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ABSTRACT 
 

A comprehensive review on the methodology to obtain two dimensional stress field around a 
discontinuity in the form of a circular hole in the plate subjected to various types of, uniform, 
axisymmetric and non-axisymmetric monotonic loads at infinity viz. uni-axial tensile, equal bi-axial 
(tensile-tensile and tensile-compressive) and pure shear is presented with the help of the basic 
principles of elasticity. The material of the plate is considered to be homogenous, isotropic and 
linear elastic. Effect of the difference in the type of far field load over the nature and the magnitude 
of stress fields is examined. Fundamental bi-harmonic equation involving Airy’s stress function is 
used. The stress function, determined by assuming it in the form of trigonometric series and by 
employing suitable mathematical substitutions, is made to satisfy the bi-harmonic equation. 
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Constants of the stress function are found from the boundary conditions. Stress concentrations at 
the surface of the hole and at locations away from the hole are obtained for all the investigated load 
cases. Criteria of failure and fatigue life estimations of the plate made of linear elastic or elastic 
plastic material are touched upon. Stress solutions in cases of bi-axial loads of unidentical 
magnitudes are also presented.   
 

 
Keywords:  Airy’s stress function; bi-harmonic equation; circular hole; discontinuity; stress 

concentration. 
 

NOTATIONS 
 
a  Radius of circular hole 
b  Far field location 
c Fatigue ductility exponent 
d Fracture strength exponent  
A-D  Constants  
 E  Modulus of elasticity 

SE  Secant modulus 

HCF High cycle fatigue 
I,J,K,L          Points of interest at surface of hole 
I^,J^,K^,L^   Points of interest away from hole  
LCF             Low cycle fatigue 
n Ratio of transverse and longitudinal 

far field stress 
N Fatigue life 

fN2  Reversals to failure  

q  Notch sensitivity index 
r                  Radial coordinate from hole centre 
R Stress ratio 
S Uniform monotonic stress at infinity 
 sc Elastic stress concentration factor 

fsc  Fatigue stress concentration factor 

psc  Plastic stress concentration factor  

S-N             Cyclic stress amplitude vs cycles at  
                    R =-1 
YS Yield strength 
UTS Ultimate tensile strength 
   Poisson’s ratio 
    Airy’s stress function  

  Angular coordinate w.r.t. hole axis  

x   Normal stress (in x direction) 

y
 

Normal stress (in y direction)  

a  Cyclic stress amplitude 








 

2
minmax σσ

   


f  Fracture strength 

 m
 Non-zero mean stress 

N  Fatigue strength at R = -1/Design 
cyclic stress amplitude 

xy   Shear stress in x-y coordinate 

system  

x , y  
Normal strains in x-y coordinate 

system 
   Total strain under monotonic load 

a  Cyclic strain amplitude 








E
aσ

  

               Range of cyclic strain ( a2 )    

f  Strain at fracture under monotonic 

load 


f  Fatigue ductility coefficient 

xy
 

Shear strain in x-y coordinate 

system 

r
 Radial stress (in r direction) 

  
Tangential stress (in direction) 

 r  
Shear stress in r- coordinate 

system 
 

1. INTRODUCTION 
 
An opening or a hole in the structure leading to 
the formation of a discontinuity due to sudden 
change in the geometry is well known. 
Discontinuity in any structure under the action of 
load gives rise to localised effect in the form of 
stress concentration [1]. Stress concentration 
acts as stress raiser that increases the 
magnitude of stress at the surface of the 
discontinuity and in its proximity. These highly 
stressed locations, where stress exceeds applied 
or far field stress manifold, act as favourable 
sites for initiation of damage that finally leads to 
the failure of the structure. Knowhow about the 
effect of discontinuity therefore assumes high 
practical significance in order to ensure safe 
operation of a discontinuous structure when 
pressed into service. Geometrical imperfections 
like sharp edges and corners in a machine part 
also act as discontinuities. Special attention is 
therefore given at the design stage of the 
component itself to avoid discontinuities by 
recommending polished surfaces and 
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replacement of edges by fillets. Likewise, 
components with fabrication defects are rejected 
for further use. In case discontinuities like holes 
are unavoidable in the structure, then the 
permissible load over the structure is selected 
such that the magnitude of maximum stress 
parameter at critical location is less than the 
allowable material property. Consequently, it can 
be inferred that allowable load over the structure 
with discontinuity is less than that over the one 
without discontinuity or in other words the 
discontinuity restricts the safe load that can be 
applied over the structure. Since the 
phenomenon of stress concentration is 
impossible to be captured by conventional 
strength of material solutions, elasticity based 
approach is often required to accurately predict 
the magnitude of stress fields and concentrations 
around the discontinuities. However, this method 
also has drawbacks. Although its procedure is 
generalized and is same for all the problems, an 
appropriate stress function that satisfies the bi-
harmonic equation and also at the same time 
fulfils the boundary conditions of a particular 
problem is difficult to find or guess. Besides, 
stress functions considerably vary from problem 
to problem and critically depend on the type of 
far field load and the body constraints. Moreover, 
with the advent of finite element technique that is 
also based on elasticity formulations but is much 
faster, reasonably accurate and commercially 
more viable, research on classical elasticity 
procedures has to some extent lost the 
momentum. Yet elasticity based solutions if 
available are considered to be highly accurate 
due to their closed form nature and are preferred 
over finite element solutions that being numerical 
in nature are approximate and at best can only 
be near to closed form solutions. As the result, 
researchers still continue to show interest in the 
field.        
 
Hitherto, discontinuities in structures have been 
extensively studied with the principles of 
elasticity. Initial work began with examination of 
discontinuities in isotropic bodies. Kirsch [2] in 
1898 obtained two dimensional stress solution 
around a single circular hole in homogenous and 
isotropic plate when loaded at infinity. Dumont [3] 
on similar lines determined stress concentration 
around an open circular hole in an infinite plate 
subjected to bending normal to the plane of the 
plate. Problems dealing with plate of finite 
dimensions containing multiple holes of different 
shapes were solved with conformal mapping by 
Muskhelishvili [4]. Reviews on the subject were 
later on performed by Savin [5] and Neuber [6] 

using complex variable techniques. Lekhnitskii 
[7] attempted series approach for similar 
problems. Bhargava et al. [8] prescribed normal 
and tangential tractions and radial coupled stress 
on circular boundary with complex variable 
approach to obtain the solution. Dhawan et al. [9] 
used finite element method to determine stress 
concentration caused by central openings of 
simple and complex geometry in rectangular and 
circular plates of finite size when subjected to 
tensile and compressive loads. They found 
rectangular plate to be better than circular one 
from stress point of view. They also observed 
that the opening of the shape of isosceles 
triangle resulted in lower stress concentration 
when compared to other geometries. Folias et al. 
[10] employed double fourier integral transform to 
Navier’s equation followed by contour 
integrations to obtain three dimensional stress 
field around a circular hole in the plate of 
arbitrary thickness.  
 
Numerous elasticity based investigations on 
stress fields around single/multiple discontinuities 
in homogenous or orthotropic and functionally 
graded material systems have also been 
reported. Zhang et al. [11] used Schwarz’s 
alternating procedure and Muskhelishvili’s 
complex variable functions to develop an iterative 
algorithm method for calculation of stress in an 
elastic solid of infinite extent containing multiple 
elliptic holes subjected to external loading at 
infinity. The algorithm was based on 
approximation of resultant force vector on each 
elliptical hole boundary as series of complex 
variables. Chen at al. derived [12] the null-field 
integral equation for a medium containing circular 
cavities with arbitrary radii and positions under 
uniformly remote shear by adopting Fourier 
series for boundary densities. Konish and 
Whitney [13] presented an approximate solution 
in the form of a polynomial for normal stress 
distribution adjacent to a circular hole in an 
infinite orthotropic plate. Yang et al. [14] studied 
two-dimensional stress distribution in a 
functionally graded plate with a circular hole 
under arbitrary constant loads. Stress distribution 
in the plate was derived using the method of 
piece-wise homogeneous layers and the theory 
of complex variable functions. Fan and Wu [15] 
examined the laminate weakened by multiple 
equal elliptical holes in series by treating it as an 
anisotropic, infinite, multiply connected thin plate. 
They used Faber series expansion and complex 
potential method to obtain stress concentration 
under the effect of arbitrary in-plane loads at 
infinity. Xu et al. [16] investigated a finite 
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composite plate with multiple elliptical holes by 
employing complex potential method in plane 
theory of elasticity for an anisotropic body, Faber 
series expansion, conformal mapping and least 
square boundary collocation techniques in 
computations. The effects of plate and hole 
sizes, layups, relative distance between holes 
and total number of holes and their locations on 
stress distribution were obtained. Mohammadi et 
al. [17] using Frobenius series approach 
obtained stress concentration factor around a 
circular hole subjected to uniform biaxial tension 
and pure shear in an infinite plate made of 
functionally graded material in which both 
Young’s modulus and Poisson’s ratio varied in 
the radial direction.   
 
Discontinuities have been examined by 
experimental and numerical methods too. Toubal 
et al. [18] used non-contact measurement 
method namely electronic speckle pattern 
interferometer (ESPI) to examine tensile strain 
field in a composite plate weakened by a circular 
hole. Results confirmed strain concentrations 
near the singularity. The experimental values 
were in good agreement with predictions from 
the theoretical model previously developed by 
Lekhnitskii's [7]. Rowlands et al. [19] performed 
finite element analysis to study anisotropic states 
of stress, strain and fracture of glass-epoxy plate 
containing a circular hole under uniaxial tension. 
Pan et al. [20] developed a three-dimensional 
boundary element method for stress analysis of a 
composite laminate with holes. Kubair and 
Chandar [21] numerically investigated the effect 
of material property inhomogeneity over stress 
concentration factor due to circular hole in 
functionally graded panels. Multiple 
isoparametric finite element formulation was 
used to simulate the elastostatic boundary value 
problem.  
 
Most of the structures in use are made of, single, 
homogenous and isotropic materials. Also a lot of 
practical engineering problems on ground are 
effectively handled by two dimensional 
approaches, although at the expense of slight 
accuracy, instead of resorting to complex three 
dimensional procedures. This becomes possible 
by adopting plane stress and plane strain 
considerations. Among various possible shapes 
of discontinuities that can exist in commercial 
structures, circular ones are quite common 
because of their ease of manufacture. From the 
point of view of micro-mechanics of failure 
especially in ductile materials that are used more 
in comparison with brittle counterparts, circular 

holes assume importance because voids that 
originate at the interfaces between foreign 
particles or impurities and parent grains at 
ultimate tensile strengths of ductile materials are 
circular in shape that later on grow and assume 
elliptical forms before coalescing with each other 
under the influence of strain localisation leading 
to the formation of a fracture inducing crack. 
Keeping the above in mind, the present paper 
systematically reviews the methodology to obtain 
stress field, with the help of basic principles of 
elasticity, around a circular hole in an isotropic, 
homogenous and linear elastic plate subjected to 
different types of, uniform, axisymmetric and 
non-axisymmetric monotonic loads at infinity viz. 
uni-axial tensile, equal bi-axial (tensile-tensile 
and tensile-compressive) and pure shear stress 
in two dimensional (2D) coordinate system. All 
stress solutions and associated formulations are 
derived ab initio. Fundamental bi-harmonic 
equation involving Airy’s stress function is used 
in the analysis. The stress function, determined 
by assuming it in the form of trigonometric series 
and by employing suitable mathematical 
substitutions, is made to satisfy the bi-harmonic 
equation. Constants of stress function are found 
from the boundary conditions. Stress solution is 
finally obtained from stress function that is free of 
unknowns. Results of stress concentration at the 
surface of the hole, near and at the locations 
away from the hole are obtained for all the 
investigated load cases. Variation in nature and 
magnitude of stress field around the hole due to 
different types of far field loads is illustrated and 
discussed. Criteria of failure under monotonic 
load and fatigue life estimations of the plate 
made of linear elastic or elastic plastic material 
are touched upon. Stress solutions in cases of bi-
axial loads of un-identical magnitudes are also 
presented. 
 
2.  METHODOLOGY  
 
The bi-harmonic equation is derived by 
combining compatibility, stress-strain constitutive 
and equilibrium equations and is same in both 
plane stress and plane strain conditions. Refer 
Appendix A. The equation in 2D cartesian (x-y) 
coordinate system is 

0 
yx

 
ydx















































2

2

2

2

2

2

2

2
where 

 
is the 

Airy’s stress function. Stress field in this 
coordinate system is defined as normal stresses, 

2

2

2

2

  ,
xy

yx














  and shear 
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stress,
yx

xy








2

 . Refer Appendix B. The 

stated stress field satisfies equilibrium conditions 

0  0; 



















yxyx

yyxxyx


 and 

therefore the stress field is valid. Refer    
Appendix C. Transformation of bi-harmonic 
equation from cartesian to polar 

)( r coordinate system results in 

0 
11

 
11

2

2

22

2

2

2

22

2


























































 rrrrrrrr
. 

Stress field in this coordinate system is defined 

as radial stress, 
2

2

2

11
















rrr
r , tangential 

stress, 
2

2

r





  and shear stress 






















 

rr
r

1
. Refer Appendix D. The stated 

stress field satisfies equilibrium conditions 

  0
21

  ;0
11   




















rrrrrr
rr

r
rr 


 










 and therefore the stress field is also valid. 
 

2.1 Derivation of Airy’s Function 
 
2.1.1 Axisymmetric load 
  
Since the magnitude of stress component is 

independent of θ  in axisymmetric load 

i.e. 












0


, bi-harmonic equation in polar 

coordinate system in such a case reduces to  
 
 
 

0  
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
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
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
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


























rrrrrr
  

or 0
1111

3

3

2

2

4

4




























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














rrrrrrrrrr


                (1) 

 
Simplification of second and fourth terms of Eq. (1) leads to:-II. 
 

rrrrrrrrrrrrrrrrrrrr 
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Using Eq. (2) and (3) in Eq. (1) results in  
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32
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On using mathematical substitutions,  log  ,  , e trdtedrer tt  , and employing chain rule of 

differentiation, we obtain the following  
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t
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Substitution of Eq. (5) to Eq. (8) along with ter  in Eq. (4) gives  
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Use of operator,
t

D



 , in Eq. (9) results in   0 44 234  DDD . Roots of complimentary 

function are D = 0, 0, +2, +2. 
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2.1.2 Non-axisymmetric load 
 
Bi-harmonic equation in non-axisymmetric load is rewritten as 
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Two types of stress functions,  , are assumed in the form of trigonometric series for such loads. They 

are discussed one by one as follows:- 
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On considering differential terms of L.H.S. of Eq. (14) one by one for simplification, we have     
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Substitution of Eq. (15) to Eq. (17) in Eq. (14) provides 
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On assuming, mrf  , we obtain  
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Substitution of above in Eq. (18) gives 
 

  0 9)1(9)2)(1(2)3)(2)(1(  mrmmmmmmmmmm  or 01644 234  mmmm  (19) 

 
Roots of Eq. (19) are m = 2, 4, -2 and 0 
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ii).  2sin)(rf . Its use in Eq. (13) results in 0 sin2 
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On considering differential terms one by one and repeating the procedure stated in Section b.1., we 
have     
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Substitution of Eq. (24) to Eq. (26) in Eq. (23) gives 02sin
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Eq. (27) is same as Eq. (18). Therefore, D
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3.  LOAD CASES 
 

A plate of large planer dimensions containing a 
circular hole of radius, a, is considered under the 
following types of, uniform, far field monotonic 
stress, S, (at infinity) to obtain 2D stress state at 

any point of co-ordinates r and   in the domain. 
The solutions are valid from the surface of the 

hole where 1
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r

 
to far field locations where 
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.  

 

3.1 Uni-axial Tensile 
   
Refer Fig. 1a). Tensile stress at infinity (say at r = 

b where b >> a) is 0 0,  ,  xyyx S   in 

cartesian coordinate system. On using 
transformation equations for obtaining far field 
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known stress state in cartesian coordinate 
system, we have  
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Far field stress can be split into axisymmetric and 
non-axisymmetric components as under that act 
as boundary conditions:- 
 

a) 0 ;
2

 ;
2

   rr
SS  (Axisymmetric)  

 

b)   2sin
2

 ;2cos
2

 ; 2cos
2

SSS
rr   

(Non-axisymmetric) 
 
3.1.1 Solution for axisymmetric load at a) 
 

Stress solution for such load is given by Eq. (10) 
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relog  that makes the solution infinite which is 

not true. Hence constant D has to be equal to 0. 

Stress solution then assumes the following form, 

C
r

B
r 2

2
 ; C

r

B
2

2
 ; 0r . The 

solution involves two unknown constants, B and 
C. Therefore two boundary conditions are 
required. Using previously stated boundary 

conditions
2

 i)
S

r   at r = b and ii)
2

 
S

 at r = 

b results in C
b

BS
2

2 2
 and C

b

BS
2

2 2
 that 

are contradictory to each other. Hence new 

boundary conditions 
2

 i)
S

r   at r = b 

ii) 0 r at r = a due to free surface of the hole 

are tried. The condition ii) also takes into account 
the presence of the hole. They result in 

C
b

BS
2

2 2
 ; C

a

B
20

2
 , solution of which 

gives 
 

2
12

)(2

2

2

2

2

22

22 Sa

b

a

Sa

ba

Sba
B 



















 since ab   

or 0
b

a
;

42 2

S

a

B
C    

 

Stress solution without constants is 

22 2

2 S

r

Sa
r  ;

22 2

2 S

r

Sa
 ; 0r    (32) 

The condition,
2

S
  at r = b, is satisfied in the 

solution. Hence the solution is valid.   

 

3.1.2 Solution for non-axisymmetric load at b)   

 
Stress function,  2cos)(rf , is tried for which 

stress solution is given by Eq. (20) to Eq. (22). 
The solution involves four constants A-D. Use of 
the following four boundary conditions 

 

  at 0 iv)   at 2sin
2

 iii)   at 2cos
2

 ii)   at 2cos
2

 )i arbr
S

br
S

br
S

rrr     results in 
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2

46
2

24

S

b

D

b

C
A 








 ;

2

6
122

4
2 S

b

C
BbA 








 ; 

2

26
62

24
2 S

b

D

b

C
BbA 








  0

46
2

24











a

D

a

C
A     (33) 

 

Since variable   does not exist in Eq. (33), selection of stress function,  2cos)(rf , is justified. 

For 0
b

a , the solution provides constants as 
2

 ,
4

 0, ,
4

24 Sa
D

Sa
CB

S
A  . Stress solution 

without constants is  
 

 2cos
2

4

6

2 2

2

4

4
















r

Sa

r

SaS
r

;   2cos
4

6

2 4

4
















r

SaS    2sin
4

6

2 2

2

4

4
















r

Sa

r

SaS
r

         

(34) 

 

Final stress solution is obtained by superimposing individual solutions of case a) and case b) at Eq. 
(32) and Eq. (34) respectively and is as follows:- 
 

 2cos
2

4

6

222 2

2

4

4

2

2































r
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r

SaSS

r
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r

;   2cos
4

6

222 4

4

2

2




















r

SaSS

r

Sa    

  2sin
4

6

2 2

2

4

4
















r

Sa

r

SaS
r

                                (35) 
 

At 1
a

r
, 0r ,  2cos2SS  , 0 r   

 

At 
a

r
, ,2cos

22


SS
r    2cos

22

SS
 ,   2sin

2

S
r 

 
 

3.2 Bi-axial (Tensile-tensile) 
 

Refer Fig. 1b). Equal and bi-axial tensile stress at infinity (r = b) is 0 ,  ,  xyyx SS  . On using 

transformation equations, we have  
 

  02coscossin

cossin2sincossin

 sincos2sinsincos

2222

2222

















xyxyr

xyyx

xyyxr

SSS

SSS

                                                  (36) 

 

This is an axisymmetric case for which the stress 
solution is given by Eq. (10) to Eq. (12). On 
adopting D = 0 as in Section 3.1 a), we have 

C
r

B
r 2

2
 ; C

r

B
2

2
 ; 0 r . Using 

the boundary conditions Sr  i)  at r = b and 

ii) 0r at r = a results in  
 

C
b

B
S 2

2
 ; C

a

B
20

2
                      (37) 

 

Solution of Equations at (37) provides constants 
as  

Sa
ba

Sba
B 2

22

22

)(



 for ab  ; 

22 2

S

a

B
C 

 
Stress solution without constants is  

 

S
r

Sa
r 

2

2

 ; S
r

Sa


2

2

 ; 0 r        (38) 

The condition, S  at r = b, is satisfied in the 

solution.  
 

At  1
a

r
, 0r , S2 , 0 r .  

 

At  
a

r
, Sr  , S , 0 r . 

 
 

3.3 Bi-axial (Tensile-compressive) 
  
Refer Fig. 1c). Equal and bi-axial stress state 
with opposite sense at infinity (r = b) is 

0 ,  ,  xyyx SS  .On using 

transformation equations, we have  
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  









2sincossin)(2coscossin

2coscossin2sincossin

2cos sincos2sinsincos

2222

2222

SSS

SSS

SSS

xyxyr

xyyx

xyyxr







                                   (39) 

 
This is a non-axisymmetric case for which stress function is  2cos)(rf is tried. Use of the following 

boundary conditions  
 

arbrSbrSbrS rrr   at 0  iv)   at 2sin iii)   at 2cos ii)   at 2cos i)    
 

in the stress solution given by Eq. (20) to Eq. (22) results in following equations which are free of 
variable, . 
 

S
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b

C
A 
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
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
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b
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


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2
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


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a

D

a

C
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Solution of Equations at (40) for 0
b

a
 results in constants as SaD

Sa
CB

S
A 2

4

 ,
2

 0, ,
2

  

Stress solution without constants is  
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4
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
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





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r
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r
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(41) 

 

At 1
a

r
, 0r ,  2cos4S , 0 r   

 

At 
a

r
,  2cosSr  ,  2cosS ,   2sinSr   

 

3.4 Shear  
 

Refer Fig. 1d). Shear stress at infinity (r = b) is Sxyyx    ,0  ,0 . On using transformation 

equations we have  
 

  








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S

S

S
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xyyxr
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
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                                                                   (42) 

 

Stress function,  2cos)(rf , is again tried the stress solution for which is given by Eq. (20) to Eq. 

(22). Use of the following boundary conditions 
 

arbrSbrSbrS rrr   at 0  iv)   at 2cos iii)   at 2sin ii)   at 2sin i)    
results in  
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Zoomed view at point M  
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                           (a)  
           Uni-axial stress at infinity 
 

                                 (b) 
 Bi-axial (tensile-tensile) stress at infinity 

                         (c)  
Bi-axial (tensile-compressive) stress at infinity 

                 (d)  
Shear stress at infinity 

         Fig. 1. Types of investigated loads 
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Since Eq. (43) involve variable , constants A-D that are independent of   cannot be obtained. 

Hence stress function,  2cos)(rf , is invalid in this case. Therefore stress function,  2sin)(rf , 

is chosen for which stress solution is given by Eq. (28) to Eq. (30). Using stated boundary conditions 
results in the following equations that are independent of   
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Eq. (44) are same as Eq. (40). The constants already obtained 

are SaD
Sa

CB
S

A 2
4

 ,
2

 0, ,
2


 

 

Stress solution without constants is  
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(45) 

 

At 1
a

r
, 0r ,  2sin4S , 0 r   

 

At 
a

r
,  2sinSr    2sinS ,   2cosSr   

 

4.  RESULTS AND DISCUSSION  
 

Elastic stress concentrations denoted 
by  rsc  ,  sc ,   rsc  are defined as 

SSS
rr  

 and ,  in case of radial, tangential and 

shear stress respectively. Positive values 
indicate tensile while negative values denote 
compressive stress. Key points of interest are I, 
J, K and L at the surface of the hole and I^, J^, 
K^ and L^ at other radii. 

xyryxr    ,,  at points I, I^ 

.)deg 0(   and K, K^ .)deg180(   whereas 

yxrxyr    ,,
 

at points J,J^ 

.)deg 90(   and L,L^ .)deg 270(  . Magnitude 

of stress concentration is obtained at r = a, r = 
1.5a, r = 2a, r = 3a, r = 4a, r = 5a and r = 6a in 
each load case with the help of presented stress 
solutions in Section 3. r = a represents the 
locations at the surface of the hole, r =1.5a 
adjacent to the hole and r = 6a away from the 
hole. 
 

Refer Fig. 2a) for results of Case 3.1. Tangential 
stress,  , fluctuates between negative and 

positive values at all radii. At the surface of the 
hole, it is compressive at I and K with its value 
equal to the applied stress while it is tensile at J 
and L with its value three times the applied 
stress.   

drops at positions away from the 

surface of the hole with compressive state 

changing to tensile state, its magnitude finally 
approaching zero at I and K and applied stress at 
J and L. Radial stresses, r , is zero at all the 

angles on the surface of the hole and is tensile at 
all other radii. Adjacent to the hole, r  is lower 

at I^ and K^ and higher at J^ and L^. Away from 
the hole, the trend reverses with the value higher 
at I^ and K^ and lesser at J^ and L^. r  finally 

approaches applied stress at I^ and K^ and zero 
at J^ and L^. Shear stress,  r , is also zero at all 

angles on the surface of the hole, fluctuates 
between negative and positive values at other 
radii with the values zero at I^, J^, K^ and L^ at 
each radius. It finally approaches 0.5 times the 
value of applied stress away from the hole, 
compressive at  of 45 deg. and 225 deg. and 

tensile at  of 135 deg. and 315 deg.  
 
Refer Fig. 2b) for results of Case 3.2.  Being an 

axisymmetric case,   and r  are tensile and 

equal at all the angles on a particular radius 
while  r is zero throughout the domain. At the 

surface of the hole,   
is twice the applied 

stress while r  is zero.   drops while r  

increases at locations away from the hole with 
both finally approaching the value of applied 
stress.  
 
Refer Fig. 2c) for results of Case 3.3. Tangential 
stress,  , fluctuates between negative and 
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positive values at all radii. At the surface of the 
hole, it is compressive at I and K with its value 
four times the applied stress while it is tensile at 
J and L with its value again four times the applied 

stress. Magnitude of   drops at locations away 

from the surface of the hole and finally 
approaches the value of applied stress, 
compressive at I^ and K^ and tensile at J^ and 
L^. Radial stresses, r , is zero at all the angles 

on the surface of the hole and fluctuates between 
positive and negative values at other radii.  
Adjacent to the hole, r  

is compressive at I^ 

and K^ and tensile at J^ and L^. Away from the 
hole, the trend reverses, r  being tensile at I^ 

and K^ and compressive at J^ and L^ with the 
magnitudes finally approaching the value of 
applied stress. Shear stress,  r , is zero at all 

the angles on the surface of the hole and 
fluctuates between negative and positive values 
at all other radii with the values at I^, J^, K^ and 
L^ equal to zero at each radii. Far from the hole, 

 r  
approaches the value of applied stress, 

compressive at  of 45 deg. and 225 deg. and 

tensile at  of 135 deg. and 315 deg.  
 

Refer Fig. 2d) for results of Case 3.4. Tangential 

stress,  , fluctuates between negative and 

positive values at all radii with its value equal to 
zero at I,I^ J,J^, K,K^ and L,L^. Its magnitude is 
maximum at the surface of hole, four times the 
applied stress, compressive at  of 45 deg. and 

225 deg. and tensile at  of 135 deg. and 315 
deg. It approaches applied stress, away from the 
hole, in similar form at stated angles. Radial 
stress, r , is zero at all the angles on the 

surface of the hole, fluctuates between positive 
and negative values at other radii with values at 
I^, J^, K^ and L^ equal to zero at each radius. Its 
trend away from the hole reverses to that at 
adjacent to the hole with the value approaching 
applied stress, tensile at  of 45 deg. and 225 

deg. and compressive at  of 135 deg. and 315 

deg. Shear stress,  r , also is zero at all the 

angles on the surface of the hole and fluctuates 
between negative and positive values at all radii. 
The value finally approaches applied stress at 
locations away from the hole, tensile at I^ and K^ 
and compressive at J^ and L^.  
 

4.1 Failure Criteria and Fatigue Life 
Estimations 

 

Maximum stress that is tangential in nature 
develops at the surface of the hole in all the 

discussed cases. The critical points with tensile 
stress are J and L in Case 3.1, all the points 
including I, J, K and L in Case 3.2, points J and L 
in Case 3.3 and points at angles of 135 deg. and 
315 deg. in Case 3.4. Since the shear stress is 
zero at critical points in all the cases, tangential 
stress acts as the principal stress. Other two 
principal stresses, one of them being the radial 
stress, are equal to zero. Conditions for safe 
design at stated critical points under monotonic 
loads along with estimations of fatigue life of 
plate in HCF and LCF regimes are summarised 
as follows:- 
 
4.1.1 Monotonic load 
  
4.1.1.1 Brittle material (linear elastic) 
 
Using Rankine’s theory i.e. maximum principal 
stress should be less than the ultimate tensile 
strength of the material.  
 

Case 3.1: UTSS 3 , Case 3.2: UTSS 2 , Case 

3.3: UTSS 4 , Case 3.4: UTSS 4  
 
4.1.1.2 Ductile material (elastic-plastic)  
 
Two cases exist:-  
 
a) When stress field at the critical points is in 
elastic state i.e. YSSsc  )( .  

 
Using Tresca theory i.e. maximum shear stress 
should be less than the shear strength of the 
material  
 

Case 3.1:
22

03 YSS








 
 or 3S < YS, Case 3.2: 

YSS 2 , Case 3.3: YSS 4 , Case 3.4: 

YSS 4  
 
Using distortion energy theory i.e. von-Mises 
stress should be less than the yield strength of 
the material  
 

Case 3.1:        YSSS  222 000303
2

1
 or 

3S < YS, Case 3.2: YSS 2 , Case 3.3: YSS 4 , 

Case 3.4: YSS 4   

 
b) When stress field at the critical points is in 
plastic state i.e. YSSsc  )( . 

 
 



 
 
 
 

Bhat and Ukadgaonker; BJAST, 9(4): 388-410, 2015; Article no.BJAST.2015.279 
 
 

 
402 

 

  
(A) 

 
VARIATION OF STRESS CONCENTRATION VS ANGLE AND 

DISTANCE FROM HOLE IN CASE 3.1 
 

(B) 
 

VARIATION OF STRESS CONCENTRATION VS R/A  

IN CASE 3.2 
 

 
 

(C) 
 

VARIATION OF STRESS CONCENTRATION VS ANGLE AND 
DISTANCE FROM HOLE IN CASE 3.3 

(D) 
 

VARIATION OF STRESS CONCENTRATION VS 

ANGLE AND DISTANCE FROM HOLE IN CASE 3.4 

 
Fig. 2. Stress concentration plots
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Plastic stress concentration factor that is defined 

by 
E

E
scsc s

p )1(1   is used in such a case. 

psc  is obtained in each of the cases with known 

sc  values. psc  is less than sc  due to stress 

distribution caused by material yielding. Total 

strain,  , corresponding to stress value )( Sscp   

on  elastic-plastic curve of the material should be 
less than strain at fracture or  < f  for safe 

design. 
 

4.1.2 Cyclic load 
 

In cyclic load, sc is replaced by fatigue stress 
concentration factor or fatigue strength reduction 

factor, fsc . Since only one principal stress exists 

at critical points in all the cases, fatigue at these 
points is of uni-axial type.  
 

4.1.2.1 High cycle fatigue (HCF) i.e. when at 
critical point, a < YS  

 

fsc  in very HCF i.e. in endurance or fatigue limit 

cases involving infinite fatigue life is obtained 
from Neuber’s equation, 1)1(  scqscf . Notch 

sensitivity index, q, depends upon the material 
grain size and contour radius of the discontinuity. 
Magnitude of fsc  in such cases is reported to be 

of the order of 2.3-2.5. In cases of HCF involving 
cyclic stress level above fatigue limit but less 
than the material yield strength, fsc  is found 

from experimentally obtained S-N curves ( R = -1 

where 
max

min

σ

σ
R  ) of specimens with and without 

the type of the discontinuity under consideration.    
 

4.1.2.1.1 Ductile material 
 

When mean stress of applied cycles is zero, i.e. 
R = -1, fatigue life, N, corresponding to applied 
cyclic stress amplitude, fa sc , is directly read 

from experimentally obtained S-N curve of the 
material at R = -1. When mean stress is non-
zero, modified S-N curves are used. For 
example, Soderberg’s criterion, 

1


YS

sc m

N

fa 



  ( fsc  is multiplied to only 

alternating component) provides the value of 
design cyclic stress amplitude, N . Fatigue life, 

N, corresponding to N  is obtained from S-N 

curve at R = -1.   

4.1.2.1.2 Brittle material 
 

For zero mean stress, the procedure remains 
same as that for ductile material. For non-zero 
mean stress, Goodman’s criterion for instance, 

1





UTS

scsc fm

N

fa 




 provides the value of 

N  ( fsc  is multiplied to both alternating and 

mean components). Fatigue life corresponding to 

N  is read from S-N curve at R = -1.  

 

In both cases 4.1.2.1.1 and 4.1.2.1.2, modified 
Goodman’s relations that are widely used in the 
industry give better results than stated criteria.  
 
4.1.2.2  Low cycle fatigue (LCF) i.e. when at 

critical point, 
E

YS
a    

 
Discontinuities are experimentally found to have 
minimal effect on LCF behaviours. Many 
materials exhibit fsc  very near to unity at LCF 

lives of 10
3 

to 10
4 

cycles and less. Strain 
amplitudes at critical points may be assumed 
similar to far field or nominal strains. The 
conventional relationship governing N  curve 
in LCF with use of nominal 

values,   c
ff

d
f

f )N(N
E

22
2




 


, provides the 

approximate number of reversals to failure, fN2 .  

 
As detailed investigation, Neuber’s rule for 
notches and Ramberg Osgood stress-strain 
equation can be used at critical points to obtain 
the parameters of interest in Cases 4.1.1.2 b) 
and 4.1.2.2 that involve plasticity at critical 
points.        
          
5. SPECIAL CASES  
 
Bi-axial loads can be un-identical in magnitude. 
Two cases where magnitude of loads can be 
dissimilar in longitudinal and transverse 
directions are discussed as under:-  
 
5.1 Tensile-tensile  
 
If 1    where0 ,  ,  nnSS xyyx 
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  









2sin)1(
2

S
2coscossin

2cos)1(
2

S
)1(

2

S
cossin2sincossin

2cos)1(
2

S
)1(

2

S
 sincos2sinsincos
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n

nnnSS
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
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                          (46)

 

 
Far field load can be split into axisymmetric and non-axisymmetric components as 
  

a) 0 );1(
2

 );1(
2

   rr n
S

n
S

 (Axisymmetric)  

 

b)   2sin)1(
2

 ;2cos)1(
2

 ; 2cos)1(
2

n
S

n
S

n
S

rr   (Non-axisymmetric) 

 
For axisymmetric case, the solution is obtained on replacing S  by )1( nS  in Eq. (32) whereas for non-

axisymmetric case, the solution is obtained on replacing S  by )1( nS  in Eq. (34). Final stress solution 

is obtained by superimposing individual solutions as follows:- 
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If 1    where0 ,  ,  nSnS xyyx 

  
 

  


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
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                          (48) 

 
Far field load can be split into axisymmetric and non-axisymmetric components as  
 

a) 0 );1(
2

 );1(
2

   rr n
S

n
S

 (Axisymmetric)  

 

b)   2sin)1(
2

 ;2cos)1(
2

 ; 2cos)1(
2

 n
S

n
S

n
S

rr  (Non-axisymmetric) 

 

For axisymmetric case, the solution is obtained on replacing S  by )1( nS   in Eq. (32) whereas for 

non-axisymmetric case, the solution is obtained on replacing S  by )1( nS in Eq. (34). Final stress 

solution is obtained by superimposing individual solutions as follows:- 
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5.2  Tensile-compressive 
 
 If 1    where0 ,  ,  nnSS xyyx 
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Far field load can be split into axisymmetric and non-axisymmetric components as  
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For axisymmetric case, the solution is obtained on replacing S  by )1( nS  in Eq. (32) whereas for non-

axisymmetric case, the solution is obtained on replacing S  by )1( nS  in Eq. (34). Final stress solution 

is obtained by superimposing individual solutions as follows:- 
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If 1    where0 ,  ,  nSnS xyyx 

  
 

  









2sin)1(
2

S
2coscossin

2cos)1(
2

S
)1(

2

S
cossin2sincossin

2cos)1(
2

S
)1(

2

S
 sincos2sinsincos

2222

2222

n

nnSnS

nnSnS

xyxyr

xyyx

xyyxr







                         (52) 

 
Far field load can be split into axisymmetric and non-axisymmetric components as  
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For axisymmetric case, the solution is obtained on replacing S  by )1( nS   in Eq. (32) whereas for 

non-axisymmetric case, the solution is obtained on replacing S  by - )1( nS  in Eq. (34). Final stress 

solution is obtained by superimposing individual solutions as follows:- 
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Equations of failure and fatigue life are written in 
similar manner as discussed previously in 
Section 4.1 for identical loads in longitudinal and 
transverse directions.     
 
 6.  CONCLUSION 
 
A comprehensive procedure to obtain closed 
form solutions of radial, tangential and shear 
stresses that develop in an infinite homogenous, 
isotropic and linear elastic plate with a circular 
hole under the action of various types of, 
uniform, axisymmetric and non-axisymmetric 
monotonic loads at infinity viz. i) Uni-axial tensile 
ii) Equal bi-axial (tensile-tensile) iii) Equal bi-axial 
(tensile-compressive) and iv) Pure shear stress 
is reviewed with the basic principles of elasticity. 
Fundamental bi-harmonic equation involving 
Airy’s stress function is used in the analysis. 
  
Stress near the hole is found to exceed the far 
field stress in each of the load cases due to the 
presence of discontinuity. Maximum stress in all 
the cases is normal and tangential in nature and 
is found to develop at the surface of the hole that 
gradually recedes and approaches far field stress 
state at locations far away from the hole. The 
nature and the magnitude of stress around the 
hole is influenced by the type of far field load and 
therefore differs in each load case. Maximum 
tangential stress is tensile and three times the 
applied stress in i), tensile and two times the 
applied stress in ii), four times the applied stress 
that assumes both tensile and compressive 

natures in iii) while the values in iv) are similar to 
that in iii) but locations of maximum stress differ. 
Monotonic and fatigue behaviour of plate made 
of linear elastic or elastic plastic material 
depends upon stress concentrations at critical 
points.   
 
The present approach is applied to examine bi-
axial loads of unidentical magnitudes as well. 
Since the paper investigates all types of basic 
loads that can possibly act over the structure, the 
cases involving inclined loads can be 
conveniently handled by resolving the loads into 
either of the investigated cases followed by 
superimposition of individual stress solutions to 
obtain the final solution. Similarly, solution of the 
cases involving both normal and shear loads can 
be found by superimposing the respective 
solutions.    
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