
*Corresponding author: E-mail: azibrahim@pnu.edu.sa;

British Journal of Applied Science & Technology
16(2): 1-10, 2016, Article no.BJAST.25712

ISSN: 2231-0843, NLM ID: 101664541

SCIENCEDOMAIN international
 www.sciencedomain.org

Plain Text Encoding/Decoding Technique Using
a Combination of Huffman and Run-Length

Algorithms

Ahmed Ibrahim 1*

1Department of Computer Sciences, College of Computer and Information Sciences,

 Princess Nourah bint Abdulrahman University, Kingdom of Saudi Arabia.

Author’s contribution

This work was carried out completely by the author himself. All aspects of this work, namely, study
design, statistical analysis, literature search and review, manuscript writing, etc. were done by

author AI.

Article Information

DOI: 10.9734/BJAST/2016/25712
Editor(s):

(1) Samir Kumar Bandyopadhyay, Department of Computer Science and Engineering, University of Calcutta,
India.

Reviewers:
(1) Ferda Ernawan, Universiti Malaysia Pahang, Malaysia.

(2) Anonymous, University of Malakand, Pakistan.
(3) Usha Mehta, Institute of Technology, Nirma University, India.

Complete Peer review History: http://sciencedomain.org/review-history/14609

Received 16 th March 2016
Accepted 3 rd May 2016

Published 13 th May 2016

ABSTRACT

This work is devoted to study the effect of applying a hybrid encoding/decoding algorithm to textual
data. The sole purpose is to analyze the effect on the size as well as the complexity of the output
encoded data. The proposed combination is that of Huffman and Run-Length algorithms. This study
focuses on the sequence of applying the two algorithms to see if it has an effect on the output data
or not, and the impact of input data format on the result. Results show that the data format and the
sequence in which the algorithms are applied actually affect the output. Moreover, it is shown why
these two algorithms were chosen and each of them contribute to the overall result.

Keywords: Encoding techniques; huffman and run-length algorithms; compression techniques;

encoding; decoding.

Original Research Article

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

2

1. INTRODUCTION AND RELATED WORK

In recent days dealing with data no matter of
their forms like plain text or binary data is a
concrete problem. Data can be stored in local
devices or resources or transmitted across
networks. So, what if transmission path is unsafe
or the storage devices can be hacked? The
common answer is that data will be insecure.
From this point of view the trouble can be
figured. The major problems are the safety and
size of data. In fact, the problem could not be
solved unless having an algorithm or technique
that could facilitate the process of maintaining
data by scaling down the size and representing
the data in some other secure form without losing
the original data. So using cryptography will help
solving the mentioned problem and
accomplishing the main goal. The domain of this
paper is to encode/decode the input data using
Huffman and Run-Length techniques.

Encoding is a field of study which deals with the
secret transmission “transforms data into another
format” of messages/data between two end-
users. It uses schemes that are publicly available
so it can be reversed easily and it is for
maintaining data usability [1].

In fact, one of the most significant problems
facing the digital data in general is the size of
data and its protection. All types of data should
be stored, sent, and received in a secure form
with little size as much as it can be. Many
algorithms are presented to solve this problem.

To be more specific, converting plain text to
encrypted or cipher text using a unique
encryption key is called encryption [2]. Which
means encryption/decryption of data is only
possible with the corresponding key. The
encryption/decryption issue will not be discussed
during this job.

One of the simplest techniques for lossless data
compression is Run-length encoding (RLE). It
reduces strings by recurring characters to a
single character. That means the run of
characters “plain text source” is replaced with the
number of the same characters and a single
character which is the RLE principle. The RLE
performance is based on a sequence of identical
values of the input data [3-4].

Some other technique for lossless data
compression is Huffman encoding. The Huffman
algorithm is the one of earliest data-compression

and encryption algorithms. It developed by David
A. Huffman in 1979. The Huffman algorithm
yields a variable and fixed-length binary code
depending on the probabilities of each symbol of
a source alphabet. The proof [5] that Huffman
code can be surprisingly difficult to cryptanalyze
motivated us make a decision of using Huffman
encoding as a second main step of changing the
form of original plain text and as a private-key
“closed key” of encoding/decoding. The final step
is to cipher the output data obtained by applying
Huffman algorithm using RLE algorithm. As well,
the RLE algorithm will be applied to reduce the
size obtained data.

Our technique process can be summarized as
follows: the original plain text will be encoded as
ASCII code in binary form, then represented as a
binary code using Huffman encoding. Finally, the
RLE will check the repeating string of characters
to produce non-repeated data with new cipher
form. That will be done because of the properties
of Huffman and RLE algorithms that have been
discussed.

The work of Rezaul (et. al) [6] shows an efficient
decoding technique for Huffman codes and
presents a novel data structure for Huffman
coding in which in addition to sending symbols in
order of their appearance in the Huffman tree
one needs to send codes of all circular leaf
nodes, the number of which is always bounded
above by half the number of symbols.

A new devised algorithm to hide text in an image
using Huffman encoding and 2D Wavelet
transform is presented by Saddaf Rubab (et. Al)
[2]. The paper [2] discusses the Huffman
Algorithm as a two-part process. The first part is
an encoding process. The process starts by set
of symbols/letters and their respective
frequencies in ascending or descending order.
Each symbol/letter with its frequency is a leaf
node at the start. Selecting two symbols with
smallest frequencies is the next step. The
process will continue by adding their frequencies
and assign it to parent node, until only one node
remains which is called the root node. The first
process will finish by assigning binary 0’s and 1’s
to all the nodes. The second part is the decoding
process which starts by creating a Huffman
Table, which is used to decode symbols/letters in
original data using the generated codes.

In [7] a new approach of run length encoding
(RLE) is proposed to compress discrete cosine
transform (DCT) coefficients of time domain ECG

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

3

signals. Energy compaction property of DCT
facilitates the process of length encoding by
accumulating the correlative coefficients into
separate segments. Thus the high probability of
redundancies in consecutive coefficients
facilitates the use of RLE. To increase the CR,
two stages of RLE are performed on the
quantized DCT coefficients. Then a binary
equivalent of RLE values are obtained by
applying Huffman coding. The conclusion shows
that the performance of a compression scheme
can vary with the characteristic of the input data
set. So, for the same bit rate, the RLE based
compression scheme achieves different
distortion indices for different databases [7].

The paper [8] proposes a new algorithm for data
compression, called j-bit encoding (JBE). An
experiment by using 5 types of files with 50
different sizes for each type was conducted, 5
combination algorithms has been tested and
compared. The proposed algorithm gives better
compression ratio when inserted between move
to front transform (MTF) and arithmetic coding
(ARI).

Compression Using Huffman encoding article [9]
discussed the various techniques available for
Lossless compression. The analysis of Huffman
algorithm and comparison with various Lossless
compression techniques as Arithmetic, LZW and
Run Length Encoding has been stated.
Comparison of common algorithms with Huffman
Encoding has been performed from different
points of view as the basis of their use in different
applications and their advantages and
disadvantages. The main conclusion is that the
Huffman algorithm is used in JPEG compression.
It produces optimal and compact code, but
relatively slow. Huffman algorithm is based on a
statistical model that adds to overhead. As well,
the researcher concluded that arithmetic
encoding is really effective for more frequently
occurring sequences of pixels with fewer bits and
reduces the file size dramatically. RLE is simple
to implement and fast to execute. LZW algorithm
is more adept to practice for TIFF, GIF and
Textual Files.

Comparison of lossless data compression
algorithms for text data article [10] tested six
lossless data compression algorithms and
compares their performance. A set of selected
algorithms such as Huffman Encoding, Shannon
Fano Algorithm, RLE, LZW, and Adaptive
Huffman Algorithm are examined and followed
out to evaluate the performance in compressing
text data. Although they are tested for ten text

files with different file sizes and different
contents. The compression behavior depends on
the category of the compression algorithm: lossy
or lossless. Compression ratio, factor and time,
and saving percentage are used to evaluate the
performance of discussing lossless algorithms. It
is important to mention that the performance
depends on the type and the structure of the
input source file. The main article's conclusion is
that the Shannon Fano algorithm can be viewed
as the most efficient algorithm comparing to
other discussed algorithms. The reset value of
this algorithm exhibit in an acceptable scope and
it better results for the files with large size.
Besides the article depicts the all discussed
algorithms work well, except Run length
encoding algorithm. Finally, the LZW algorithm
does not work well for large file size.

The procedure of converting images into text
format can be done. Lossless Huffman Encoding
Technique for Image Compression and
Reconstruction Using Binary Trees discussed the
way of saving a black and white image, which its
pixels of different shades of grey. Each pixel has
a number value corresponding to the brightness
or darkness of the shade. That stands for the
pixel colored with black is 0 and white is 255, and
all the numbers in between the black and white
colors are shades of grey. So, each pixel is
coded as some integer from 0 to 255 [11].

A digital image can be coded with respect to a
model using Huffman encoding. It’s well
recognized that the Huffman’s algorithm
generates minimum redundancy codes
compared to other algorithms. The presented
scientific article presents a compression and
decompression technique based on Huffman
encoding and decoding for scan testing to reduce
test data volume, test application time. The main
conclusion is that the image compression
method is well suited for grey scale (black and
white) bitmap images [12].

Breaking a Huffman Code article examines the
problem of deciphering a file that has been
Huffman coded. The authors find that a Huffman
code can be surprisingly difficult to cryptanalyze.
The article introduces the analysis of the
situation for a three-symbol source alphabet in
details [4].

As a matter of fact, an image or audio file can be
converted to a form of plain text to use as an
input source. For instance, it is possible to
convert any image into editable text file with
software such as JiNa OCR Image to text.

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

4

Furthermore an intermediate programmer can
produce an application that will read each pixel in
an image. Then save the information about the
pixels that been read in text form.

The major contribution of this paper is developing
an algorithm that will encode/decode digital data
and reduce the input file size.

The sections of this paper are formed as follows:
Part I shows the introduction, problem, goal, and
related work. Part II represents suggested
technique that will be used in the experiment.
Part III discusses the experiment on some case
studies. Part IV represents the conclusions and
future work.

2. METHODOLOGY

2.1 Technique

Foremost of all, the algorithm can be described
as the set of well-defined instructions that allows

a computer to execute a specific task in a
specific order [13] “well-defined procedure”. The
technique is a procedure to complete a specific
task.

Fig. 1 shows the process sequence that
manipulates the data presented as a plain text.
Fig. 2 depicts the steps of the proposed
technique.

The application that allows to implement the
suggested Encoding/Decoding technique was
developed using NetBeans IDE. The developed
application allows the user to pick a text file and
represent it in Huffman and/or RLE form. All the
obtained data will be saved in Huffman file and/or
RLE text file. The information about the
input/output text file as title, size, date, time, and
used algorithm will be saved in the database to
be used later on for comparison.

Fig. 1. Process of encoding using huffman and rle t echniques

Step 1: Start.
Step 2: Recognize the type of original data “source”.
Step 3: If the type of original data is plain text, go to step 5.
Step 4: If the type of original data is non-plain text (e.g. Image), then represent the original data in
plain text form.
Step 5: Encode the original plain text to the ASCII code in a binary form.
Step 6: Represent the original plain text in Huffman form.
Step 7: Represent the data that’s been encoded using the Huffman (Step 6) in RLE form.
Step 8: Compare the size and form of the original data with the size and form of output data in step
7
Step 8: Calculate the saving percentage %.
Step 9: Stop.

Fig. 2. Encoding/Decoding technique – steps

Encoding
using

Huffman

Encoding
using RLE

Encoded
Data

(output)

Convert to

plain text form

Yes

No

Original Data
(input) Encoding to the

ASCII code in a
binary form

Plain
text?

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

5

2.2 Experiments

This section depicts the comparison Table of
experiments that were done on different original
data. The Tables (Tables 1 and 2) show the
original plain text, its size, and output data “in
final step”. It is quite apparent that the data and
its size change throughout the executed process.

The formula used to calculate the shrinkage of
the source data as a percentage is [10]:

Saving percentage =

���� ������ ����������� – ���� ����� �����������

���� ������ �����������
 % (1)

3. RESULTS AND DISCUSSION

As seen in Table 1 the original data is changed
to a different form after implementing Huffman
and RLE algorithms respectively. Actually,
implementing RLE directly on original data will
change the input data in RLE form, but using
Huffman coding followed by RLE to encode and
find the repeated characters “recurring
characters to a single character”, will change the
input “original” data to a form that is
characterized with more compression factor.

But what will happen if the suggested sequence
process is changed, using the same input as in
Table 1; i.e. implementing RLE then Huffman
algorithms on the same original data?

As examined in Table 2, the original data is
changed to a different form after implementing
RLE and Huffman algorithms respectively. It is
obvious, that the size of the output data is
greater than that of the output data obtained
previously in Table 1. From the point of view of
encoding/decoding and the output data size, this
proves that the suggested sequence process
“Huffman-RLE” gives better results. Likewise,
Table 1 shows that better outcomes will be
achieved if the type of the input data is ASCII
code in binary form.

In fact, examining the idea of using the Huffman
coding before the RLE algorithm could be
explained as follows: The Huffman binary code of
a character will not always take the same form of
a binary code, it depends on its frequency and
position in a word. For example, the Huffman
binary code of “o” in the word “room” is 1 and the

Huffman binary code of “o” in “room and moon” is
11, whereas the Huffman binary code of “o” in
“domain+” is 00. Therefore, the outcomes of
Huffman coding is not a static value. In addition
the Huffman coded text differs from ASCII
encoded text. For example the Huffman coded
text of “room” is 110010, and the ASCII encoded
text is 01110010011011110110111101101101.
So, these two mentioned reasons give the
suggested sequence process more validity.

As a consequence of what’s been discussed
above, the character will have a different binary
form using the Huffman algorithm.

3.1 Results

The two Tables presented above show some
results that could be summarized as follows:

1. Encoding/Decoding is passed because of
changing the original data view as seen in
output data view field. Which means the
main aim is passed.

2. Encoding the input using Huffman
encoding before RLE is implemented and
makes the process more reliable.

3. After accomplishing the process:

3.1 If the input data is a plain text, the size of

data grows exponentially. In first
experiment, the size of the original data
which is in text format is 43 bytes and
the size of output data is 138 bytes. This
means, the size of original data has
increased 341%.

3.2 If the input data is an ASCII code in

binary form, the size of data grows
slightly. The second experiment in Table
1 shows that the size of the original data
which is in binary format was increased
8%.

4. The reason behind increasing the size of

output data is that the Huffman data has
no long sequences of frequented 0’s and
1’s in Table 1 and most of RLE frequencies
is 1 in Table 2.

5. Implementing the RLE before Huffman
coding of the original data gives bad
results as seen in Table 2.

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

6

Table 1. Encoding and data size changing using huff man then RLE algorithms respectively

S
ou

rc
e

da
ta

 ty
pe

S
ou

rc
e

da
ta

 v
ie

w

(p
la

in
 te

xt
)

E
nc

od
in

g
us

in
g

H

uf
fm

an
 a

lg
or

ith
m

s

O
ut

pu
t d

at
a

vi
ew

(E

nc
od

in
g)

“I

m
pl

em
en

tin
g

H
uf

fm
an

 a
nd

 R
LE

al

go
rit

hm
s

re
sp

ec
tiv

el
y”

E
nc

od
in

g/
 D

ec
od

in
g

(p
as

s
or

 fa
il)

O
rig

in
al

 s
iz

e
by

te
s

O
ut

pu
t s

iz
e

by
te

s

S
av

in
g

pe
rc

en
ta

ge

%

O
ut

pu
t s

iz
e

(in
cr

ea
se

d/
de

cr
ea

se
d

)

The string “Alphabet” Princess Nourah
bint Abdulrahman
University

100101100000011111111010
010101010111000110001111
001111001011001011101101
000001111110111001010110
101000110011110110110010
110010100001011011111011
011101100011111001001100
10100001111001011

11201110216081101120111
01110111011103130213041
20412011102120111031102
11011506110312011101110
21101110113021204110211
02120111021201110114011
10211051102110311021305
12011202120111011404120
111021

Pass 43 190 -341 �

ASCII code in binary
form

Of “Princess Nourah
bint Abdulrahman
University”

01010000011100
10011010010110
11100110001101
10010101110011
01110011001000
00010011100110
11110111010101
11001001100001
01101000001000
00011000100110
10010110111001
11010000100000
01000001011000
10011001000111

101011111000110110010110
100100011001110010011010
100011001000110011011111
101100011001000010001010
100011011001111010010111
110111111001110110010110
100100011000101111011111
101111101001110110011011
100010101001001110001101
100111101001011110010010
100111101001000111011111
101010101001000110010110
100010011001101010001101
100011001001011010001011

11101110513021102120111
02110112011302120312011
20211011101130212011302
12021106110213021201140
11301110111011302110212
04110112011105110612031
10212011102110112011302
13011104110611051101120
31102120211031301110111
01120112031302110212041
10112011104120112011101
12041101120113031106110
11101110111011201130212
01110211011301120212021

Pass 343 372 -8 �

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

7

S
ou

rc
e

da
ta

 ty
pe

S
ou

rc
e

da
ta

 v
ie

w

(p
la

in
 te

xt
)

E
nc

od
in

g
us

in
g

H

uf
fm

an
 a

lg
or

ith
m

s

O
ut

pu
t d

at
a

vi
ew

(E

nc
od

in
g)

“I

m
pl

em
en

tin
g

H
uf

fm
an

 a
nd

 R
LE

al

go
rit

hm
s

re
sp

ec
tiv

el
y”

E
nc

od
in

g/
 D

ec
od

in
g

(p
as

s
or

 fa
il)

O
rig

in
al

 s
iz

e
by

te
s

O
ut

pu
t s

iz
e

by
te

s

S
av

in
g

pe
rc

en
ta

ge

%

O
ut

pu
t s

iz
e

(in
cr

ea
se

d/
de

cr
ea

se
d

)

01010110110001
11001001100001
01101000011011
01011000010110
11100010000001
01010101101110
01101001011101
10011001010111
00100111001101
10100101110100
01111001

10000110 10111011302110213021201
12011102110113011103140
2110

� - increase in data size and � - decrease in data size

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

8

Table 2. Encoding and data size changing using RLE and Huffman algorithms respectively

S
ou

rc
e

da
ta

 ty
pe

S
ou

rc
e

da
ta

 v
ie

w

(p
la

in
 te

xt
)

E
nc

od
in

g
us

in
g

R

LE

 a
lg

or
ith

m
s

O
ut

pu
t d

at
a

vi
ew

(E

nc
od

in
g)

“I

m
pl

em
en

tin
g

R
LE

an

d
H

uf
fm

an

al
go

rit
hm

s
re

sp
ec

tiv
el

y”

E
nc

od
in

g/
D

ec
od

in
g

(p
as

s
or

 fa
il)

O
rig

in
al

 s
iz

e
by

te
s

O
ut

pu
t s

iz
e

by
te

s
 S

av
in

g
P

er
ce

nt
ag

e
%

O
ut

pu
t s

iz
e

(in
cr

ea
se

d/
de

cr
ea

se
d

)

The string
“Alphabet”

Princess Nourah
bint Abdulrahman
University

1P1r1i1n1c1e2s1 1N1o1u1r1a1h1
1b1i1n1t1
1A1b1d1u1l1r1a1h1m1a1n1
1U1n1i1v1e1r1s1i1t1y

011111110111010111100100001
100110110111111000111111001
011010010001111110010100011
101011010010101010110111001
011110010000100110101101100
100111001011000101010001101
100011101011010010101011011
010110100100001011011000001
000011110011100000110111011
101011111001111001001101001
01

Pass 43 272 -532 �

ASCII code in
binary form
Of “Princess
Nourah bint
Abdulrahman
University”

010100000111001
001101001011011
100110001101100
101011100110111
001100100000010
011100110111101
110101011100100
110000101101000
001000000110001
001101001011011
100111010000100
000010000010110
001001100100011

101110115031201120211011201
110211031202130211021201110
111031202110312021201160112
031202110411031101110111031
201120214011102110115011602
130112021101120111021103120
311011401160115011102130112
021201130311011101110211021
303120112021401110211011402
110211011102140111021103130
116011101110111011102110312
021101120111031102120212011
101110312011203120211021101

010000100011001010110101111
000111101110010001111000010
111001011010111101110110110
111001011101111000010000101
101011110111001011010111101
110111100011001110001111011
010111101110010110000010110
100100001000010110101111000
111101110110001000010111001
000110010100011001110111011
011000111101110010001111000
010111001011010111101101001
000110001000110011100011001

Pass 344 714 -107 �

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

9

S
ou

rc
e

da
ta

 ty
pe

S
ou

rc
e

da
ta

 v
ie

w

(p
la

in
 te

xt
)

E
nc

od
in

g
us

in
g

R

LE

 a
lg

or
ith

m
s

O
ut

pu
t d

at
a

vi
ew

(E

nc
od

in
g)

“I

m
pl

em
en

tin
g

R
LE

an

d
H

uf
fm

an

al
go

rit
hm

s
re

sp
ec

tiv
el

y”

E
nc

od
in

g/
D

ec
od

in
g

(p
as

s
or

 fa
il)

O
rig

in
al

 s
iz

e
by

te
s

O
ut

pu
t s

iz
e

by
te

s
 S

av
in

g
P

er
ce

nt
ag

e
%

O
ut

pu
t s

iz
e

(in
cr

ea
se

d/
de

cr
ea

se
d

)

101010110110001
110010011000010
110100001101101
011000010110111
000100000010101
010110111001101
001011101100110
010101110010011
100110110100101
11010001111001

120111031101130412011 010000101110110110001111011
101111000110110110100100001
000010111001011101101101101
011110001111011101100010000
101110010001100010111001011
100100001011101100010000101
1100101101 …

� - increase in data size and � - decrease in data size

Ibrahim; BJAST, 16(2): 1-10, 2016; Article no.BJAST.25712

10

4. CONCLUSIONS AND FUTURE WORK

The proposed technique can be utilized to
encode and decode data and to increase security
level during data communication. The encoded
data is surprisingly difficult to cryptanalyze. The
outcome is totally different compared with the
original data. The decoding cannot be attained
without using the Huffman-RLE algorithm
sequence. So, as a result, Encoding/decoding is
done and passed if the input is an ASCII code in
binary form, and the proposed technique
increases the size of data. This technique may
be improved using the adaptive Huffman
encoding technique or by optimizing the Huffman
code, which will happen when the probability of
each symbol is a negative power of two [14].

COMPETING INTERESTS

Author has declared that no competing interests
exist.

REFERENCES

1. Nigam Sangwan. Text encryption with

huffman compression. International
Journal of Computer Applications (0975–
8887). 2012;54(6):29-32.

2. Saddaf Rubab, Younus M. Improved
image steganography technique for
colored images using huffman encoding
with symlet wavelets. IJCSI International
Journal of Computer Science Issues. ISSN
(Online): 1694-0814. 2012;9(2-1):194-196.

3. Nagarajan A, Alagarsamy K. An enhanced
approach in run length enencoding
scheme. International Journal of
Engineering Trends and Technology.
ISSN: 2231-5381. 2011;2(1):43-47.

4. Sarika S, Srilali S. Improved run length
enencoding scheme for efficient
compression data rate. Int. Journal of
Engineering Research and Applications.
ISSN: 2248-9622. 2013;3(6):2017-2020.

5. David W. Gillman, Mojdeh Mohtashemi,
Ronald L. Rivest. On breaking a huffman

code. IEEE - Transactions on Information
Theory. 1996;42(3):972-976.

6. Rezaul Alam Chowdhury, Kaykobad M,
Irwin King. An efficient decoding technique
for Huffman codes. Information Processing
Letters. Elsevier Science. 2002;81;305–
308.

7. Akhter S, Haque MA. ECG comptression
using run length encoding. IEEE - Signal
Processing Conference, 18th European.
ISSN: 2219-5491. 2010;1645-1649.

8. Made Agus Dwi Suarjaya I. A new
algorithm for data compression
optimization. (IJACSA) International
Journal of Advanced Computer Science
and Applications. 2012;3(8):14-17.

9. Mamta Sharma. Compression using
huffman encoding. IJCSNS International
Journal of Computer Science and Network
Security. 2010;10(5):133-141.

10. Kodituwakku SR, Amarasinghe US.
Comparison of lossless data compression
algorithms for text data. Indian Journal of
Computer Science and Engineering. ISSN:
0976-5166. 2001;1(4)416-425.

11. Mridul K. Mathur, Seema Loonker, Dheeraj
Saxena. Lossless huffman coding
technique for image compression and
reconstruction using binary trees.
ISSN:2229-6093. 2012;3(1):76-79.

12. Pujar Jagadish H, Kadlaskar, Lohit M. A
new lossless method of image
compression and decompression using
Huffman encoding technique. Journal of
Theoretical and Applied Information
Technology. 2010;15(1/2):18-23.

13. Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, Clifford Stein.
Introduction to Algorithms. Third Printing,
MIT Press; 2002.

14. Al-hmeary BA. Role of run length encoding
on increasing huffman effect in text
compression. Journal of Kerbala
University. ISSN: 18130410. 2008;6(2):
199-204.

© 2016 Ibrahim; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

 Peer-review history:

The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/14609

