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Abstract: The present study is based on the nonlinear analysis of unsteady magnetohydrodynamics
squeezing flow and heat transfer of a third grade fluid between two parallel disks embedded in a porous
medium under the influences of thermal radiation and temperature jump boundary conditions are studied
using Chebyshev spectral collocation method. The results of the non-convectional numerical solutions
verified with the results of numerical solutions using fifth-order Runge-Kutta Fehlberg-shooting method
and also the results of homotopy analysis method as presented in literature. The parametric studies from
the series solutions show that for a suction parameter greater than zero, the radial velocity of the lower disc
increases while that of the upper disc decreases as a result of a corresponding increase in the viscosity of the
fluid from the lower squeezing disc to the upper disc. An increasing magnetic field parameter, the radial
velocity of the lower disc decreases while that of the upper disc increases. As the third-grade fluid parameter
increases, there is a reduction in the fluid viscosity thereby increasing resistance between the fluid molecules.
There is a recorded decrease in the fluid temperature profile as the Prandtl number increases due to decrease
in the thermal diffusivity of the third-grade fluid. The results in this work can be used to advance the analysis
and study of the behaviour of third grade fluid flow and heat transfer processes such as found in coal slurries,
polymer solutions, textiles, ceramics, catalytic reactors, oil recovery applications etc.

Keywords: Third-grade fluid, squeezing flow, magnetohydrodynamic, thermal radiation, Chebyshev
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1. Introduction

T he flows of non-Newtonian fluids between two plates are very important research interests in physics
and engineering. Such flows are evident in moving pistons, catalytic reactors, flow inside syringes and

nasogastric tubes, oil recovery applications, chocolate fillers, power transmission squeezed film, hydraulic lifts,
compression, electric motors, injection modeling etc. The continuous wide areas of engineering, industrial and
biological applications of fluid and heat transfer flow between two parallel discs or surfaces have inspired
various researchers in recent times to critically study the problem. Considering the problem from heat and
mass transfer analysis, Mustafa et al., [1] performed transient heat transfer analysis of squeezing fluid flow
through two parallel surfaces. Hayat et al., [2] did a study on second grade fluid being squeezed by two
parallel discs and presented with proper comparison the behaviour of the second-grade fluid considering or
neglecting magnetic effect. In an attempt to solve the extension of Hayat et al., model considering suction and
injection on magneto-hydrodynamic squeezing flow, Domairry and Aziz [3] used a semi-analytical method,
homotopy perturbation method to obtain a symbolic solution for investigating and predicting the influence of
suction and injection on magneto-hydrodynamic squeezing flow under standard conditions. A similar study
was performed by Siddiqui et al., [4] using two parallel plates with the squeezing viscous fluid under transient
condition. Immediately after that, Rashidi et al., [5] approached the problem using different analytical schemes.
Incorporating nano-technology into the problem of squeezing flow, Khan and Aziz [6,7], investigated on the
effect of natural convection on fluids with nano-particles. They extended their work on squeezing nanofluids
by later considering porosity. A further study on squeezing nanofluid flow between two plates was perform
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by Kuznestov and Nield [8]. They investigated the boundary layer of the squeezing process by using natural
convection principle of fluid flow to generate different governing models. Hashimi et al., [9] found the models
interesting and obtained analytical solutions to the governing equations with the assumption of zero slip and
zero temperature jump. The researchers mentioned above performed their interesting research based on the
assumption of zero slip and zero temperature jump. However, these two annulled assumptions have to a
reasonable extent influence on the processes in question. In other to provide an extension to the works of the
above researchers as required, studies have been performed on squeezable fluids of different nano-particles
sizes, different concentration, different stretching effect and different phases by taking slip into account [11–
15]. The obtained model for the process were documented and proper parametric studies were performed
to understand the process in general [16–20]. Past research works have presented magnetohydrodynamic
fluid flow considering porous medium, nanofluid and some other factors capable of reshaping the squeezing
process from idealization into actual [21–27]. In recent times, the flow and heat transfer characteristics of third
grade nanofluid in pipes and in porous channel have been analyzed [28–30]. Since it has been established by
Fosdick and Rajagopal [31] that third grade fluid gives different properties to those of fluids such as Newtonian
and second grade fluids, Majhi and Nair [32] tried to manage the shearing stresses at the wall of a fluid flow
process considering a third grade fluid as the working fluid. They compared their obtained results to the
numerical solutions obtained by Massoudi and Christie [33] and an excellent agreement was reached by the
two researchers. A third grade fluid with constant viscosity was considered by Yurusoy and Pakdemirli [34].
In order to verify their work with the available numerical solution of Vajrevelu et al., [35] for third grade
fluid flow, they considered a governing equation with varying viscosity under no slip condition. The research
work gave interesting results and found great application in rotary devices. Other studies on third grade
fluids includes the fluctuating fluid flow by Hayat et al., [36], boundary layer analysis by Muhammet [37],
heat transfer analysis by Yurusoy [38], entropy generation analysis by Pakdemirli et al., [39] and partial slip
analysis by Sajid et al., [40]. Different schemes have also been employed to efficiently solve the resulting
ordinary differential equations associated with squeezing fluid flow between two parallel surfaces as presented
by [41–47].

Chebyshev spectral collocation method has demonstrated fast rate of convergence in the computation
of nonlinear problems. It provides exponential convergence [48] which shows it superiority over other
numerical methods such as finite element method (FEM) and the finite volume method (FVM) that provide
linear convergence. Also, it has a very large converging speed over most of the commonly used numerical
methods. It has been widely applied in computational fluid dynamics [49,50], electrodynamics [51] and
magnetohydrodynamics [52,53] and other problems related to the solution of non-linear differential equations
[54–59]. It high level of accuracy to nonlinear differential equations has been well established [60–63].
However, to the best of the authors’ knowledge, this method has not been applied to the analysis of flow
and heat transfer of most non-Newtonian fluid such as third grade fluid. Furthermore, the numerical
study magnetohydrodynamic squeezing unsteady flow of third grade nanofluid between two parallel disks
embedded in a porous medium under the influences of thermal radiation and temperature jump condition
has not been considered and analyzed in literature. Therefore, in this work, nonlinear analysis of unsteady
squeezing flow and heat transfer of a third grade fluid between two parallel disks embedded in a porous
medium under the influences of thermal radiation and temperature jump boundary conditions is studied
analytically and numerically using Chebyshev spectral collocation method. Also, parametric studies are
carried out and the influences of various parameters on the flow and heat transfer processes are established.

2. Problem Formulation

Consider an axisymmetrically flow of third grade fluid through two parallel disks as shown in Figure 1.
The upper disk is moving towards the stationary lower disks under a uniform magnetic field strength applied
perpendicular to disks as depicted in Figure 1. The fluid conducts electrical energy as it flows unsteadily under
the influence of magnetic force field. It is assumed that the fluid structure is everywhere in thermodynamic
equilibrium and the plate is maintained at constant temperature.

The Cauchy stress tensor, τ for an incompressible homogeneous thermodynamically compatible third
grade fluid is given by

τ = pI + µA1 + α1 A2 + α2 A2
1 + β1 A3 + β2 (A1 A2 + A2 A1) + β3

(
trA2

1

)
A1, (1)
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Figure 1. The squeezing flow of third grade fluid between parallel circular plate

where τ is the stress tensor, ρ is the pressure, I is the identity tensor, µ is the dynamic viscosity, I is the identity
tensor, α1,α2,β1, β2 and β3 are the material constant and A1, A2 and A3 being the first, second and third Rivilin
Erickson tensor which can be derived from

A1 = (grad V) + (grad V)T , (2)

An =
dAn−1

dt
+ An−1 (grad V) + (grad V)T An−1, n ≥ 1, (3)

where V denotes velocity field, grad is the operator gradient and d/dt is the material time derivative.
According to Fosdick and Rajagopal [31] motion of the fluid must be in accordance with the thermodynamic
model (Clausius Duhem inequality must be satisfied). When the motions of the fluid are thermodynamically
compatible, the Clausius-Duhem inequality and the assumption that the Helmholtz free energy is minimum
when the fluid is locally at rest (stable) require that

µ ≥ 0, α1 ≥ 0, β1 = β2 = 0, β3 ≥ 0, |α1 + α2| ≤
√

24µβ3, β1 = β2 = 0, β ≥ 0. (4)

Since β3 > 0, the stress tensor can predict shear thickening as well as the normal stress. Velocity and
temperature fields are:

V = (u(t, r, z), 0, w(t, r, z)) and T = T(t, r, z), (5)

here u and w are the radial and axial components of velocity. From the above Equations (1-5), the algebraic
forms of the conservation equations can be developed as

∂u
∂r

+
u
r
+

∂w
∂z

= 0 (6)

ρ

(
∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z

)
=

∂τrr

∂r
+

∂τrz

∂z
+

τrr − τθθ

r
−

σB2
0u

1− ct
− µ

K
u (7)

ρ

(
∂w
∂t

+ u
∂w
∂r

+ w
∂w
∂z

)
=

1
r

∂

∂r
(rτrr) +

∂τrz

∂z
− µ

K
w (8)

where

τrr = −p + 2µ ∂u
∂r + 2α1

[
u ∂2u

∂r2 + w ∂2u
∂r∂z + 2

(
∂u
∂r

)2
+ ∂w

∂r

(
∂u
∂z + ∂w

∂r

)]
+ α2

[
4
(

∂u
∂r

)2
+
(

∂u
∂z + ∂w

∂r

)2
]
+ 4β3

∂u
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2 u2

r2 +
(

∂u
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)2
+

{
2
(

∂u
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)2
+
(
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}] (9)

τθθ = −p + 2µ
u
r
+ 2α1

[
u
r

∂u
∂r

+
w
r

∂u
∂z

+
u2

r2

]
+ 4α2

u2

r2 +4β3
u
r

[
2

u2

r2 +

(
∂u
∂z

+
∂w
∂r

)2
+

{
2
(

∂u
∂r

)2
+

(
∂w
∂r

)2
}]

(10)



Open J. Math. Sci. 2020, 4, 305-322 308

Figure 2. Influence of Hartman number on dimensionless

τzz = −p + 2µ ∂w
∂z + 2α1

[
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After substitution of Equations (9-12) into above momentum equations in Equations (7) and (8) and
expansion of the resulting equations, one arrives at Equations (13) and (14)
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∂r
∂2w
∂r2 + 3 ∂w

∂r
∂2u
∂z2 + 4 ∂u

∂r
∂2u
∂r∂z + 1

r
∂u
∂r

∂w
∂r + u ∂3w

∂r3 + u
r

∂2u
∂r∂z + u ∂3u

∂r2∂z +

w ∂3w
∂r3∂z + 3 ∂u

∂z
∂2u
∂r2 + 3 ∂w

∂z
∂2w
∂r2 + ∂w

∂r
∂2u
∂r2 + ∂3u

∂r∂z∂t + 5 ∂u
∂z

∂2w
∂r∂z + ∂w

∂z
∂2u
∂r∂z + 1

r
∂2w
∂r∂t + 1

r
∂2u
∂z∂t + 2w ∂3w

∂z3 + 2u ∂3w
∂r∂z2 +

8 ∂w
∂z

∂2w
∂z2 + 4 ∂u

∂z
∂2u
∂z2 + 4 ∂w

∂r
∂2w
∂r∂z + 2 ∂w

∂z
∂2w
∂z2 ) + α2(

2
r

∂u
∂r

∂u
∂z + 2 ∂u

∂r
∂2u
∂r∂z + 2 ∂w

∂z
∂2u
∂r∂z + 4 ∂u

∂z
∂2w
∂r∂z + 2 ∂w

∂r
∂2w
∂r∂z + 2 ∂w

∂r
∂2w
∂r∂z +

2 ∂2u
∂r2

∂w
∂r + 8 ∂w

∂z
∂2w
∂z2 + 2

r
∂u
∂z

∂w
∂z + 2

r
∂w
∂r

∂w
∂z + 2

r
∂u
∂r

∂w
∂r + 2 ∂w

∂z
∂2w
∂r2 + 2 ∂u

∂r
∂2w
∂r2 + 2 ∂u

∂z
∂2u
∂z2 + 2 ∂w

∂r
∂2u
∂z2 + 2 ∂u

∂z
∂2u
∂r2 ) +

β3[
4
r

∂u
∂z (

∂u
∂r )

2 + 4
r

∂w
∂r (

∂u
∂r )

2 + 4 u2

r3
∂w
∂r + 8 u

r2
∂u
∂r

∂w
∂r + 4

r
∂u
∂z (

∂w
∂z )

2 + 4 u2

r2
∂2u
∂r∂z + 6

r (
∂u
∂z )

2 ∂w
∂r + 4

r
∂w
∂r (

∂w
∂z )

2 + 4( ∂u
∂r )

2 ∂2u
∂r∂z +

4( ∂u
∂r )

2 ∂2w
∂r2 + 4 u2

r3
∂u
∂z + 8 ∂u

∂z
∂w
∂z

∂2w
∂r∂z + 8 ∂u

∂r
∂u
∂z

∂2u
∂r2 + 6

r
∂u
∂z (

∂w
∂r )

2 + 8 u
r2

∂u
∂r

∂u
∂z + 4( ∂w

∂z )
2 ∂2u

∂r∂z + 8 ∂u
∂r

∂w
∂r

∂2u
∂r2 + 2

r (
∂u
∂z )

3 +
2
r (

∂w
∂r )

3 + 4 u2

r2
∂2w
∂r2 + 8 u2

r2
∂2w
∂z2 + 4( ∂w

∂z )
2 ∂2w

∂r2 + 6( ∂u
∂z )

2 ∂2u
∂r∂z + 6( ∂u

∂z )
2 ∂2w

∂r2 − 8 u2

r3
∂w
∂r + 8 ∂w

∂r
∂w
∂z

∂2u
∂r∂z + 8( ∂u

∂r )
2 ∂2w

∂z2 +

6( ∂w
∂r )

2 ∂2u
∂r∂z − 8 u2

r3
∂u
∂z + 6( ∂w

∂r )
2 ∂2w

∂r2 + 8 ∂u
∂z

∂w
∂z

∂2w
∂r∂z + 4( ∂u

∂z )
2 ∂2w

∂z2 + 16 u
r2

∂u
∂z

∂w
∂z + 12 ∂u

∂z
∂w
∂r

∂2w
∂r2 + 16 ∂u

∂r
∂w
∂z

∂2u
∂r∂z +

4( ∂w
∂r )

2 ∂2w
∂z2 + 8 ∂u

∂z
∂w
∂r

∂2w
∂z2 + 24( ∂w

∂z )
2 ∂2w

∂z2 + 12 ∂u
∂z

∂w
∂r

∂2u
∂r∂z + 8 ∂u

∂z
∂w
∂z

∂2u
∂z2 + 8 ∂2u

∂z2
∂w
∂z

∂w
∂r + 18 ∂w

∂z
∂w
∂r

∂2w
∂r∂z ]−

µ
K w.;

(14)

And the energy equation is given as

ρCp

(
∂T
∂t + u ∂T

∂r + w ∂T
∂z

)
= k

(
∂2T
∂r2 + 1

r
∂T
∂r + ∂2T

∂z2

)
+ µ

[
2
(

∂u
∂r

)2
+ 2 u2

r2 +
(

∂u
∂z

)2
+ 2 ∂u

∂z
∂w
∂r + 2

(
∂w
∂z

)2
+
(

∂w
∂r

)2 ]
+

α1

[
2 u3

r3 + 4
(

∂u
∂r

)3
+ 2 u

r2
∂u
∂t + u ∂u

∂z
∂2w
∂r2 + w ∂u

∂z
∂2u
∂z2 + u ∂w

∂r
∂2w
∂r2 + u ∂u

∂z
∂2u
∂r∂z +

∂u
∂z

∂2u
∂z∂t + 2 uw

r2
∂u
∂z + u ∂w

∂r
∂2u
∂r∂z +

∂w
∂r

∂2u
∂z∂t +

w ∂w
∂r

∂2u
∂z2 + 3 ∂u

∂r

(
∂w
∂r

)2
+ 4

(
∂w
∂z

)3
+ 3

(
∂w
∂r

)2
∂w
∂z + 2u ∂w

∂z
∂2w
∂r∂z + w ∂w

∂r
∂2w
∂r∂z + 3

(
∂u
∂z

)2
∂w
∂z + 2u ∂w

∂z
∂2w
∂r∂z + w ∂w

∂r
∂2w
∂r∂z +

3
(

∂u
∂z

)2
∂w
∂z + 3 ∂u

∂r

(
∂u
∂z

)2
+ 6 ∂u

∂z
∂w
∂r

∂w
∂z + 2 u2

r2
∂u
∂r + w ∂u

∂z
∂2w
∂r∂z + 2 ∂u

∂r
∂2u
∂r∂t +

∂u
∂z

∂2w
∂r∂t +

∂w
∂r

∂2w
∂r∂t + 6 ∂u

∂r
∂u
∂z

∂w
∂r + 2u ∂u

∂r
∂2u
∂r2 +

2w ∂w
∂z

∂2w
∂z2 + 2w ∂u

∂r
∂2u
∂r∂z + 2 ∂w

∂z
∂2w
∂z∂t

]
+

α2

[
4 u3

r3 + 3 ∂u
∂r

(
∂u
∂z

)2
+ 3 ∂u

∂r

(
∂w
∂r

)2
+ 6 ∂u

∂r
∂u
∂z

∂w
∂r + 6 ∂u

∂z
∂w
∂r

∂w
∂z + 4

(
∂u
∂r

)3
+ 3

(
∂u
∂z

)2
∂w
∂z + 4

(
∂w
∂z

)3
+ 3

(
∂w
∂r

)2
∂w
∂z

]
+

β3

[
2
(

∂w
∂r

)4
+ 8 u4

r4 + 8
(

∂u
∂r

)2 (
∂u
∂z

)2
+ 2

(
∂u
∂z

)4
+ 16 u2

r2

(
∂u
∂r

)2
+ 8

(
∂u
∂r

)4
+ 16 u2

r2
∂u
∂z

∂w
∂r + 8

(
∂u
∂z

)3
∂w
∂r +

8 u2

r2

(
∂w
∂r

)2
+ 8 u2

r2

(
∂u
∂z

)2
+ 8 ∂u

∂z

(
∂w
∂r

)3
+ 12

(
∂u
∂z

)2 (
∂w
∂r

)2
+ 16

(
∂u
∂r

)2 (
∂w
∂z

)2
+ 8

(
∂u
∂r

)2 (
∂w
∂r

)2
+

8
(

∂w
∂r

)2 (
∂w
∂z

)2
+ 16 u2

r2

(
∂w
∂z

)2
+ 16 ∂u

∂z
∂w
∂r

(
∂w
∂z

)2
+ 8

(
∂u
∂z

)2 (
∂w
∂z

)2
+ 16

(
∂u
∂r

)2
∂u
∂z

∂w
∂r + 8

(
∂w
∂z

)4 ]
+

16σ∗Th
3

3k1
∗

(
∂2T
∂r2 + 1

r
∂T
∂r + ∂2T

∂z2

)
+ σB0

2u2

1−ct .

The related boundary conditions are given as

u (r, z, t) = Uw = ar
2(1−ct) , w (r, z, t) = −w0, −k ∂T

∂z = h1

(
Tf − T

)
at z = 0,

u (r, z, t) = 0, w (r, z, t) = ∂h
∂t = − c

2

√
v

a(1−ct) , −k ∂T
∂z = h2 (T − Th) at z = h(t),

(15)

where w0 > 0 represents suction. We consider the following transformations:

η =
z

h (t)
, u = Uw f ′(η), w = −

√
av

1− ct
f (η), θ =

T − Th
Tf − Th

. (16)

Identically, it is established that the continuity equation is satisfied. Omitting the pressure terms from the
momentum equations in Equations (13) and (14) and using the above transformations, one obtains

f iv + f f ′′′ − Sq
2 (3 f ′′ − η f ′′′)−

(
M2 + 1

Da

)
f ′′ + α

(
−2 f ′′ f ′′′ − f ′ f iv − f f v + Sq

2
(
5 f iv − η f v))

−γ
(
2 f ′′ f ′′′ + f ′ f iv)+ β

(
7 f ′′

3
+ 24 f ′ f ′′ f ′′′ + 3 f ′

2
f iv + Re

(
3 f ′′ f ′′′

2
+ 3

2 f ′′
2

f iv
))

= 0, (17)
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(1 + Rd) θ′′ + Pr
(

θ′ f − Sq
2

ηθ′
)
+ PrEc

{
M2 f ′

2
+

6
Re

f ′
2
+ f ′′

2
+ α

(
1

Re

(
−6 f ′

3 − 6 f f ′ f ′′
)

− f ′ f ′′
2 − f f ′′ f ′′′ +

Sq
2

(
3 f ′′

2
+ η f ′′ f ′′′

)
+

Sq
Re

(
6 f ′

2
+ 3η f ′ f ′′

))
− 3γ

(
2 f ′

3

Re
+

f ′ f ′′
2

2

)

+β

(
18
Re

f ′
4
+ 6 f ′

2
f ′′

2
+

Re
2

f ′′
4
)}

= 0. (18)

The corresponding boundary conditions are

f (0) = A, f (1) =
Sq
2

, f ′(0) = 1, f ′(1) = 0, (19)

θ′(0) = Υ1 (θ(0)− 1) , θ′(1) = −Υ2θ(1) (20)

where 

α = α1a
µ(1−ct) ,

β = 2β3a2

µ(1−ct)2 ,

γ = α2a
µ(1−ct) ,

Re = ar2

2v(1−ct) ,

Pr = µCp
K ,

Ec = U2
w

Cp(Tf−Th)
,

M2 =
σB2

0
ρa ,

Sq = c
a , A =

√
(1−ct)

av w0,

Rd =
16σ∗T3

h
3k∗1K ,

Υ1 = h1h(t)
K ,

Υ2 = h2h(t)
K .

(21)

3. Chebyshev spectral collocation method for the solutions of the governing equations

It is obvious that Equations (17) and (18) are nonlinear partially coupled ordinary differential equation.
Indisputably, it is very difficult if not impossible to develop exact analytical solutions for the equations.
Therefore, we apply a numerical method, a spectral collocation method of the Chebyshev type to fluid flow and
heat transfer equations. The method uses Chebyshev polynomials for expansion of the involving variables.
The variables are expanded at the collocation points and then the derivatives of the at the collocation points
are sought. After this, the expansions are substituted into the differential equations and the approximated
solution in physical space are finally sought for.

In order to find approximate solution, which is a global Chebyshev polynomial of degree N defined on
the interval [−1, 1], the interval is discretized by using collocation points to defined the Chebyshev nodes in
[−1, 1], namely

xj = cos
(

jπ
N

)
, j = 0, 1, 2, ...N. (22)

The derivatives of the functions at the collocation points are given by:

f n (xj
)
=

N

∑
j=0

dn
kj f
(
xj
)

, n = 1, 2, (23)

where dn
kj represents the differential matrix of order n and are given by

d1
kj =

4γj

N

N

∑
n=0,l=0

n−1

∑
n+l=odd

nγn

cl
Tn

l (xk) Tn
(
xj
)

, k, j = 0, 1, ...N, (24)
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d2
kj =

2γj

N

N

∑
n=0,l=0

n−1

∑
n+l=even

nγn
(
n2 − l2)
cl

Tn
l (xk) Tn

(
xj
)

, k, j = 0, 1, ...N, (25)

where Tn
(

xj
)

are the Chebyshev polynomial and coefficients γj and cl are defined as:

γj =

{
1
2 j = 0, or N;
1 j = 1, 2, ... N − 1,

(26)

cl =

{
2 l = 0, or N,
1 l = 1, 2, ... N − 1.

(27)

The Chebyshev polynomials are defined on the finite interval [−1, 1]. Therefore, to apply Chebyshev
spectral method to the Equations (17) and (18), we make a suitable linear transformation and transform the
physical domain [−1, 1] to Chebyshev computational domain [−1, 1]. We sample the unknown function w
at the Chebyshev points to obtain the data vector w = [w (xo) , w (x1) , w (x2) , ...w (xN)]

T . The next step is
to find a Chebyshev polynomial P of degree N that interpolates the data

(
i.e., P

(
xj
)
= wj, j = 0, 1, ...N

)
and obtains the spectral derivative vector w by differentiating P and evaluating at the grid points(

i.e., w
′
j = P′

(
xj
)
= wj, j = 0, 1, ...N

)
. This transforms the nonlinear differential equation into system

nonlinear algebraic equations, which are solved by Newton’s iterative method starting with a initial guess.
With the aid of a suitable transformation, we map the physical domain [0, 1] to a computational domain

[−1, 1] to facilitate our computations. Equations (17) and (18) are transformed to the following equations

f̃ iv + f̃ ˜f ′′′ − Sq
2
(
3 ˜f ′′ − η ˜f ′′′

)
−
(

M2 + 1
Da

)
˜f ′′ + α

(
−2 ˜f ′′ ˜f ′′′ − f̃ ′ f̃ iv − f̃ f̃ v + Sq

2
(
5 f̃ iv − η f̃ v))

−γ
(
2 ˜f ′′ ˜f ′′′ + f̃ ′ f̃ iv)+ β

(
7 ˜f ′′

3
+ 24 f̃ ′ ˜f ′′ ˜f ′′′ + 3 f̃ ′

2
f̃ iv + Re

(
3 ˜f ′′ ˜f ′′′

2
+ 3

2
˜f ′′

2
f̃ iv
))

= 0,
(28)

(1 + Rd) θ̃′′ + Pr
(

θ̃′ f̃ − Sq
2

ηθ̃′
)
+ PrEc

{
M2 f̃ ′

2
+

6
Re

f̃ ′
2
+ ˜f ′′

2
+ α

(
1

Re

(
−6 f̃ ′

3
− 6 f̃ f̃ ′ ˜f ′′

)

− f̃ ′ ˜f ′′
2
− f̃ ˜f ′′ ˜f ′′′ +

Sq
2

(
3 ˜f ′′

2
+ η ˜f ′′ ˜f ′′′

)
+

Sq
Re

(
6 f̃ ′

2
+ 3η f̃ ′ ˜f ′′

))
− 3γ

2 f̃ ′
3

Re
+

f̃ ′ ˜f ′′
2

2


+β

(
18
Re

f̃ ′
4
+ 6 f̃ ′

2
˜f ′′

2
+

Re
2

˜f ′′
4
)}

= 0. (29)

The corresponding boundary conditions are

f̃ (0) = A, f̃ (1) =
Sq
2

, f̃ ′(0) = 1, f̃ ′(1) = 0, θ̃′(0) = Υ1
(
θ̃(0)− 1

)
, θ̃′(1) = −Υ2θ̃(1) . (30)

After applying CSCM to Equations (17) and (18) and the boundary conditions in Equation (19), the
governing equation and boundary conditions are transformed into a system of nonlinear algebraic equations:

N
∑

j=0
d(4)k,j f̃

(
ηj

)
+
( N

∑
j=0

f̃
(

ηj

)
d(3)k,j f̃

(
ηj

))
− Sq

2

(
3
( N

∑
j=0

d(2)k,j f̃
(

ηj

))
− η

( N
∑

j=0
d(3)k,j f̃

(
ηj

)))
−
(

M2 + 1
Da

)( N
∑

j=0
d(2)k,j f̃

(
ηj

))
+

α
(
− 2
( N

∑
j=0

d(2)k,j f̃
(

ηj

))( N
∑

j=0
d(3)k,j f̃

(
ηj

))
−
( N

∑
j=0

d(1)k,j f̃
(

ηj

))( N
∑

j=0
d(4)k,j f̃

(
ηj

))
−
( N

∑
j=0

f̃
(

ηj

)
d5

k,j f̃
(

ηj

))
+

Sq
2

(
5
( N

∑
j=0

d(4)k,j f̃
(

ηj

))
− η

( N
∑

j=0
d(5)k,j f̃

(
ηj

))))
− γ

(
2
( N

∑
j=0

d(2)k,j f̃
(

ηj

))( N
∑

j=0
d(3)k,j f̃

(
ηj

))
+( N

∑
j=0

d(1)k,j f̃
(

ηj

))( N
∑

j=0
d(4)k,j f̃

(
ηj

)))
+ β

(
7
( N

∑
j=0

d(2)k,j f̃
(

ηj

))3
+ 24

( N
∑

j=0
d(1)k,j f̃

(
ηj

))( N
∑

j=0
d(2)k,j f̃

(
ηj

))( N
∑

j=0
d(3)k,j f̃

(
ηj

))
+

3
( N

∑
j=0

d(1)k,j f̃
(

ηj

))2( N
∑

j=0
d(4)k,j f̃

(
ηj

))
+ Re

(
3
( N

∑
j=0

d(2)k,j f̃
(

ηj

))( N
∑

j=0
d(3)k,j f̃

(
ηj

))2
+ 3

2

( N
∑

j=0
d(2)k,j f̃

(
ηj

))2( N
∑

j=0
d(4) f̃

(
ηj

))))
= 0,

(
1 + Rd

) N
∑

j=0
d(2)k,j θ̃

(
ηj

)
+ Pr

( N
∑

j=0
f̃ (ηj)d

(1)
k,j θ̃

(
ηj

)
− Sq

2 η
N
∑

j=0
d(1)k,j θ̃

(
ηj

))
+ PrEc

{
M2
( N

∑
j=0

d(1)k,j f̃
(

ηj

))2
+

6
Re

( N
∑

j=0
d(1)k,j f̃

(
ηj

))2
+
( N

∑
j=0

d2
k,j f̃
(

ηj

))2
+ α
(

1
Re

(
− 6
( N

∑
j=0

d(1)k,j f̃
(

ηj

))3
− 6

N
∑

j=0
f̃ (ηj)d

(1)
k,j f̃

(
ηj

) N
∑

j=0
d(2)k,j f̃

(
ηj

))
−



Open J. Math. Sci. 2020, 4, 305-322 312

( N
∑

j=0
d(1)k,j f̃

(
ηj

)( N
∑

j=0
d(2)k,j f̃

(
ηj

))2)
−

N
∑

j=0
d(1)k,j f̃

(
ηj

)( N
∑

j=0
d(3)k,j f̃

(
ηj

))
+

Sq
2

(
3
( N

∑
j=0

d(2)k,j f̃
(

ηj

))2
+

η
N
∑

j=0
d(1)k,j f̃

(
ηj

)( N
∑

j=0
d(3)k,j f̃

(
ηj

)))
+

Sq
Re

(
6
( N

∑
j=0

d(1)k,j f̃
(

ηj

))2
+ 3η

N
∑

j=0
d(1)k,j f̃

(
ηj

)( N
∑

j=0
d(2)k,j f̃

(
ηj

))))
−

3γ
(

2
Re

( N
∑

j=0
d(1)k,j f̃

(
ηj

))3
+ 1

2

( N
∑

j=0
d(1)k,j f̃

(
ηj

)( N
∑

j=0
d(2)k,j f̃

(
ηj

))2))
+ β

(
18
Re

( N
∑

j=0
d(1)k,j f̃

(
ηj

))4
+

6
( N

∑
j=0

d(1)k,j f̃
(

ηj

))2( N
∑

j=0
d(2)k,j f̃

(
ηj

))2
+ Re

2

( N
∑

j=0
d(2)k,j f̃

(
ηj

))4)}
= 0,

for k = 1, 2, 3, ...N − 1.
And the boundary conditions in Equation (18) become

f̃ (−1) = A, f̃ (1) =
Sq
2

,
N

∑
j=0

d(1)0 f̃
(
ηj
)
= 1,

N

∑
j=0

d(1)N,j f̃
(
ηj
)
= 0,

N

∑
j=0

d(1)N,j θ̃
(
ηj
)
= Υ1

(
θ̃(−1)− 1

)
,

N

∑
j=0

d(1)N,j θ̃
(
ηj
)
= −Υ2θ̃(1)

The above system of nonlinear algebraic equation contains 3N-2 equations for the unknown f̃
(
ηj
)

, i =
1, 2, 3, ..., N and θ̃

(
ηj
)

, i = 1, 2, 3, ..., N − 1is solved by Newton’s method.

4. Flow and heat transfer parameters of interests

Another set of important considerations in the analysis of fluid flow and heat transfer are skin friction
coefficient and Nusselt number. The local skin friction coefficient at lower disk is

C f =
τw|x=0
1
2 ρU2

w
,

while the local Nusselt number at the disk is

Nu =
h(t)qw

K
(

Tf − Th

) |z=0,

where wall heat flux is defined as:
qw|z=0 = −K

∂T
∂z
|z=0 + qr|z=0.

Using the similarity variables in Equation (16) and the dimensionless parameters in Equation (21), one
obtains the dimensionless forms of the local skin friction coefficient and Nusselt number as

C f =
√

2Re−0.5

(
2 f ′′(0) + α (3Sq f ′′(0)− 2A f ′′′(0) + 2 f ′′(0))

− 2γ f ′′(0) + β
(

Re
4 f ′′′

3
(0) + 6 f ′′(0)

) )
,

Nu = (1 + Rd) θ′(0).

5. Results and discussion

The results of homotopy perturbation method and the developed fifth-order Runge-Kutta Fehlberg
method (RKFM) coupled with shooting method are presented in Table 1. Parametric studies are carried out
and the influences of various parameters on the flow and heat transfer processes are established as shown in
Figures 2-18.

5.1. Influence of Hartman number and Squeezing parameter on dimensionless temperature profile

Figures 2 and 3 depict the influence of Hartman number and Squeezing parameter on dimensionless
temperature profile. It is clear that as the Hartman number becomes large, it automatically raises the magnetic
field as a result of an increase in the Lorentz force. This makes the temperature profile to increase as the
Hartman number increases. Considering Figure 3, a rapid increase in the dimensionless temperature profile
is noticed for a large value of squeezing parameter as a result of a driving compressive rotary force which
generates a noticeable heating effect thereby increasing the temperature profile.
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Table 1. Numerical values of Nusselt number for different parameter

RKFM HAM CSCM
α γ β Re M Sq A −Re

1
2 C f −Re

1
2 C f −Re

1
2 C f

0.01 0.10 0.10 1.00 0.40 1.00 0.01 3.88243 3.88243 3.88243
0.02 3.95950 3.95950 3.95950
0.03 4.03655 4.03655 4.03655
0.01 0.11 3.85249 3.85249 3.85249

0.12 3.82255 3.82255 3.82255
0.13 3.79260 3.79260 3.79260
0.10 0.20 4.63884 4.63884 4.63884

0.25 5.02298 5.02298 5.02298
0.29 5.33196 5.33196 5.33196
0.10 0.10 3.85868 3.85868 3.85868

0.20 3.86116 3.86116 3.86116
0.30 3.86368 3.86368 3.86368
1.00 0.50 3.90088 3.90088 3.90088

0.60 3.92337 3.92337 3.92337
0.70 3.94985 3.94985 3.94985
0.40 0.70 6.41631 6.41631 6.41631

0.75 6.00413 6.00413 6.00413
0.80 5.58953 5.58953 5.58953
1.00 0.02 4.06568 4.06568 4.06568

0.03 4.24817 4.24817 4.24817
0.04 4.42993 4.42993 4.42993

Table 2. Numerical values of Nusselt number for different parameter

RKFM HAM CSCM
α γ β Sq Pr Ec γ1 γ2 Rd Nu Nu Nu

0.01 0.10 0.10 1.00 0.10 0.10 0.20 0.20 0.20 0.092034 0.092034 0.092034
0.02 0.091945 0.091945 0.091945
0.03 0.091856 0.091856 0.091856
0.01 0.11 0.092149 0.092149 0.092149

0.12 0.092265 0.092265 0.092265
0.13 0.092380 0.092380 0.092380
0.10 0.20 0.088806 0.088806 0.088806

0.25 0.087186 0.087186 0.087186
0.29 0.085563 0.085563 0.085563
0.10 0.70 0.093319 0.093319 0.093319

0.75 0.092502 0.092502 0.092502
0.80 0.093528 0.093528 0.093528
1.00 0.11 0.090331 0.090331 0.090331

0.12 0.088628 0.088628 0.088628
0.13 0.086926 0.086926 0.086926
0.10 0.15 0.083306 0.083306 0.083306

0.25 0.065851 0.065851 0.065851
0.35 0.048396 0.048396 0.048396
0.10 0.30 0.108540 0.108540 0.108540

0.40 0.119230 0.119230 0.119230
0.50 0.126720 0.126720 0.126720
0.20 0.70 0.090240 0.090240 0.090240

0.80 0.092731 0.092731 0.092731
0.90 0.094174 0.094174 0.094174
0.20 0.30 0.101120 0.101120 0.101120

0.40 0.110210 0.110210 0.110210
0.50 0.119300 0.119300 0.119300
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Figure 3. Influence of squeezing parameter on dimensionless

Figure 4. Influence of the first thermal Biot number on dimensionless temperature profile

5.2. Influence of the thermal Biot number and Radiation term on dimensionless temperature profile

Figures 4-6 depict the influence of the thermal Biot number and Radiation term on dimensionless
temperature profile. In Figures 4 and 5, the two thermal Biot number have opposing effect on the
dimensionless temperature profile but the cooling effect generated by the first Biot number is more that the
temperature rising effect obtained from the second even for the same range of values. As a result, these
parameters can serve as a control for temperature monitoring. However, in Figure 6, as the radiation parameter
increases, the dimensionless temperature profile increases. This is because, an increase in the radiation
property causes a reduction in the absorptivity and consequently increases the rate of heat transfer to the
third grade fluid.

Figure 5. Influence of the second thermal Biot number on dimensionless temperature profile
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Figure 6. Influence of Radiation term on dimensionless temperature profile

Figure 7. Influence of α on dimensionless velocity profile

5.3. Influence of the third grade fluid parameters on dimensionless velocity profile

Figures 7-10 depict the influence of fluid flow parameters on dimensionless velocity profile. It is evident
that an increase in the fluid flow parameters of the squeezing flow causes a corresponding increase in the fluid
flow velocity. This is because the fluid flow parameters in question vary inversely with the viscosity of the fluid
being squeezed. As these parameters increase, the viscosity of the fluid decreases and consequently increases
the velocity of the fluid as the molecules of the squeezing flow are free to move with less restriction. These
parameters can be used as a monitoring agent as they directly affect the viscosity of the third grade squeezing
fluid.

5.4. Influence of suction and squeezing parameters on dimensionless velocity profile

Figures 11 and 12 depict the influence of suction and squeezing parameters on dimensionless velocity
profile. Figure 11 shows how the suction parameter affects the velocity of the squeezing discs for an increasing

Figure 8. Influence of β on dimensionless velocity profile
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Figure 9. Influence of γ on dimensionless velocity profile

Figure 10. Better insight of the influence of γ on dimensionless velocity profile

value of the fluid parameters. It is obvious that for a suction parameter greater than zero, the radial velocity
of the lower disc increases while that of the upper disc decreases as a result of a corresponding increase in
the viscosity of the third grade fluid from the lower squeezing disc to the upper disc. Figure 12 depicts the
impact of the squeezing parameter on the fluid flow between the parallel discs. The figure shows that an
increase in the squeezing parameter causes a corresponding increase in the squeezing rate. This is because as
the squeezing parameter increases, the radial velocity of the squeezing discs increases there by generating a
driving compressive rotary force on the fluid flowing between the two parallel discs.

5.5. Influence of the third grade fluid parameter and Reynold’s number on dimensionless temperature
profile

Figures 13 and 14 depict the influence of the third grade fluid parameter and Reynold’s number on
dimensionless temperature profile. It has been ascertained that an increase in the third grade fluid parameter

Figure 11. Influence of suction term on dimensionless velocity profile
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Figure 12. Influence of squeezing term on dimensionless velocity profile

Figure 13. Influence of the third grade fluid parameter on Dimensionless temperature profile

causes reduction in the fluid viscosity thereby increasing resistance between the fluid molecules. However,
as the Reynold’s number associated with the third grade fluid increases, a decreasing effect is noticed in the
dimensionless temperature profile. This is because there is a reduction in the convective capability of a high
velocity fluid as compare to that with a moderate velocity.

5.6. Influence of Prandtl and Eckert number on dimensionless temperature profile

Figures 15 and 16 depict the influence of Prandtl and Eckert number on dimensionless temperature
profile. Figure 15 depicts a decrease in temperature profile as the Prandtl number increases. This is because
an increase in the Prandtl number reduces thermal diffusivity thereby reducing the temperature profile. In
Figures 16, Eckert number is observed to have a linear increasing property on the dimensionless temperature
profile. This is because of the increase in the total kinetic energy of the fluid which correspondingly elevate the
fluid temperature.

Figure 14. Influence of Reynold’s number on dimensionless Dimensionless temperature profile
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Figure 15. Influence of Prandtl number on dimensionless temperature profile

Figure 16. Influence of Eckert number on dimensionless temperature profile

5.7. Influence of Hartman and Reynold’s number on dimensionless velocity profile

Figures 17 and 18 depict the influence of Hartman number and Reynold’s number on dimensionless
velocity profile. Figure 17 shows how the Hartman number affects the velocity of the squeezing discs for
an increasing value of the fluid parameters. It is obvious that for a Hartman number greater than zero or for
an increasing Hartman number, the radial velocity of the lower disc decreases while that of the upper disc
increases as a result of a corresponding increase in the viscosity of the third grade fluid from the upper disc to
the lower squeezing disc. As the Hartman number becomes large, it automatically raises the magnetic field as
a result of a corresponding increase in the Lorentz force, hence decreases the flow velocity while increase in
Reynold’s number increases the velocity of the fluid as shown in Figures 18.

Figure 17. Influence of Hartman number on dimensionless velocity profile.
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Figure 18. Influence of Reynold’s number on dimensionless velocity profile.

6. Conclusion

In this study, nonlinear analysis of unsteady squeezing flow and heat transfer of a third grade nanofluid
between two parallel disks embedded in a porous medium under the influences of thermal radiation and
temperature jump boundary conditions were investigated. The developed flow and thermal models were
solved numerically using Chebyshev spectral collocation method. Also, the influences of various flow and
heat transfer parameters were investigated. Important significance of study includes the study of flow and
heat transfer of third grade fluid as applied in energy conservation, coal slurries, polymer solutions, textiles,
ceramics, catalytic reactors, oil recovery applications, friction reduction and micro mixing biological samples.

Nomenclature

A Suction/injection parameter
B; magnetic field strength,Nm/A
cp specific heat capacity at constant pressure, J/kgK
cw specific heat capacity of the nanofluid, J/kgK
h height of the flow, m
H total distance between the two disks, m
kn f thermal conductivity of the nanofluid, W/mK
Kp permeability of the porous medium, m2

M Hartmann number or magnetic field parameter
P Pressure,N/m2

Pr Prandtl’s number
r radius of the disk, m
Sq Squeeze number
t time, s
T temperature, K
µ f dynamic viscosity of the basefluid, Ns/m2

µn f dynamic viscosity of the nanofluid, Ns/m2

ρn f nanofluid density, kg/m3

αn f thermal diffusivity of the nanofluid, m2/s
(ρcp)n f heat capacity of the nanofluid, Jm3/K
ρ f density of the basefluid, kg/m3

θ dimensionless temperature
w axial velocity component, m/s
u radial velocity component, m/s
η Similarity variable
γ Dimensionless temperature jump parameter
σ Electrical conductivity, Ωm
υ Kinematic viscosity, m2/s
α Thermal diffusivity, m2/s
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