arithmetic is similar to the classical binary arithmetic when performing certain 
arithmetic operations, such as multiplication and division. 

A detailed description of the "golden" arithmetic is given in the book [31].  

“Golden” Ternary Mirror-symmetrical Representation and 

In 2002 “The Computer Journal” (British Computer Society) has published author’s article 
ternary principle, Bergman’s number system and ternary mirror-symmetrical arithmetic [29]
from the title of the article [29], the main purpose of the article [29] was to develop ternary mirror

Bergman’ system [45] and ternary principle, used by Russian engineer 
) for designing the first in computer history ternary computer “Setun” 

[29] caused a positive reaction from the Western computer community. 
he prominent American mathematician and a world-renowned expert in computer science Donald Ervin 

5) was the first outstanding scientist who congratulated the author with the publication of 
the article [29]. In his letter, he informed the author about his intention to include a description of the 

symmetrical arithmetic into the new edition of the book "Art of Computer Programming."

 
 

Fig. 5. Donald Ervin Knuth  
 

American mathematician and expert in computer science, author of the world-known bestseller “Art of 
1968, 1969, and 1973).  
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st for number theory and can be used in computer 

proportions (67), given by (65) and (66), and 
codes, given by (1), (2) and 

codes (6), we conclude that Bergman’s 
(6). This leads s to 

the conclusion that the “golden” arithmetic is similar to the Fibonacci arithmetic and can use the same 
the reduction of the Fibonacci and “golden” 

1) and the same device for checking MINIMAL FORM              

On the other hand, comparing the properties (71), (72) of Bergman's code (70) and the properties (65), (66) 
(62), (63) of the classic binary code (61), we 

conclude that the "golden" arithmetic is similar to the classical binary arithmetic when performing certain 

symmetrical Representation and 

In 2002 “The Computer Journal” (British Computer Society) has published author’s article Brousentsov’s 
[29]. As follows 
ternary mirror-

used by Russian engineer 
for designing the first in computer history ternary computer “Setun” 

caused a positive reaction from the Western computer community. 
Donald Ervin 

5) was the first outstanding scientist who congratulated the author with the publication of 
the article [29]. In his letter, he informed the author about his intention to include a description of the 

"Art of Computer Programming." 

known bestseller “Art of 
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Why Prof. Donald Knuth so interested in the article [29]? A detailed answer to this question is given in the 
article [29] and the author's book [31]. Below we present the most common ideas of new computer 
arithmetic. 

 

8.2 “Golden” ternary mirror-symmetrical representation  
 
8.2.1 Conversion of Bergman’s code to the ternary “golden” mirror-symmetrical representation  

 
As it is mentioned above, any positive integer N has a unique "golden" representation in the MINIMAL 
FORM. This means that each bit ak=1 in the binary “golden” representation of N would be "enclosed" by the 
two next bits 

1 2 0k ka a   .  

 

Consider now the following identity for the powers of the golden ratio  : 

 
1 1k k k                                                                          (74) 

 

The identity (74) has the following code interpretation: 

 

                                          (75) 

 

where 1  is the negative unit, that is, 1  = - 1. It follows from (75) that the bit 1 of the kth digit is transformed 

into two 1’s, the positive unit 1 of the (k+1)th digit and the negative unit 1  of the (k-1)th digit. 

 

It is proved in [29] that any integer N (positive or negative) may be represented as follows: 

 
2i

i
i

N b  ,                                                                        (76) 

 

where  1,0,1ib   is a ternary numeral (treat), 
2i  is the weight of the i th digit, 

1 5

2


   is the 

golden ratio. 

 

8.2.2 Ternary “golden” representations   
 

The abridged notation of the sum (76): 

 

                                                         (77) 

 

is called ternary “golden” representation of integer N. Table 13 shows the ternary “golden” representations 
of the integers N in the range {0,1,2,…,10}. We use in the ternary “golden” representations of the Table 13 

the 7 ternary digits  3,2,1,0, 1, 2, 3i     of the kind  1,0,1 . 

 
 
 
 

1 1 1 1

0 1 0 1 0 1

k k k k k k   



2 1 0 1 21 ( 1)... , ...k k k kN b b b b b b b b b    
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Table 13. Ternary “golden” representations 
 

i 3 2 1 0 -1 -2 -3 
Ф2i Ф6 Ф4 Ф2 Ф 0 Ф-2 Ф-4 Ф-6 
N        
0 0 0 0 0, 0 0 0 
1 0 0 0 1, 0 0 0 
2 0 0 1 1 , 1 0 0 

3 0 0 1 0, 1 0 0 
4 0 0 1 1, 1 0 0 
5 0 1 1  1, 1  1 0 

6 0 1 0 1 , 0 1 0 

7 0 1 0 0, 0 1 0 
8 0 1 0 1, 0 1 0 
9 0 1 1 1 , 1 1 0 

10 0 1 1 0, 1 1 0 
 

8.2.3 Property of “mirror symmetry”  
 
Studying the ternary “golden” representations of Table 13, we find important regularity for all ternary 

"golden" representations (77). If we compare the left  2 11...k kb b b b
 and right  1 2 ( 1)... k kb b b b      parts  

of any ternary "golden" representation (77) relatively to 0-th digit, we find that the left part of any ternary 
“golden” representation (77) is mirror reflection of its right part, that is,  
 

2 2 1 11 ( 1); ;...; ;k k k kb b b b b b b b         

 
This property of the "mirror symmetry" of the ternary “golden” representations (77) is fundamental 
property of the ternary “golden” numeral system (76). Table 13 demonstrates this property for some positive 
integers in the range {0,1,2,…,10}. 
 
Thus, thanks to this simple investigation we have discovered the fundamental property of integers called 
“mirror-symmetric property of integers. Basing on this fundamental property, the "ternary “golden” numeral 
system," given by (76), is called ternary “golden” mirror-symmetric numeral system [29]. 
 
8.2.4 Conversion of numbers from positive to negative by using “ternary inversion”  
 
Let us introduce a notion of ternary inversion (see Table 14).  
 

Table 14. Ternary inversion 
 

 

 
The “ternary inversion” (Table 14) can be used for the conversion of the ternary “golden” representation of 
positive number N to the ternary “golden” representation of negative numbers (-N) and vise versa.  
 
 
 

1 1
0 0

1 1








 
 
 

Stakhov; BJMCS, 17(1): 1-49, 2016; Article no.BJMCS.25969 
 
 
 

35 
 
 

As it follows from Table 13, the positive number 9 has the following ternary “golden” representation: 
 

9 0111,110 ,                                                                         (78) 

 
what corresponds to the following sum: 
 

                         (79) 

 

Since 4 4 2 2 07, 3, 1         , then from (79) there follows that “golden” ternary 

representation (78) is true.  
 
Example 6. Conversion of ternary “golden” representations of positive number 9 to negative number 
(-9) 

 

 

 
8.2.5 The radix of the ternary “golden” mirror-symmetric numeral system  
 
It follows from (76) that the radix of the numeral system (76) is the square of the golden ratio, that is,  
 

2 2.618
3 5

2


  . 

This means that the numeral system (76) is a number system with an irrational radix. 
 
The radix of the numeral system (76) has the following “golden” representation: 
 

2 10  . 
 

8.3 Mirror-symmetrical summation and subtraction 
 
8.3.1 Mirror-symmetric summation  
 
The following identities for the golden ratio powers underlie the mirror-symmetric summation:  
 

2 Ф 2k = Ф 2(k+1)  -  Ф 2k  +  Ф 2(k-1) ;                                                         (80) 
 

3 Ф 2k = Ф 2(k+1)  +   0   +  Ф 2(k-1) ;                                                         (81) 
 

4 Ф 2k = Ф 2(k+1)  +  Ф 2k  +  Ф 2(k-1) ,                                                         (82) 
 
where k = 0, 1, 2, 3, ... . 
 

   

6 4 2 0 2 4 6

4 4 0 2 2 , .

9 0 1 1 1 1 1 0

1 5
where 

2

  

     

             


      

2 6 4 2 0 2 4 6

,

3 2 1 0 1 2 3

9 0 1 1 1 1 1 0

9 0 1 1 1, 1 1 0

n

n
  

  

       



       


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The identity (80) is mathematical basis for the mirror-symmetric summation of two single-digit ternary 
digits and gives the rule of the carry-over formation (Table 15).  
 

Table 15. Mirror-symmetric summation 
 

bk       
ak

 
1  0 1 

1  1 1 1  1  0 

0 1  0 1 

1 0 1 1 1  1 

 
The main peculiarity of Table 15 consists in the summation rule of two ternary units with equal signs, i.e. 
 

,                                                         (83) 

 
where and k ka b  are the “treats” of  the k-th digit. 

 
We can see that for the mirror-symmetric summation of the treats of the one and same sign there arises the 
intermediate sum sk with the opposite sign and the carry-over ck with the same sign. However, the carry-over 
from the k-th digit spreads simultaneously to the next two digits, namely to the left-hand, that is, (k+1)-th 
digit, and to the right-hand, that is, (k - 1)-th digit. 

  
Example 7. Summation of two ternary mirror-symmetric numbers 5 + 10:  
 

 

 
Notice that the symbol  marks the process of carry spreading. 
 
We can see that the summation process for this example consists of two steps. The first step is forming the 
first multi-digit intermediate sum S1 and the first multi-digit carry-over C1 according to Table 15. The second 
step is summation of the numbers S1 + C1 according to Table 15. Because for this case the second multi-digit 
intermediate carry-over C1 = 0, this means that the ternary mirror-symmetric summation is over and the sum 
S1 + C1 = 15 is the result of mirror-symmetrical summation. It is important to emphasize that the result of 
mirror-symmetrical summation: 
 

15 = 1 1  1 1 1, 1 1  1                                                          (84) 
 

is represented in the mirror-symmetrical form.  
 

8.3.2 Mirror-symmetric subtraction   
 
Subtraction of two mirror-symmetrical numbers N1 - N2 is reduced to the summation, if we represent their 
difference in the following form: 
 

N1 - N2 = N1 + (- N2).                                                          (85) 

11111

11111






k

c
k

s
k

c
k

b
k

a

111,111115

1111

010,1010

011,011010

011,11105

1

1











C

S
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We can point on a number of the important advantages of the mirror-symmetrical summation and subtraction 
from the engineering point of view: 
 

(1) The mirror-symmetric subtraction is reduced to the mirror-symmetrical summation by the use of the 
rule (85). 

(2) The mirror-symmetrical summation and subtraction is performed in the “direct” code, that is, 
without the use of the notions of the “inverse” and “additional” codes. 

(3) The sign of the summarized numbers is defined automatically because it coincides with the sign of 
the higher significant ternary numeral of the ternary mirror-symmetrical representation of the 
summation result. 

(4) The summation result is represented always in the mirror-symmetrical form that allows checking a 
process of the ternary mirror-symmetric summation and subtraction.  

 

8.4 Mirror-symmetrical multiplication and division 
 
8.4.1 Mirror-symmetrical multiplication  
 
The following trivial identity for the golden ratio powers underlies the mirror-symmetrical multiplication: 
 

Ф2n  Ф 2m  = Ф 2(n+m) .                                                                        (86) 
 
The rule of the mirror-symmetrical multiplication of two single-digit ternary mirror-symmetrical numbers is 
given in Table 16. 
 

Table 16. Mirror-symmetrical multiplication 
 

bk       
ak

 1  0 1 

1  1 0 1  
0 0 0 0 
1 1  1 1 

  
The ternary mirror-symmetrical multiplication is performed in the “direct” code. The general algorithm of 
the multiplication of two multi-digit mirror-symmetrical numbers is reduced to the formation of the partial 
products in accordance with Table 16 and their summation in accordance with the rule of the mirror-
symmetrical summation.  
 
Example 8. Multiply the negative mirror-symmetric number - 6 = 1 0 1, 01 by the positive mirror-
symmetric number 2 = 11, 1: 
 

 

 
The multiplication result in the example 8 is formed as the sum of the three partial products. The first partial 
product 1 0, 1 01 is the result of multiplication of the mirror-symmetrical multiplier - 6 = 1 0 1, 01 by 
the lowest positive unit of the  mirror-symmetrical multiplier 2 =11,1, the second partial product 1 01, 0 1 

110,1011

1,0101

10,101

101,01

1,11

10,101
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is the result of the multiplication of the same number - 6 = 1 0 1, 01 by the middle negative unit of the 
number 2=11, 1, and, finely, the third partial product 1 0 1, 01 is the result of the multiplication of the 
same number - 6 = 1 0 1, 01 by the higher positive unit of the number 2 = 11, 1. 
 
Notice that the product -12 =1 1 01, 011 is represented in the mirror-symmetric form! Because its 
higher digit is a negative unit 1, it follows from here that the product is a negative mirror-symmetrical 
number.  
 
8.4.2 Mirror-symmetrical division  
 
The ternary mirror-symmetrical division is performed in accordance with the division rule of the classical 
ternary symmetrical numeral system [48]. The general algorithm of the ternary mirror-symmetrical division 
is reduced to the sequential subtraction of the shifted divisor, which is multiplied by the next ternary numeral 
of the quotient. 
 
8.4.3 A concept of the ternary pipelined mirror-symmetrical adder  
 
The detailed description of this concept is given in [29]. This concept is of great interest for pipelined signal 
microprocessors, where high performance is combined with high checking of data processing, based on the 
"principle of mirror symmetry." 
 
8.4.4 The main arithmetical advantages of the mirror-symmetrical multiplication and division  
 
We can formulate the following arithmetical advantages of the mirror-symmetrical multiplication and 
division: 
 

(1) The mirror-symmetric multiplication and division is reduced to the mirror-symmetrical summation  
(2) The mirror-symmetrical multiplication and division are performed in the “direct” code, that is, 

without the use of the notions of the “inverse” and “additional” codes 
(3) The sign of the results of the mirror-symmetrical multiplication and division is defined 

automatically because it coincides with the sign of the higher significant ternary numeral of the 
ternary mirror-symmetrical representation of the result of the mirror-symmetrical multiplication and 
division 

(4) The results of the mirror-symmetrical multiplication and division are represented always in the 
mirror-symmetrical form that allows checking a process of the ternary mirror-symmetrical 
multiplication and division 

(5) The ternary “golden” mirror-symmetrical arithmetic retains all advantages of the classical ternary 
numeral system, but its main advantage is a possibility of checking all arithmetic operations 
according to the principle of "mirror symmetry;" this creates real prerequisites for using the ternary 
"golden" mirror-symmetrical numeral system for the design of highly reliable computers for 
mission-critical applications.  

  

9 “Golden” Self-correcting Digital Metrology 
 
9.1 The “binary” resistive divisor  
 
In engineering practice the so-called resistive divisors, intended for the division of electric currents and 
voltages in the given ratio, are widely used. One of the variants of such divisor is shown in Fig. 6.  
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R3 R1 R1 R1 R1 R3

R2 R2 R2 R2

01234

 
Fig. 6. The “binary” resistive divisor  

 
The “binary” resistive divisor in Fig. 6 consists of the “horizontal” resistors of the kind R1 and R3 and the 
“vertical” resistors R2. The resistors of the divisor are connected between themselves by the "connecting 
points" 0, 1, 2, 3, 4. Each point connects three resistors, which form together the resistive section. Notice that 
Fig. 6 shows the resistive divisor, which consists of the 5 resistive sections  
 
First of all, we notice that the parallel connection of the resistors R2 and R3 to the right of the “connecting 
point” 0 and to the left of the “connecting point” 4 can be replaced by the equivalent resistor with the 
resistance, which can be calculated according to the law on the resistor parallel connection:  
 

 
                                                           (87) 

 
Taking into consideration (87), it is easy to find the equivalent resistance of the resistive section to the right 
of the “connecting point” 1 and to the left of the “connecting point” 3: 
 

Re2 = R1 + Re1                                                            (88) 
 
In dependence on the choice of the resistance values of the resistors R1, R2, R3 we can realize the different 
coefficients of the current or voltage division. Consider now the so-called “binary” divisor, which consists of 
the following resistors: R1=R; R2=R3=2R, where R is some standard resistance value. For this case the 
expressions (87), (88) take the following values:  
 

Re1 = R;   Re2 = 2R.                                                          (89) 
 
Then, taking into consideration (88), we can find that the equivalent resistance of the resistor circuit to the 
left or to the right of any “connecting point” 0, 1, 2, 3, 4 is equal to 2R. This means that the equivalent 
resistance of the divisor in the “connecting points” 0, 1, 2, 3, 4 can be calculated as the resistance of the 
parallel connection of the three resistors of the value 2R. Using the electrical circuit laws we can calculate 
the equivalent resistance of the divisor in each “connecting point” 0, 1, 2, 3, 4: 
 

.                                                                         (90) 
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Connect now the generator of electric current I to one of the “connecting points”, for example, to the point 2. 
Then according to Ohm’s law the following electric voltage will appear in this point:  
 

.                                                                         (91) 

 
Find now the electrical voltages in the “connecting points” 3 and 1, which are adjacent to the point 2. It is 
easy to show that the voltage transmission coefficient between the adjacent “connecting points” is equal to 

. This means that the “binary” divisor fits very well to the binary system and this fact is a cause of wide 

use of the “binary” divisor in modern digital metrology, including digit-to-analog and analog-to-digit 
converters.  

 

9.2 The “golden” resistive divisors   
 
Choose the values of the resistors in Fig. 6 as follows:  
 

11 ; 2 ; 3p p
p p pR R R R R R      ,                                                         (92) 

 
where Фр is the golden р-proportion, p{0, 1, 2, 3, …}.  
 
We note that in its electrical structure the "golden" resistive divisor coincides with the "binary" resistive 
divisor in Fig. 6. It is clear that the “golden” resistive divisor in Fig. 6 gives an infinite number of the 
different resistive divisors because every р “generates” a new divisor. In particular, for the case p = 0 the 
value of the golden (p=0) proportion Ф0=2 and the “golden” divisor is reduced to the classical “binary” 
divisor of the kind 2R R .   
 
For the case p = 1 the resistors R1, R2, R3 take the following values:  
 

1 21 ; 2 ; 3R R R R R R      ,                                                         (93) 

where 
1 5

2


   is the golden proportion.  

 
Taking into consideration the usage of the golden p-proportions Фр in the resistors (92,93), we will name the 
resistive divisors, given by (92) and (93), the “golden” resistive divisors.  
 
Taking into consideration (92) and using the following mathematical identities for the golden p-proportions: 
 

1 p
p p

   ,                                                                         (94) 

 
2 1p p

p p p
     ,                                                                              (95) 

 
the following values of the equivalent resistance of the resistive circuit of the “golden” resistive divisor in 
Fig. 6 to the left and to the right from the “connecting points” 0 and 4 can be obtained [6,31]: 
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Using (88) and (94), it is easy to prove that the equivalent resistance Re2 is equal: 
 

2
p

p peR R R R    .                                                                        (97) 

 
By using the relations (94), (95), it is proved in [6] that the voltage transmission coefficient between the 
adjacent “connecting points” of the “golden” resistor divisor, given by (92), is equal to the reciprocal to the 
golden p-proportion p !  

 
Thus, the “golden” resistive divisor in Fig. 6, based on the golden p-proportions p , are quite real electrical 

circuits. It is clear that the theory of the “golden” resistive divisors, described in the article [6] and the book 
[31], is new source for the development of the “digital metrology” and analog-to-digit and digit-to-analog 
converters.     
 

9.3 The use of the codes of the golden p-proportions in digit-to-analog and analog-to-
digit converters 

 
9.3.1 The “golden” digit-to-analog converters  
 
The electrical circuit of the «golden» digit-to-analog converter (DAC), based on the «golden» resistive 
divisor in Fig. 6, is shown in Fig. 7. 
 

I0 I0 I0 I0 I0

a0a1a2a3a4

K1K2K3K4 K0

R1 R1 R1 R3R1R3

R2 R2 R2 R2 R2

01234

U
out

 
 

Fig. 7. The «golden» DAC 
 

 
Note that the «golden» DAC in Fig. 7 includes the 5 digits. However the number of the DAC digits may be 
increased to some arbitrary n by extending the “golden” resistive divisor to the left and to the right. 
 

The «golden» DAC contains the 5 (n in the general case) generators of the standard electrical current I0  and 

the 5 (n in general case) electrical current keys K0 - K4. The key states are controlled by the binary digits of 

the “golden” code word a a a a a4 3 2 1 0 . For the case ai = 1 the key Ki is closed, for the case ai = 0 is open                       

(i = 0, 1, 2, ..., n). 
 



 
 
 

Stakhov; BJMCS, 17(1): 1-49, 2016; Article no.BJMCS.25969 
 
 
 

42 
 
 

One can show [6,31] that the closed key Ki results in the following voltage in the i-th point of the resistive 
divisor: 
 

0piU I R , 

where 

1

1
1p

p


 


. 

 

As the voltage potential Ui is passed from the i-th point to the (i+1)-th point with the transmission coefficient 

1

p
, the following voltage value appears at the DAC output: 

0
1

p i
pout n i

p

I R
U

 


 


. 

 

Using the superposition principle, it is easy to show that the input code word of the code of the golden                 

p-proportion a a ... an- n-  1 2 0  results in the following output voltage Uout: 
 

1

0

n
i

p pi
i

U B a




  .                                                                        (98) 

 

where  
 

0
1

p
p n

p

I R
B







. 

 

It follows from (98) that the electrical circuit in the Fig. 7 converts the “golden” code word a a a a a4 3 2 1 0  

into the electrical voltage Uout with the constant coefficient Bp. 
 

9.3.2 Checking the «golden» DAC  
 

In the measurement practice there is a necessity to check up the DAC linearity in the production and 
operation process. For the classical binary DAC the following correlation for the checking up the DAC 
linearity is used: 
 

2 2 1
0

1
n i

i=

n-

= + . 

 

The mathematical properties of the code of the golden p-proportion (67) provide very wide possibility for 
checking up the DAC linearity. In particular, the checking up of linearity of the «golden» DAC, based on the 
classical golden ratio, is reduced to the checking up the following relations: 
 

1 2 1 3 4 1 3 5 6 ...n n n n n n n n n n                                (99) 
 
Checking up linearity is performed in the following manner. We must check up that the output voltage of the 
«golden» DAC in Fig. 7 doesn't change for the following input code combinations: 
 

0 0 0 0
0 0 0 0

0 1 0 0
0 1 0 1

1 0 0
0 1 1

0 1 1
0 1 1
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Note that the different input code combinations are formed from the initial code combination 1000000 by 
means of the “devolutions”. 
 
9.3.3 Self-correcting «golden» ADC and DAC  
 
The functioning algorithm and structural scheme of the «golden» ADC and DAC do not differ from the 
functioning algorithm and the structural scheme of the classical binary ADC and DAC. However, the 
properties of the codes of the golden p-proportions (67), in particular, the property of plurality of the 
“golden” representations of one and the same real number leads to interesting technical advantages of the 
“golden” ADC and DAC. In particular, the property of plurality allows designing the self-correcting 
“golden” ADC and DAC.  
 
The detailed description of the self-correcting “golden” DAC is given in the works [6,31], the engineering 
developments of the self-correcting “golden” DAC and ADC is given in the brochure [13].   
 
As it is well known, there is the notion of the metrological stability for the evaluation of the reliability of 
measurement systems and devices, in particular ADC and DAC. In ADC and DAC, the deviations of the 
parameters of analog elements of ADC and DAC (in particular, resistive divisors) from their standard values 
are the main cause of the non-stability of measurement systems. These deviations are caused by different 
interior and exterior factors (“aging” of analog elements, temperature influences, etc.) and they are usually 
the “slow” time functions. At the designing the measurement systems of high accuracy there is a problem 
decreasing the requirements to the technological exactness of the analog elements production and 
eliminating such difficult technological operations as the laser “trimming” of the analog elements (in 
particular resistive divisors).The solution of this problem is realized by application of self-correcting 
principle. The essence of this principle is as follows. We will introduce into the structure of ADC and DAC 
special checking device, comprising a stable electric element (for example, Zener diode). This device 
periodically determines the most typical errors ADC and DAC, associated with the drift of the parameters of 
analog elements. 
 

Typical errors are: "zero drift", changing the slope of conversion characteristics, and violation of linearity of 
the resistive divisor. 
 

Here, correction of non-linearity of resistive divisor is the most difficult. For the first time, the theoretical 
substantiation of the effective correction of non-linearity of the resistive divisor, based on the codes of the 
golden p-proportions, was described in the 1978-article [6]. This led to the creation in 80th years of 20 
century the "golden" self-correcting ADC [13] (Fig. 8).  
 

              
 

Fig. 8. The “golden” self-correcting 18-digit ADC 
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The “golden” self-correcting ADC in Fig. 8 has the following specifications: 
 

1.  The number of bits - 18 (17 digital and one signed) 
2.  Time of conversion - 15 micro-sec 
3.  Total error - 0.006% 
4.  Linearity error - 0.003% 
5.  Frequency range - 25 kHz 
6.  Operating temperature range - 2030С 

 
The ADC in Fig. 8 was designed on discrete electronic components. The ADC consisted of two functional 
devices: 
  

1)  The device for metrological checking of “zero drift”, changing the slope of conversion 
characteristics, and violation of linearity of the resistive divider  

2)  The device for analog-to-digit conversion based on the “golden” resistive divisor of the kind (93) 
 
The ADC in Fig. 8 operates in two modes:  
 

1) The mode of metrological checking  
2) The mode of analog-to-digit conversion  

 
 Due of the device for metrological checking, the ADC has the following useful properties: 
 

1.  ADC production process does not require laser trimming of the resistive divisor. Setting the 
required accuracy is done automatically through the use of the device for metrological checking. 
For example, technological error of analog components in ADC in Fig. 8 declined in 1000 times in 
comparison with the required accuracy of analog-to-digital conversion. This reduces production 
cost of ADC. 

2.  Metrological parameters of ADC are not dependent from changes of temperature and aging analog 
elements, such as resistive divider.  

 
Thus, the main conclusion is the fact that the "golden" ADC in Fig. 8 is "a dream" of producer on designing 
measuring devices with the "eternal" metrological parameters, which are not dependent from technological 
errors, changes of temperature and aging analog elements.  
 
The “golden” ADC in Fig. 8 was recognized in Soviet Union as the best ADC and it was used widely by the 
Soviet leading metrological firms. ADC was awarded the "Gold Medal" of Exhibition of Economic 
Achievements of the USSR (Moscow).  
 
Note that in the Vinnitsa Technical University (Ukraine) the self-correcting DAC with high technical 
specifications was designed [13].  
 
9.3.4 A concept of the “golden” analog microprocessor  
 

If we take into consideration the fact that the ADC and DAC are important input and output devices for 
microprocessors and microcontrollers for mission-critical applications (in particular, space system), then we 
can conclude that the task of designing of highly reliable microprocessors and microcontrollers, based on the 
"golden" ADC and DAC with "eternal" metrological specifications and Fibonacci and “golden" 
microprocessors of highest noise immunity is one of the most urgent problems of modern digital 
microelectronics and digital metrology.  
 

In this connection we should pay special attention to analog microprocessors. In the last decades the 
concept of analog signal microprocessors got wide spreading. The promise of this trend is emphasized in the 
title of the article “Analog microprocessors could be the unforeseen future of computing” [49], 
presented by the DARPA on the Internet.  It is clear that the above “golden” self-correcting ADC and DAC 
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and “golden” arithmetic are of great interest for this latest trend of microelectronic technology, as it can lead 
to the creation of the “golden” analog microchip with high metrological stability and noise immunity what is 
very important for many mission-critical applications.  
 

10 Conclusion 
 
10.1 Numeral systems in their historical development     
 
In the process of historical development, starting from Babylonian and Egyptian mathematics up present 
time, an attitude to numeral systems had changed. During the last centuries the decimal system has been 
introduced widely into education and computing practise, besides, during the last decades the binary system 
became one of central notion of computer science. It seemed that the decimal and binary numeral systems do 
not have alternatives. 
 
Unfortunately, study of numeral systems was far from problems of contemporary “pure” mathematics   and 
therefore in this part mathematics not progressed far in comparison to the period of its origin. 
 

10.2 An interest in numeral systems in modern computer science and technology 
 
However, the rapid development of computer science and technology has led to changing the attitude to 
numeral systems. A problem of numeral systems became one of the actual problems of modern computer 
science. In this area a huge interest in methods of number representation and new computer arithmetic’s was 
again arisen. During second half of 20 century, the numeral systems with the "exotic" titles and properties 
appeared: system for residual classes, ternary symmetrical numeral system, numeral system with the complex 
radix, nega-positional, factorial, binomial numeral systems [50,51], and also Bergman’s system [48], 
Fibonacci p-codes and codes of the golden p-proportions [14,15]. All of them had those or other advantages 
in comparison with the binary system and were pointed on the improvement of those or other computer 
characteristics; some of them became a basis for the creation of new computer projects and conceptions (the 
ternary computer "Setun", processors based on system for residual classes, Fibonacci and “golden” 
computers and so on).  
 
But there is also other interesting aspect of this problem. Later 4 millennia after the invention by 
Babylonians of the positional principle of number representation, we can look a peculiar "Renaissance" in 
the field of numeral systems [14,15,50,51]. Due to the efforts first of all of the experts in computer science, 
mathematics as though again returned back to the period of its origin, when the numeral systems had defined 
a topic and essence of all mathematics (Babylon, Ancient Egypt, India and so on).  
 
But then we can put the following question: possibly the modern numeral systems, created for computer 
needs, can influence on the development of number theory and by such way could influence not only on the 
development of computer science, but also of all mathematics. A search of the answer to this question is one 
of the major goals of the present article, devoted to new class of positional numeral systems, Fibonacci and 
“golden” numeral systems. 
 

10.3 The main stages in the development of Fibonacci and “Golden” positional 
numeral systems  

 
We can specify the following stages in the development of the Fibonacci and “Golden” positional numeral 
systems:  
 

10.3.1 Bergman’s system  
 

In 1957 the young American mathematician George Bergman made important mathematical discovery in the 
field of numeral systems. For the first time, he introduced into being a numeral system with an irrational 
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base [48]. Possibly, Bergman’s system [48] is the most important mathematical discovery in the field of 
numeral systems after the discovery of positional principle of number representation (Babylon, 2000 B.C.) 
and decimal system (India, 6-8th centuries). Although Bergman’s system [48] was the result of a principal 
importance for the numeral systems theory, however in that period Bergman’s system simply wasn’t noted 
neither by mathematicians nor by engineers. 
 
10.3.2 Fibonacci p-codes  
 
In 70’th years of 20th century, the author of present article developed the so-called Fibonacci p-codes [4-5]. 
These new positional numeral systems followed from algorithmic measurement theory [14] and led to new 
conception of computers, Fibonacci computers as an alternative to classical binary computers.   
 
10.3.3 Codes of the golden p-proportions  
 
In 80’th years of 20th century the author of the present article has introduced a new class of the numeral 
systems with irrational bases, the codes of the golden p-proportion [6-8]. These numeral systems were a 
wide generalization of the classical “binary system” (p=0) and Bergman’s system (p=1) [48]. The “golden” 
computer arithmetic follows from Bergman’s system [48] and codes of the golden p-proportions [6-8, 15]. 
 
10.3.4 Ternary mirror-symmetrical arithmetic  
 
In 2002 “The Computer Journal” (British Computer Society) has published author’s article “Brousentsov’s 
ternary principle, Bergman’s number system and ternary mirror-symmetrical arithmetic” [29]. This ternary 
numeral system is original unification of Bergman’s system [45] and Brousentsov’s ternary principle and is 

fundamentally new ternary numeral system with irrational base 2 3 5
2.618

2


   . This new ternary 

numeral system has unique property of mirror symmetry, which can be used for checking all arithmetical 
operations. The prominent American mathematician and a world-renowned expert in computer science 
Donald Ervin Knuth was the first outstanding scientist who congratulated the author with the publication of 
the article [29]. 
 
10.3.5 Applications of the Fibonacci and “Golden” positional numeral systems  
 
Fibonacci p-codes, Bergman’s system [48] and codes of the golden p-proportions [6-8,15] have a number of 
very important applications. On the first hand, they are of great number-theoretical importance for number 
theory, because they can be considered as a new constructive definition of natural and real numbers [34]. 
The new unexpected properties of natural numbers (Z-property, F- and L-codes), following from this 
definition [34], is a brilliant confirmation of fundamental importance of such approach to number theory. On 
the other hand, Fibonacci p-codes [4-6,14], Bergman system [48] and its generalization, codes of the golden 
p-proportions [6-8,15], have utmost importance for the development of modern computer science and digital 
metrology for mission-critical applications (the “golden” self-correcting DAC and ADC).   
 
10.3.6 The main purpose of the Fibonacci and “Golden” positional numeral systems 
 
The main purpose of the Fibonacci and “Golden” positional numeral systems is to unite mathematics, 
computer science and digital metrology into a whole unit, as it was in ancient Egypt and Babylon, when 
mathematics begun to develop. The main goal of this union is to design high-reliable computing and 
measuring systems of future with unique technical specifications for mission-critical applications. These new 
positional numeral systems can lead to a new stage in the development of mathematics, computer technology 
and digital metrology. 
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