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Abstract

To study the relationship between the linear statistical models we used methods of linear algebra,

Hilbert spaces and statistics. It was found that there is a linear relationship between linear

statistical models which is expressed by a matrix equality. Several corollaries are derived and

discussed, and a new interpretation is proposed for the parameters of linear statistical model. The

given relation between the linear statistical models may be useful for both theoretical analysis of

statistical models and interpretation of applied statistical models, in particular, to analyze the

impact of confounders.

Keywords: Linear statistical model; dependency; matrix equality; interpretation of linear model
parameters; Cochran’s multivariate formula.
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1 Introduction

Linear algebraic methods have long played an essential role in the theory and teaching of statistics.
The concepts in multivariate statistical analysis are nearly impossible to express without employing
matrix notation and proper linear algebraic methods. These methods are especially important in
branches of theoretical and applied statistics that exploit linear constructions to study empirical
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phenomena, and the theory of linear statistical models is therefore central to these areas of statistics
[1]-[4].

Although the theory of linear statistical models was initially developed as a direct generalization
of linear regression, its use was soon extended to a broader range of statistical methods, such
as ANOVA and ANCOVA. Nevertheless, regression persists as the prototypical example of linear
statistical models, and linear statistical models are sometimes referred to as general regression
models [5]. The majority of the concepts and methods of linear statistical modelling appeared
first in the context of regression and were later reformulated within a more general linear theory
framework.

Let us first review some of the basic notions of linear statistical modelling [1]-[4]. The general
equality specifying the linear model can be expressed as follows

Y = Xβ + ε, (1.1)

where Y = [y1, y2, . . . , yn]′ is an n×1-vector of observations of the dependent variable (the response
Y ), X = [xij ]n×(p+1) is the matrix of observed values of the predictors (the design or model matrix),
β is a (p+ 1)× 1-vector of the model parameters, and ε is an n× 1-vector of unobserved residuals.
The model matrix X can be presented as a row of columns xj = [xij ]n×1 of the observed values of
the predictors X1, . . . , Xp, that is X = [1,x1, . . . ,xp].

For instance, if the design matrix is

X =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

...
...

1 xn1 xn2 · · · xnp

 and β =


β0
β1
...
βp

 ,
then the linear model represents a linear regression with p predictors, assuming that xi0 = 1 :

yi =

p∑
j=0

βjxij + εi

Note that a multiple regression may include nonlinear dependence on predictors; e.g., if xij = xji ,
then one obtains polynomial regression: xj = xj , j = 0, 1, . . . , p.

The basic idea of linear modelling was adopted long ago in applied statistics; the first linear models
were presented in geometric terms by Gauss and Legendre. The methodology of linear modelling
was formalized in the middle of the twentieth century. The generalized linear model was proposed in
1972 by Nelder and Wedderburn [6], providing a unifying framework for many of the most commonly
used statistical techniques (see, for example, [7] and [8]).

The least squares method provides a natural way to determine (or estimate) the values of the
unknown parameters of a linear model. In this method, the sum over all observations of the
squared errors

arg min
β0,β1,...,βp

n∑
j=0

(
yj −

p∑
i=0

βixij

)2

= arg min
β0,β1,...,βp

(Y −Xβ)′ (Y −Xβ) , (1.2)

is minimized. A common assumption employed in the linear model is that the errors are unbiased,
E[ε] = 0. Without this assumption, estimates obtained for the parameters are only optimal in
the least squares sense, and form the best linear predictor (BLP) or best linear estimator (BLE).
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The BLP have many applications in theoretical statistics, but are less widely used than the best
linear unbiased predictor (BLUP or BLUE) in applications. The BLUP is in fact equivalent to
regression analysis for a normal (Gaussian) population [9]-[11]. For instance, in [10] and [12], [13]
and some other books, regression is defined as the best linear predictor on the basis of a given set of
predictors, rather than as a conditional response distribution with respect to this set of predictors.
Hereafter, we will assume only that the model is linear and adopt no assumptions regarding the
probability distributions of given variables and errors. In this case, the linear model expresses a
linear relationship between the response Y and predictors {X0 = 1, X1, . . . , Xp}, and is not related
to the accuracy or power of the relationship.

2 Background and Related Studies

The problem of the relationship between models with different sets of predictors is not often
discussed in the many books devoted to the general linear model and its applications (see, [1]-
[3], [14], [15]). This problem is easily solvable if the predictor sets are connected by a linear
nonsingular transformation (see lemma 5.2.1 below). The problem of determining new regression
coefficients when independent variables are added or omitted was posed by Cochran in 1938 for a
single regressor [16], and was later studied in the general case in [17]. The formulae obtained for the
new coefficients used the observed values of the regressors and response, which was not convenient
for establishing the relationships between the coefficients of the considered models. These formulae
are presented in [18]-[20].

Explicit expressions for the dependencies between the parameters of regression models (for continuous
variables) were obtained in [9] and [21] as a collateral application of the matrix SWEEP-operator.
However, the proof of the formula is based on a highly specialized result from linear and computational
algebra. In addition, the variables must be transformed so that they are mean-centered to apply
SWEEP-operator, excluding the intercept term from the consideration in the regression model.

The explicit formulae under consideration have therefore had few applications, although they have
been known for a long time. They may be of use in comparisons of regression models of different
dimensions, but most authors have employed alternative methods to solve this problem (see, e.g.,
recent articles [22]-[27]. The theory of hierarchical (nested, multilevel) linear models is another area
in which the above-mentioned formulae may be useful (see, [28] and [29]), but they have not yet
been applied in it.

The need to study the relationships between regression models has arisen in biostatistics and
epidemiology, primarily in the context of accounting for confounders [30], [31]. In general, the
problem may be presented as follows. There is a set of independent variables that have an influence
on the response and may be correlated with one another. A researcher is usually interested in just
a few variables, often one or two, which influence the response that he or she wishes to study. The
nature of individuals involved in an experiment may require certain variables other than the main
variable(s) under study to be accounted for. Examples in medicine and epidemiology include the age
and gender of the subjects (among others specific characteristics such as their ethnicity, personality
traits, and abilities as well as the experimental conditions). Such mandatory independent variables
are called confounders in epidemiology because they confound the influence of the main variable(s).
A multiple model is therefore required, even though the researcher may only be interested in a few
main variables. In implicit form, we have two models that must be compared, with and without
confounders. For further discussion on confounders and their treatment, the reader is referred to
[30]-[37].

The most recent direct application of the expressions related to Cochran’s formulae appears in
the context of the triangular systems theory [38] -[41]. Vellaisamy and Vijay have employed these
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expressions to study the collapsibility of regression coefficients [42], see also [33]; and in [43], they
were used to estimate the sensitivity of the confidence limits on the regression coefficients to the
omission of a confounder.

In this paper, we do not consider specific statistical aspects of the dependency of linear statistical
model parameters on different sets of predictors. Instead, we concentrate on the algebraic relationship
between the parameters of various linear statistical models. An elementary proof of the theorem
describing this dependence is obtained (Theorem 4.1). In contrast to other analogous statements, we
work with original variables rather than mean-centered ones, so that the intercept terms are included
in the consideration as well. We derive several corollaries of the theorem that have significance in
their own right; one of them proposes a new interpretation of linear model parameters regardless
of the correlation among the predictors.

3 Basic Notation

Let us consider a linear model with a single response Y and p predictors X1, . . . , Xp

Y = Xpβp + ε, (3.1)

where the matrix Xp has dimensions n× (p+ 1). From the set of all predictors, we choose a subset
X0, X1, . . . , Xq, q < p and consider the corresponding linear model

Y = Xqαq + ε, (3.2)

where Xq is of order n × (q + 1). The model (3.2) may be considered to be obtained from model
(3.1) by excluding p − q predictors. Conversely, the model (3.1) is obtained from (3.2) by adding
predictors Xq+1, . . . , Xp. The main goal of this paper is to prove Theorem 4.1 (below) and illustrate
some of its applications. Theorem 4.1 states that there is a linear relationship between models (3.1)
and (3.2) in terms of their parameters (i.e. their estimates) rather than the design matrix. The
suggested proof is elementary and accessible to non-specialists in linear algebra. Let us introduce
the auxiliary linear models

xi = xqγiq + ε, (3.3)

where
γiq = (γi0, γi1, . . . , γiq)

′.

The matrices Bp and Aq consist of estimates of the model parameters of (3.1) and (3.2), respectively.
The estimates for the parameters of model (3.3) are contained in the matrix Cnp. Explicitly, these
matrices are given by

Aq = [a0, a1, a2, . . . , aq]1×(q+1) (3.4)

Bp = [b0, b1, b2, . . . , bp]1×(p+1) (3.5)

Cnp = [cij ](p+1)×(q+1), 0 ≤ i ≤ p, 0 ≤ j ≤ q, (3.6)

assuming that cij = δij for i, j ∈ {0, 1, . . . , q}.

The estimates are obtained using the least squares method, by minimizing the sum of the squared
errors over the observations for each linear model. For model (3.1), this problem has been stated
above in (1.2). The minimization problem for the other models can be similarly formulated.

Solutions to the optimization problem (1.2), which are estimates of the parameters βp, αq, γiq,
may be found from the following systems of linear equations

Bp ·XXp = YXp (3.7)
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Aq ·XXq = YXq, (3.8)

(ci0, ci1, . . . , ciq) ·XXq = XXiq, (3.9)

where the index q denotes the use of the chosen set of predictors {X0, X1, . . . , Xq}, and the following
matrices have been introduced (where a bar denotes the mean value):

XXp =
(
XiXj

)
(p+1)×(p+1)

i, j = 0, 1, . . . , p

XXq =
(
XiXj

)
(q+1)×(q+1)

i, j = 0, 1, . . . , q

YXp =
(
Y Xi

)
1×(p+1)

, i = 0, 1, . . . , p

YXq =
(
Y Xi

)
1×(q+1)

, i = 0, 1, . . . , q

XXiq =
(
XiXj

)
1×(q+1)

, i = 0, 1, . . . , p, j = 0, 1, . . . , q

4 Main Theorem

Let us now state and prove the main theorem.

Theorem 4.1. The following equality holds:

aj =

p∑
i=0

bicij , j = 0, 1, . . . , q, (4.1)

or
Aq = Bp ·Cpq. (4.2)

Proof. Let H denote a real Hilbert space and Hn its n-dimensional subspace, and Hk-k-dimensional
subspace in Hn, k ≤ n. There are the following projection operators: Pn is a projection from H
onto the space Hn, Pk is a projection from H onto the space Hk, and Pn,k is a projection from Hn
onto its subspace Hk. Then for any x ∈ H the difference x− Pnx ⊥ Hn. Thus, x− Pnx ⊥ Hk and

Pkx = Pk ((x− Pnx) + Pnx) = Pk (x− Pnx) + PkPnx = PkPnx = Pn,kPnx

which proves the theorem. Indeed, let us take H = Hn to be the span of vectors x0,x1, . . . ,xp, i.e.
Hn = 〈x0,x1, . . . ,xq〉, and Hk = 〈x0,x1, . . . ,xq〉, so we have n = p + 1, k = q + 1. Then for any
x ∈ H the following equalities hold

x =

p∑
i=0

bixi, Pkx =

q∑
j=0

ajxj , Pn,kxi =

q∑
j=0

cijxj ,

which result in equality (4.2). In these notations, the equality (4.2) can be presented as the
commutative diagram

H H

Pn

y yPk

Hn −−−−−→
Pn,k

Hk

that is
Pk = Pn,k ◦ Pn
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Remark 4.1. It is evident that Theorem 4.1 holds regardless of the order of the predictors in the
selected set. One just needs more complex notation for the indices. Moreover, Theorem 4.1 remains
true for a multivariate response (Y1, Y2, . . . , Yk), if we employ component-wise least squares. In the
next remark, we use such notation to introduce the general form of Theorem 4.1.

Remark 4.2. In the following, we sometimes use more compact notations for equality (4.2). We
owe these notations to Yule and they are widely used in research on regression analysis (see, for
instance, [41], [44], [45]). In general, a set of random variables (Y1, Y2, . . . , Ym) can be partitioned
into disjointed sets denoted by a, b and c. The coefficients of the BLE of system a on system b
are denoted by Πa|b and the notations Πa|bc and Πbc|b are defined similarly, where bc is a union
of systems b and c. For all cases, the BLP includes the constant predictor X0 = [1, 1, . . . , 1]′. It
is straightforward to show that Theorem 4.1 holds for the multivariate response Ya = {Yi}i∈a as
well. The equality (4.2) can therefore be expressed as follows

Πa|b = Πa|bcΠbc|b.

The matrix Πa|bc can be expressed as the concatenation of the two submatrices generated by systems
b and c:

Πa|bc =
[
Πa|b.c Πa|c.b

]
,

where Πa|b.c is the matrix of the coefficients from Πa|bc that are multiplied by the variables from b
in the linear model with the complete set of predictors, bc. The matrix Πa|c.b has similar definition.
It is readily understood that matrix Πbc|b may be expressed in the simpler form

Πbc|b =

[
I

Πc|b

]
,

where I is the identity matrix whose order is one higher than the number of predictors in system b.
Equality (4.2) can then be expressed as follows:

Πa|b = Πa|b.c + Πa|c.bΠc|b.

This expression is widely used in some approaches to the study of statistical dependencies, such as
the theory of triangular systems and graph chains [39], [41], [46]-[48].

In the case under consideration, the total set of predictors is formed by the response and all of the
independent predictors, i.e.,

abc = {Y,X1, X2, . . . , Xp}, a = {Y }, b = {X1, . . . , Xq}, c = {Xq+1, . . . , Xp}.

The matrices introduced in the preceding paragraph are then as follows

Πa|b = [a0, a1, . . . , aq] dim
(
Πa|b

)
= 1× (q + 1)

Πa|bc = [b0, b1, . . . , bp] dim
(
Πa|bc

)
= 1× (p+ 1)

Πbc|b = [cij ] dim
(
Πbc|b

)
= (p+ 1)× (q + 1).

5 Some Applications of the Main Theorem

We now discuss some consequences of Theorem 4.1. First, we briefly examine the simple regression.

5.1 Relationship between the Multiple and Simple Regressions

Let us consider a set of p predictors, X1, X2, . . . , Xp, and a single response variable, Y. The multiple
regression equation for the response Y on the set of all of the given predictors (including X0 = 1)
has the form

y =

p∑
i=0

bixi.
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Let us introduce a simple regression for any given predictor on another predictor

xi = cij0 + cijxj , i, j = 0, 1, . . . , p,

assuming that cii0 = 0, cii = 1.

We also need simple regressions of the response on each predictor. The equations of these regressions
are

y = ai0 + aixi, i = 0, 1, . . . , p

In the case under consideration, we have q = 1, and each predictor is taken to be a one-element
predictor set. According to Theorem 4.1, for every i ∈ {0, 1, . . . , p} we therefore have the equality

aj =

p∑
i=0

bicij . (5.1)

Finally, we introduce the following matrices:

A = [a0, a1, . . . , ap]1×(p+1)

B = [b0, b1, . . . , bp]1×(p+1)

C = [cij ](p+1)×(p+1).

Equality (5.1) can then be presented as the single matrix equality

A = B ·C, (5.2)

as is derived in [49].

As a0 is a predicted value of Y at X = [1 0], we obtain an expression for a0 in terms of regression
parameters:

a0 =

p∑
i=0

bici0.

5.2 Multiple Cochran’s Formula

Cochran’s problem of change in the predictor set was mentioned in the Introduction. Originally,
this problem was posed for regression models, but the formulation for the general linear model was
straightforward. Initially, a single variable was included or excluded from a given multiple regression
model. From Theorem 4.1, one can readily obtain a generalization of Cochran’s formula for a set
of included or excluded predictors in a linear model. First, it is clear that Theorem 4.1 is itself a
case of omitting variables.

Theorem 5.1. (Exclusion of predictors). If a subset X1, X2, . . . , Xq is chosen from the set X1, X2,
. . . , Xp of explanatory variables, then the coefficients of the multiple regression equation for the
response Y with the variable set X1, X2, . . . , Xq are expressed through the coefficients of the multiple
regression equation for the response Y with the variable set X1, X2, . . . , Xp by equality (4.2).

Applications and discussion of omitting variables in different areas are considered in many books
and articles, some recent ones are [50]-[52].

An analogous statement for the addition of predictors may have different formulations, depending
on how the variables are added. For instance, one can add all of the supplementary variables
simultaneously or add them one by one, recalculating the model coefficients each time a variable is
added. For the one-stage addition, the corresponding statement is
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Theorem 5.2. (Addition of predictors). Let X0 = 1, X1, . . . , Xp be a set of explanatory variables,
let X0, X1, . . . , Xq be the chosen set of predictors and let Y be the response. Let us introduce the
following regression equations (x0 = 1)

y =

p∑
i=0

bixi, y =

q∑
j=0

ajxj , y = a′0 +

p∑
j=q+1

ajxj

xi =

q∑
j=0

cijxj , i = 0, 1, . . . , p, cii = 1

xi = di0 +

p∑
j=q+1

dijxj i = 0, 1, . . . , p, dii = 1.

Define the matrices A, Bp and C

A = [a0, a1, . . . , ap], Bp = [b0, b1, . . . , bp]

C =

[
Iq+1 Dp−q
Cq Ip−q

]
,

where

Cq = [cij ], i = q + 1, . . . , p, j = 0, 1, . . . , q,

Dp−q = [dij ] i = 0, 1, . . . , q, j = q + 1, . . . , p,

and Im is the identity matrix of order m. From Theorem 4.1, we then obtain the equality

A = Bp ·C,

and if the matrix C is nonsingular, we obtain

Bp = A ·C−1.

This equality shows how the coefficients of a linear regression model change in response to the
addition of a set of predictors. To obtain new coefficients, it would apparently suffice to know the
regression coefficients of the initial model (row [a0, a1, . . . , ak]), the regression coefficients of the
model based on the added set of predictors (row [ak+1, . . . , ap]), and the regression matrices of a
new system of predictors based on the old one and those of the old system of predictors based on
the new one (matrices Ck and Dn−k). If the matrix C is singular, then one could use a generalized
inverse or choose another set of additional variables to construct the matrix C.

Remark 5.1. As C is a block matrix, its inverse can be obtained via the Schur complement C | Eq+1

[53], [54]. We have
C | Eq+1 = Ep−q −Cq ·Dp−q.

In the simplest case of p = 2, q = 1, we obtain

C1 = c21, D1 = c12,

where c21 and c12 are coefficients in the linear regression models

x2 = c210 + c21x1 x1 = c120 + c12x2.

We therefore have the equality

[b1, b2] = [a1, a2] ·
[

1 c12
c21 1

]−1

.
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In the case under consideration, there is the well-known equality c12 · c21 = r2, where r is Pearson’s
correlation coefficient between the predictors X1, X2. From Theorem 4.1 and the previous formula
in which the inverse matrix is calculated, we obtain the following formulae, which show how simple
regression coefficients can be calculated from multiple regression coefficients and vice versa

a1 = b1 + b2c21, a2 = b2 + b1c12

b1 =
a1 − a2c21

1− r2 ; b2 =
a2 − a1c12

1− r2 . (5.3)

From these expressions, one readily obtains corresponding equalities for the standardized regression

coefficients b′k = bk ·
sxk
sy

, k = 1, 2, where sz is the standard deviation of the variable Z ∈ {Xk, Y }

b′1 =
ry1 − ry2r

1− r2 , b′2 =
ry2 − ry1r

1− r2 .

Here we use the fact that the standardized coefficient a′k for univariate regression of the response
Y on the predictor Xk is simply the Pearson’s regression coefficient between the outcome and
predictor, a′k = ryk.

Finally, the following expressions represent the regression coefficients between the predictors in
terms of those for the simple and multiple regression models for outcome Y , and follow easily from
the previous formulae

c12 =
a2 − b2
b1

c21 =
a1 − b1
b2

.

All of these formulae can be generalized to an arbitrary number of predictors. These generalizations
are known, but their proofs are typically more difficult than those presented above (see, e.g., [55]).

These equalities can be used to analyze the impact of additional variables on the main predictor in
simple linear model. Consider model with a single predictor X1,

y = a10 + a1x1, (5.4)

and suppose that we are investigating a linear model with two predictors X1 and X2. The new
variable, X2, accounts for the new circumstances of the experiment and may have influence on the
outcome Y and the predictor X1. Therefore, it may change the coefficient a1 in the univariate model
(5.4) into the coefficient b1 in the bivariate model

y = b0 + b1x1 + b2x2. (5.5)

From Theorem 4.1, the difference between the parameters a1 and b1 is

∆a1 = a1 − b1 = c21 · b2.

This represents two causes of the influence of the variable X2 being added to the univariate model
(5.4). The first cause is the correlation between the variables X1 and X2, expressed by the parameter
c21, and the second cause is the impact of X2 on the outcome Y, expressed by b2. It is important to
understand that the parameters c21 and b2 are not independent if the variables X1 and X2 are not
independent. Therefore, the influence of X2 cannot be strictly separated into independent causes.
One can only state conditions under which the increment ∆a1 is non-zero, given by the simultaneous
inequalities

c21 6= 0, b2 6= 0

Similar calculations can be performed in the general case of p predictors, although the corresponding
interpretation is less straightforward. In this case, the change in the coefficient a1 after adding the
variables X2, . . . , Xp to the univariate model (5.4) is

∆a1 = a1 − b1 =

p∑
i=2

bi · ci1.
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5.3 Interpretation of Linear Model Parameters

The interpretation of linear regression model parameters is an old and relatively straightforward
problem. In theoretical statistics, it is well known that no interpretation is possible for the
parameters of a multivariate regression model when the regressors are correlated [25], [56], [57].
The only case in which such an interpretation is valid is where the predictors are independent of
one another. In that case, each predictor can change with no impact on the other predictors, and
the coefficient bi in the multivariate model

y =

p∑
i=0

bixi

is equal to the change in the mean value of the outcome under a 1-unit increment in the variable Xi
(holding all of the other variables constant). The magnitude of the coefficient therefore indicates
the contribution of the variable Xi to the variation of the outcome. It is important to emphasize
that this interpretation is valid only for uncorrelated predictors. If there is a significant correlation
between the independent variables, then no consistent interpretation of the model parameters has
yet been proposed.

Nevertheless, there is an alternative way to interpret the linear model parameters, based on geometric
reasoning and Theorem 4.1. Let us return to the multivariate model (3.1) and introduce a variable
X?

1 , defined by the equality

X?
1 = X1 −

p∑
i=0,i 6=1

c1iXi, (5.6)

where [c1i] is the first row of the matrix Cnp (see (3.4)). A similar variable appears in implicit
form in some other regression/correlation analysis formulations [44], [58]. We will return to the
interpretation of this variable later on. In addition to the multivariate linear model (3.1), we
consider the univariate model

Y = α?0 + α?1x
?
1 + ε,

where x?1 is the column of observed values of the variable X?
1 .

The following theorem is well-known [10], [12] and its proof can be obtained as a consequence of
Theorem 4.1.

Theorem 5.3. If a random variable X1 is uncorrelated with the response Y, and with each remaining
predictor X2, . . . , Xp, then the estimate b1 of the parameter β1 in the model

Y =

p∑
i=0

βixi + ε.

equals zero: b1 = 0.

The main statement in this section is Theorem 5.4, which may be viewed as a generalization of
Theorem 5.3.

Theorem 5.4. Let
Y = Xp · β + ε

be the linear model for the response Y on p predictors X1, . . . , Xp, with X0 = 1, and the model
(index in round brackets is omitted)

x1 = c10.2...p +

p∑
i=2

c1i.2...(i)...pxi + ε (5.7)

10
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expresses the linear dependence of the predictor X1 on the remaining predictors. Let us introduce
the variable

X?
1 = X1 −

p∑
i=2

ci.2...(i)...pXi − c10.2...p, (5.8)

and consider the univariate linear model for the response Y on the predictor X?
1 ,

Y = a?0 + a?1x
?
1.

Then,
b1 = a?1.

Let us denote the sequence 23 . . . p with omitted number i by qi = 2 . . . (i) . . . p and let q0 denote
the complete sequence 23 . . . p. Then, model (5.7) takes the form

x1 = c10.q0 +

p∑
i=2

c1i.qixi + ε.

Proof will be divided into a sequence of lemmas.

Lemma 5.5. Let the variable X1 be transformed as follows

X?
1 = X1 −

p∑
i=2

γiXi − γ0.

Then, estimates of the parameters β? of the linear model with predictors X0, X
?
1 , . . . , Xp are obtained

by the matrix multiplication
β? = Γ−1 · β,

where Γ is the transformation matrix, i.e.,

Γ =


1 −γ0 0 . . . 0
0 1 0 . . . 0
0 −γ2 1 . . . 0
0 −γ3 0 . . . . . .
. . . . . . . . . . . . . . .
0 −γp 0 . . . 1


(p+1)×(p+1)

,

and the elements of β are estimates of the parameters of the linear model with predictors X0, X1, . . . , Xp.

Proof. The lemma is a particular case of the following statement. The proof is given only for
completeness.

Let a linear transformation of the response and predictors be given by the formulae

Ỹ = αY + Xa, X̃ = XA,

where α is a scalar, a is a vector and A is a non-singular square matrix. Letting β denote the
estimates of the parameters of the linear model with the predictor set X0, X1, . . . , Xp and β̃ denote
the estimates on the predictor set X̃, we obtain the following from the normal equations for the
estimates [10], [12], [56]:

β̃ =
(
X̃T X̃

)−1

X̃T Ỹ =
(
ATX′XA

)−1

ATXT (αY + Xa) =

= A−1
(
XTX

)−1

XT (αY + Xa) =

= A−1

(
α
(
XTX

)−1

XTY +
(
XTX

)−1

XTXa

)
=

= A−1 (αβ + a) .

11
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In our case, α = 1,a = 0,A = Γ, and we therefore obtain the formula

β̃ = Γ−1β.

By direct calculation, we can check that

Γ−1 =


1 γ0 0 . . . 0
0 1 0 . . . 0
0 γ2 1 . . . 0
0 γ3 0 1 . . .
. . . . . . . . . . . . . . .
0 γp 0 . . . 1

 .

The following equalities therefore hold:

β̃ =


β̃0
β̃1
β̃2
...

β̃p

 =


β0γ0
β1

β3 + γ2β1
...

βp + γpβ1

 .

In particular, β̃1 = β1. Therefore, making a change in the predictors by replacing X1 with X?
1 does

not change the coefficient for the predictor X1.

The next lemma is well-known [10], [20], [56].

Lemma 5.6. Let Y be a response and let {X0 = 1, X1, . . . , Xp} be a predictor set. Let εY = Y −
p∑
i=0

bY i.qiXi be a residual of the response Y for the linear model with predictors {X0 = 1, X1, . . . , Xp}.

Then, εY has zero correlation with each predictor.

Lemma 5.6 is used below as follows. Consider the predictor X1 as a response and a set of explanatory

variables consisting of all of the remaining predictors. Then, the variable X?
1 = X1−

p∑
i=0,i 6=1

c1i,qiXi

has zero correlation with every predictor in the set {X2, . . . , Xp}. In addition, it is straightforward
to show that X?

1 is uncorrelated with X1 [56].

Take the systems a, b and c described in Theorem 5.3, with X1 replaced by X?
1 . Estimates of the

parameters for the model with the new set of predictors will be denoted by a superscript asterisk.
From Lemma 5.6 it follows that {X2, . . . , Xp} are not correlated with X?

1 . Therefore,

Πa|b = [a?0, a
?
1]

Πa|b.c = [b?0, b
?
1]

Πa|c.b = [b?2, . . . , b
?
p]

Πc|b =


c20.q2 0
c30.q3 0

...
...

cp0.qp 0

 .
In the case under consideration, Theorem 4.1 implies that

Πa|b = Πa|b.c + Πa|c.bΠc|b.

12
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We therefore obtain b?1 = a?1, and it follows by Lemma 5.5 that b1 = b?1. Therefore,

b1 = a?1.

Theorem 5.4 provides a new interpretation of linear model parameters, as follows. As has been
mentioned above, in the univariate linear model

y = a0 + a1x,

the slope a1 represents a change in the mean value of the outcome Y under a 1-unit increment in the
variable X. From Theorem 5.4, it follows that the coefficient b1 of the variable X1 in the linear model
(3.1) represents a change in the mean value of the outcome under a 1-unit increment in the combined
variable X?

1 defined in Lemma 5.5. The interpretation of the linear model parameter b1 therefore
shifts to the interpretation of a new variable, X?

1 . A similar linear combination of independent
variables is well known in factor analysis, but in that case the orthogonalization process generates
usually uninterpretable variables. The X?

1 can be interpreted as the portion of the variable X1

from which the linear contribution of the other independent variables is excluded. Alternatively, in
regression terms, the variable X?

1 is the portion of X1 that cannot be explained via linear regression
on the other regressors.

6 Applications to Real Data Analysis

6.1 Regression with two Predictors

Let us consider the use of Theorem 5.4 for investigating the dependency of incidence on various air
pollution toxicants of City St.-Petersburg (Russia). The primary data were published in [59]. In the
remainder of this section, we assume incidence to be incidence rate in the adult population (i.e. the
number of disease cases per 1000 adult population a year) averaged over a 5-year observation period.
In the primary data, the rates of incidence were gathered across 19 boroughs of St.-Petersburg. We
consider toxicant concentrations as random variables, i.e. mean toxicant concentration expressed
in maximum concentration limit (MCL) terms and averaged over 5-year observation period. Each
of these variables takes on 19 values in accordance with the number of boroughs. We denote
these covariates by the usual chemical notations: CO,NO2, SO2, P b etc. (the data consists of 12
pollutants).

The simple linear regression equations of response Y (incidence) on concentrations of CO and NO2

are given by

Y = 603 + 579CO (6.1)

Y = 414 + 416NO2 (6.2)

According to equation (6.1), incidence increases by 579 cases per 1000 population at an increase
in CO concentration by MCL unit a year. Equation (6.2) may be interpreted in the same way. In
short, both CO and NO2 increase incidence.

There is a tight positive correlation between predictors CO and NO2. Pearson’s correlation
coefficient is 0.75, and the regression equation is

CO = −0.131 + 0.576NO2

This shows that growth in one toxicant is related to growth in another. Hence, one can conjecture
that equation (6.1) does describe an increase in incidence at a simultaneous increase in both
pollutants (CO and NO2). A question then arises: could one specify the ‘pure’ influence of each
toxicant on incidence, separating the contribution of one toxicant from that of the other?

13
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To extract the contribution of each toxicant to the incidence in the presence of other toxicants,
researchers often use a multiple regression equation including all toxicants. Such interpretation is
common in some biological and medical applications of regression analysis. We refer to [60] as a
typical exposition. In the case under consideration, we obtain a multiple regression equation

Y = 465 + 390CO + 191NO2 (6.3)

A lot of authors consider the coefficients of a multiple regression equation obtained by means of the
least squares method to be meaningless if there are correlations among predictors (see, e.g., [56],
[57]). These coefficients cannot be used to assess separately the dependence of Y on CO and Y
on NO2. Nevertheless, there are other authors who treat each coefficient of a multiple regression
equation as the contribution of an individual toxicant to the outcome against the background of
other toxicants (e.g., [60]). Moreover, this contribution has to be refined as compared to (6.1)–
(6.2). Their supposition is that predictors as if distribute their influence on the outcome in a
multiple regression equation so that each predictor describes its influence with the other being in
the background. According to this viewpoint, the addition of another toxicant, NO2, to CO and
change from (6.1) to (6.3) should attenuate the effect of CO because the corresponding coefficient
diminished from 579 to 390. The same conclusion holds for NO2 and CO and equations (6.2) and
(6.3).

These authors do not provide any substantive explanation for the biomedical meaning of variations
in the coefficients in (6.1)–(6.2) and (6.3); nor do they explain the refined contribution of each
individual toxicant. Variations in regression coefficients could be explained by going over from
simple regressions (6.1) or (6.2) to multiple regression (6.3). Indeed, coefficient b1 = 390 in equation
(6.3) is equal to coefficient a∗1 in the simple regression equation

Y = a∗10 + a∗1CO
∗,

where covariate CO∗ is defined by

CO∗ = CO − 0.576NO2 (6.4)

By (6.4), predictor CO∗ is obtained from CO by excluding its part correlated with NO2. Then
b1 = 390 means an increased incidence rate at a growth in CO concentration excluding the linear
statistical dependence of CO and NO2.

One can similarly treat coefficient b2 = 191 in (6.3). It is equal to a∗2 in the simple regression
equation

Y = a∗20 + a∗2NO
∗
2 ,

where NO∗2 is a part of toxicant NO2 which contains no linear statistical dependence on CO.

We seem to have obtained a consistent picture: by excluding the (linear) dependence of one toxicant
on the other we arrive at a ‘pure’ influence of a particular factor on incidence. Since both factors
increase the incidence, and the concentration of each factor increases with growth in the other,
one can anticipate that the magnitudes of the coefficients in equation (6.3) should be less than in
(6.1)–(6.2). This is exactly so in the case under consideration.

It is not as simple as that though. Let us consider the dependence of incidence Y on the concentrations
of CO and SO2. A simple regression equation of Y on SO2 is given by

Y = 919 + 52SO2

The association between CO and SO2 is very similar to that between CO and NO2. For instance,
the correlation coefficient is 0.73 and the regression equation is

CO = 0.272 + 0.316SO2 (6.5)
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The multiple regression equation in the case considered is

Y = 634 + 1047CO − 278SO2 (6.6)

Assuming the coefficients of (6.6) to be refined ones we should treat the magnitude 1047 as a ‘pure’
influence of CO against the background of SO2, and −278 as a ‘pure’ influence of SO2 against
the background of CO. Obviously, such interpretation of regression coefficients is invalid, since the
‘pure’ influence of toxicant SO2 becomes negative. The reason for such misinterpretation is the
tight correlation between predictors CO and SO2. One has to take into account this correlation in
treating regression coefficients.

The coefficient at CO in ((6.6) is twice as large as that in (6.1). By Theorem 5.4, coefficient
b1 = 1047 is equal to the slope in

Y = 697 + 1047CO∗, (6.7)

where CO∗ = CO − 0.316SO2. In biomedical terms, we obtain an inexplicable picture: we have
reduced the toxic burden on the population by removing one of the two toxicants, but the incidence
grows with CO even more rapidly. In mathematical terms, we can explain this as follows. It is clear
from the definition of CO∗ that its range is less than the range of CO. In both cases, the incidence
is the same, which implies an increase in coefficient b1.

Generally, inequality b1 > a1 is impossible if we consider the multiple regression coefficients as
refined ones. But if we refer to equality (5.3), we can see that under a2 � a1 and correlation
coefficient r close to 1, inequality b1 > a1 may hold true. The formula (5.3) also explains the
possibility of a negative value for coefficient b2.

6.2 Regression with three Predictors

Let us consider a regression equation of incidence Y on three predictors CO,NO2 and SO2. By the
least square method, we obtain the equation

Y = 494 + 857CO + 194NO2 − 279SO2

Equation (5.7) becomes

CO = −0.108 + 0.386NO2 + 0.195SO2

The new variable CO∗ is defined by (5.8), and the simple regression equation for Y on this predictor
is given by

Y = 1076 + 857CO∗

We see that b1 = a∗1 as well.

Note that the correlation coefficient of model (6.5) is r = 0.74, and that of model (6.7) is r = 0.46.
The latter is less than the coefficient of correlation between incidence Y and CO (r = 0.58).

7 Conclusion

We have provided an elementary proof of several linear relationships between the parameters of
linear statistical models. The statement of Theorem 4.1 is proven by an elementary reasoning. We
represent the statement in a form more convenient for applications, using more explicit notations.
We have devoted particular attention to deriving some consequences of Theorem 4.1. There may
yet be additional interesting corollaries of Theorem 4.1 and other theorems besides those presented
in this paper, which may further expand potential applications of the discussed relationships.
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