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ABSTRACT 
 

In [1], a kernel-type estimator for the intensity obtained as the product of a periodic function with the 
power function trend of a non-homogeneous Poisson process has been formulated. In addition, 
asymptotic approximations to the bias, variance and mean squared error of this estimator have 
been established. In this paper, we construct a proof of strong consistency of the estimator 
proposed in [1]. 
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1. INTRODUCTION AND MAIN RESULTS 
 
Let � be a non-homogeneous Poisson process 
on [0,∞]  having (unknown) locally integrable 
intensity function � . We assume the intensity 
function to be a product of a periodic function 
with the power function trend. That is, the 
equation 
 

�(�) = ���
∗(�)����,																																																(1.1) 

 
holds true for each point � ∈ [0,∞], where ��

∗(�) is 
a periodic function with known period �, ��� is the 
power function trend with � > 0  (known), and � 
denotes the slope of the power function trend. 
Without loss of generality, the intensity function 
given in (1.1) can also be written as 
 

�(�) = ��� (�)� �
�,																																																	(1.2) 

 

where �� (�) = 	����
∗(�)�  is also a periodic 

function with period �.  Hence, for each point 
� ∈ [0,∞) and for each integer	�,	we have 
 

�� (� + ��) = �� (�).																																													(1.3) 
 
In [1], a kernel-type estimator for the intensity 
obtained as the product of a periodic function 
with the power function trend of a non 
homogeneous Poisson process has been 
formulated. In addition, asymptotic 
approximations to the bias, variance, and mean 
squared error of this estimator have been 
established. Strong consistency of this estimator 
is still an open problem. In this paper, we 
construct a proof of strong consistency of the 
estimator proposed in [1]. The estimator has 
been formulated as follows, 
 
���,�,�(�) = 

�

�
�

1

ℎ�(� + ��)
� � � �

� − (� + ��)

ℎ�
��(��)

�

�

∞

���

,						(1.4) 

 

where � is the period of  �� , � is the power of the 
trend function,  ℎ�  is bandwidth which satisfies 
lim�→∞ ℎ� = 0, and  � is a kernel function which 
satisfies three conditions, (K1) � is a probability 
density function, (K2) � is bounded, and (K3) � 
has (closed) support [−1,1]. 
 

Since strong consistency of an estimator is 
implied by complete convergence of that 
estimator, first we establish the complete 
convergence of the estimator given in (1.4), 
which is presented in the following theorem. 
Some related results can be found in [2-10]. 
 
Theorem 1.1 (Complete convergence) 
 
Suppose that the intensity function �  satisfies 
(1.2) and is locally integrable. If the kernel � 
satisfies conditions (K1), (K2), (K3), the 
bandwidth ℎ� = �

�� where 0 < � < 1 and  � < �, 
then 
 

���,�,�(�)
�
→ ��(�) 

 
as� → ∞, provided � is a Lebesgue point of �. In 

other words, ���,�,�(�)  converges completely to 

��as � → ∞. 
 
Corollary 1.2 (Strong consistency) 
 
Suppose that the intensity function �  satisfies 
(1.2) and is locally integrable. If the kernel � 
satisfies conditions (K1), (K2), (K3), the 
bandwidth ℎ� = �

��  where 0 < � < 1  for � < � , 
then 
 

���,�,�(�)
�.�.
�� ��(�) 

 
as � → ∞, provided � is a Lebesgue point of �. In 

other words, ���,�,�(�)  is a strong consistent 

estimator of	��(�). 
 

2. SOME TECHNICAL LEMMAS 
 
This following Lemma is needed for proving 
Theorem 1.1. 
 
Lemma 2.1 (Asymptotic unbiasedness) 
 
Suppose that the intensity function �  satisfies 
(1.2) and is locally integrable, ℎ� → 0, the kernel 
K satisfies (K1), (K2), and (K3), then 
 

����,�,�(�) → ��(�) 
 

as � → ∞. 
 

Proof. The expectation of ���,�,�(�) (cf. (1.4)) can 
be computed as follows 

 

����,�,�(�) =
�

�
∑

�

��(����)
� ∫ � �

��(����)

��
�

�

�
�(�)�(� ∈ [0, �])��∞

��� .                                                     (2.1)    
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Let � = � − (� + ��),  then the r.h.s of (2.1) can be written as  
 

�

�
∑

�

��(����)
� ∫ � �

�

��
�

ℝ
�(� + � + ��)�(� + � + �� ∈ 		 [0, �])��∞

��� ,                                                    (2.2) 

 
WhereI denotes the indicator function. Since � satisfies (1.2) and (1.3) , then the quantity in (2.2) 
becomes 
 

�

�
�

1

ℎ�(� + ��)
�
� � �

�

ℎ�
�

ℝ

��(� + �)(� + � + ��)
��(� + � + �� ∈ [0, �])��

∞

���

 

 

=
�

���
∫ � �

�

��
� ��(� + �)ℝ

∑
(������)�

(����)�
�(� + � + �� ∈ [0, �])��∞

��� . 

 
By a simple calculation, we obtain 
 

∑
(������)�

(����)�
�(� + � + �� ∈ 		 [0, �]) =

�

�
+ �(1)∞

��� ,  

 
as� → ∞. Hence, we have 
 

����,�,�(�) 	=
�

��
∫ � �

�

��
���(� + �)ℝ

�� + � �
�

�
�					(2.3) 

 
as � → ∞.The first term on the r.h.s of (2.3) can 
be written as 
 

�

��
∫ � �

�

��
� ���(� + �) − ��(�) + ��(�)�ℝ

�� =

�

��
∫ � �

�

��
� ���(� + �) − ��(�)�ℝ

�� +

�

��
∫ � �

�

��
� ��(�)ℝ

��.																																																						(2.4)  

 
Since � satisfies (K2) which implies there exists 
a real number �  such that �(�) ≤ �  and � 
satisfies (K3), and also �	is Lebesgue point of � 
which implies a Lebesgue point of ��as well, then 
the first term on the r.h.s of (2.4) does not 
exceed 
 

1

ℎ�
� ����(� + �) − ��(�)�
ℝ

�� 

 

	≤ 2 �
�

���
� ∫ |��(� + �) − ��(�)|ℝ

��	 = �(1) (2.5) 

 
as � → ∞.	Since � satisfies (K1), then the second 
term on the r.h.s of (2.4), can be written as 
 
��(�)

��
∫ � �

�

��
�

ℝ
�� = ��(�).																																		 (2.6) 

 
From (2.5) and (2.6),we see that the first term on 
the r.h.s. of (2.3) is equal to ��(�) + �(1) , as 
� → ∞.Clearly, the second term on the r.h.s. of 
(2.3) is�(1),	as � → ∞. This completes the proof 
Lemma 2.1. 
 

Lemma 2.2 (Asymptotic approximation to the 
variance) 
 
Suppose that intensity function  � satisfies (1.2) 
and is locally integrable,  the kernel function 
�	satisfies (K1), (K2), and (K3), the bandwidth 
ℎ� → 0, and � is a Lebesgue point of�.  
 
If 0 < � < 1	and		����ℎ� → ∞, as � → ∞,	then 
 
���(���,�,�(�)) = 

���(�)

����ℎ�(1 − �)
���(�)��

�

��

+ � �
1

����ℎ�
�,															(2.7) 

 
as � → ∞. 

 

If � = 1 and  
����

��(�)
→ ∞, as � → ∞,then 

 

���(���,�,�(�)) =
���(�)��(�)

��ℎ�
� ��(�)��
�

��

+ 

� �
��(�)

��ℎ�
�,											(2.8) 

 
as � → ∞. 

 
If � > 1	and  ��ℎ� → ∞, as � → ∞,	then 
 

��� ����,�,�(�)� =
������(�)�(�)

��ℎ�
� ��(�)��
�

��

+ 

� �
1

��ℎ�
� ,												(2.9) 

 

as � → ∞,	where �(�) = lim�→∞ �∑
�

��
�(� + � +∞

���

��∈0,�. 

 
The proof of Lemma 2.2 is referred to [1]. 
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3. PROOF OF THEOREM 1.1 AND 
COROLLARY 1.2 

 

To show ���,�,�(�)  converges completely to ��, it 

suffices to check, for all � > 0, 
 
∑ ������,�,�(�) − ��(�)� > �� < ∞∞
��� .            (3.1) 

 
The probability appearing in (3.1) can be written 
as 
 

������,�,�(�) − ����,�,�(�) + ����,�,�(�) − ��(�)� > ��.                                                              
(3.2) 

 
Bythe triangle inequality, the probability in (3.2) 
does not exceed 
 
	������,�,�(�) − ����,�,�(�)� > � − �����,�,�(�) − ��(�)��. 

(3.3) 

 
By Lemma 2.1, for sufficiently large n, we have 

that�����,�,�(�) − ��(�)� ≤
�

�
. By this argument and 

Chebyshev inequality, the probability in (3.3) is 
equal to   
 

� �����,�,�(�) − ����,�,�(�)� >
�

2
� ≤

4��� ����,�,�(�)�

��
. 

 
Hence, the l.h.s. of (3.1) does not exceed 
 

�
4��� ����,�,�(�)�

��

∞

���

.																																														(3.4) 

 
Therefore, to proof (3.1), it suffices to show that 
(3.4) is a convergent series.The subsequents 
analysis are by using Lemma 2.2. 
 
First we consider the case 0 < � < 1. By (2.7), 
the series in (3.4) can be written as 
 

∑
�

��
∞
��� ��

���(�)

������(���)
∫ ��(�)��
�

��
� + 	� �

�

������
��     

(3.5) 
 
as � → ∞.	Since ℎ� = �

��,	  the quantity in (3.5) 
can be written as 
 

�
4

��

∞

���

��
���(�)

������(1 − �)
���(�)��

�

��

� + 	� �
1

������
�� 

 
as � → ∞.		 
 
Since 0 < � < � < 1,which	is	equivalent	to	� +
1 − � > 1, then we see that the series in (3.5) is 

convergent. This completes the proof of (3.4) for 
0 < � < 1. 
 

Next we consider the case� = 1. By (2.8), the 
quantity in (3.4) can be written as 
 

�
4

��
��
���(�)��(�)

��ℎ�
� ��(�)��
�

��

� + 	� �
��(�)

��ℎ�
��

∞

���

							(3.6) 

 
as � → ∞.	Since ℎ� = �

��,		 then the quantity in 
(3.6) can be written as 
 

�
4

��
��
���(�)��(�)

����
� ��(�)��
�

��

� + 	� �
��(�)

����
��

	∞

���

(3.7) 

 

as � → ∞.		Since	0 < � < 1, we	have	2 − � >
1. Hence	 the series in (3.7) is convergent. This 
completes the proof of (3.4) for � = 1. 
 
Finally we consider the case� > 1.	By (2.9), the 
quantity in (3.4) can be written as 
 

�
4

��

∞

���

�
������(�)�(�)

��ℎ�
� ��(�)�� + � �

1

��ℎ�
�

�

��

�		(3.8) 

 

as � → ∞.	Since ℎ� = �
��,		 then the quantity in 

(3.8) can be written as 
 

�
4

��

∞

���

�
������(�)�(�)

����
� ��(�)�� + � �

1

����
�

�

��

�	(3.9) 

 

as � → ∞.	 Since 0 < � < 1,we	have	2 − � >
1.		 Hence the series in (3.9) is convergent. 
Therefore, we have proved (3.4) for the case 
� > 1. This completes the proof of Theorem 1.1. 
 

To show that ���,�,�(�)  is a strong consistent 

estimator of	��(�), it suffices to show that [11], for 
any � > 0, 
 

� �lim
�→∞

����,�,�(�) − ��(�)� ≥ �� = 0.															(3.10) 

 
By Theorem 1.1, we have (3.1). By (3.1) and the 
Borel-Cantelli Lemma, we have that the events 

�����,�,�(�) − ��(�)� > ��  only occur at a finite 

many times, which implies (3.10). This completes 
the proof of Corollary 1.2. 
 

4. CONCLUSION 
 
In this paper, we have proved strong consistency 
properties for the estimator which proposed in 
[1]. The proofs were presented in Theorem 1.1 
and corollary 1.2. 
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