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Abstract

This paper deals with the problem of computing optimaleong policies for the probabilis fixed
lifetime inventory model with continuous demand rate. Weposed a probabilistic fixed lifetime
inventory model with continuous demand rate. The necessawjitiom for minimizing the expected
proposed cost model was derived. The condition is also suffiséaatuse the model is convex in S. The
optimal ordering policies for this probabilistic fixedelime inventory system with continuous demand
rate were given. The objective of the study is to exam@esions regarding when to order or not. This
was investigated under some conditions. The operating cbestics obtained in this article are very
significant because, for practical problems, availabkthematically optimal solutions to the fixed
lifetime inventory problem cannot be realized due to theinmatational complexityrising from the fact
that exact formulation of the problem requires information onage distribution of the items in
inventory and the corresponding quantity of items of eaygh Hence there is a gap between theoretical
results and practical requirements for computational &e3Me have been able to bridge the gap between
theoretical results and practical requirements for coatipmal results. We computed the ordering cpst,

expected holding cost, expected shortage cost and expectidesutost, and these computations were
applied to determine the expected cost for the fixedrifetinventory system. The expected cost mqdel

with Set- up Cost and without Set- up Cost were useful émstee determination of the optimal orderipg
policy for this type of inventory system Finally, onigation may like to operate under a given aspiration
scenario, values of inventory level that satisfy such itiemdare identified and are used in the cpst
function to determine optimal operating conditions, this will Joregy way to reduce waste and holding

cost.

Keywords: Fixed lifetime; optimal ordering policies; orderiropst; expected holding cost; expected
shortage cost; expected outdate cost; uniqgue minimum.
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1 Introduction

In this paper we set up a model denoted R{y?j (S)} for the analysis of the problem of ordering fixed
lifetime inventories that deal with the charactersti this type of problems. The lifetime inventoggtem
consist of an age-wise profile of item (state spdte)size of the space is directly proportional tolifieeof

the items. Consequently, the inventory management is faitbdois of challenges otherwise item will be
outdated. The objective of the study is to examine decisegarding when to order or not given some
conditions. Fixed lifetime products have deterministic shidfi.e. if a product remains unused up to its
lifetime; it is considered to be out-dated and must be désbof. Important examples of items in real life
include: human blood used for transfusion, food stuffs, photograpmic\vfaccine, batteries chemicals and
other pharmaceutical products. The fixed lifetime produrcisventory are usually depleted following either
First-In-First-Out (FIFO) or Last-In-First-Out (LIFGgsuing policy. It is, therefore, an important probleim
finding the optimal ordering policy which is closely teld to that of finding suitable issuing policy for such
a perishable inventory system. Inventory models for fixitithe perishable products have been studied by
various researchers.

2 Literature Review

Products with fixed lifetime and deterministic demandgeoing policies are similar to that of non-perishable
products. In these cases, one would always order in sucly ghatathe product never perishes. If a fixed
lead time is included, then one simply adjusts the requdatt so that the product does not perish. The
difficulty arises when the demand is random and oneddstermine the right amount of inventory to hold.
The most commonly used product that has a fixed lifetindterandom demand is probably the newspaper.
The newsvendor problem is one of the earliest works deatlitiy fixed life perishability. The simple
newsvendor problem deals with finding the optimal singlagal order quantity for a newsvendor who faces
an uncertain demand.

Firstly [1], examined the fixed lifetime perishable inwamyt system and obtained an estimator for the
probability that an item will be sold in a given period; giebability is used to derive outdate and shortage
guantities. The earliest work with respect to identifythe optimal order quantity was carried out by Ford
Whitman Harris. The model developed by Harris is commoesfgrred to as the Economic Order Quantity
(EOQ) model, and is also known as the lot sized model. oifjective of the model is to find the right
quantity of products to order, given the constant demandtheteosts associated with ordering and holding
inventory, such that the annual operating cost is minimikéatlels have been developed for random
demands with and without lead times. Performance mesdike service levels, fill rategfc. are used to
calculate the safety stock to be carried and to determider-up-to-levels and reorder points. Models were
also developed to identify optimal order quantities faltirechelon systems and systems with time-varying
demand. For product with fixed lifetime and deterministeanand ordering policies are similar to that of
non-perishable products. In these cases, one would alwaysrosigh a way that product never perishes. If
a fixed lead time is included, then on simply adjusts thedezqoint so that the product does not perish.
The difficulty arises when the demand is random and on¢ohdetermine the right amount of inventory to
hold. The most commonly used product that has a fixednligeand random demand is probably the
newspaper.

Enagbonma and Eraikhuemen [2], constructed a model from which omtidering policies for inventory
that perishes after a fixed number of periods for thereliscdemand scenario. They determine ordering
decisions that takes into account the perishable natuhe éfiventory and recommend that the first in, first
out, (FIFO) optimal issuing policy for the management otlstitems with fixed lifetime should be used to
minimizes expected outdates. Hence, advised decision-maéefaiwe the FIFO issuing policy by exposing
consumers to products of the same age.

Venkata [3], states that products with a fixed lifetiave products whose lifetime is known in advance.
These products do not deteriorate over the period a@f lifetime but are not fit for consumption after
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expiry. The utility of the product is assumed to be constarit @kpires. Some examples of these kinds of
products are canned goods, bottled milk, processed foodmpbautical products, etc. while products with a
random lifetime are products that can be classifisdage-dependent inventory as they experience
continuous deterioration. Such products can fail at any pdfinime. In this case, the utility of the
commodity decreases with time, and it becomes essehé#iilthe product be sold as soon as possible.
Examples of products of this type are fresh vegetabigits, and other groceries, as well as blood in blood
banks and organs for organ transplants.

One of the most famous cases of perishable inventory idaksic newsvendor problem. This is a case of
perishable inventory with a fixed lifetime, as a nevpgyebecomes obsolete after a day. The newsvendor has
to make a decision on how much to order for the next daypawimize his profit. It is a one-period,
stochastic demand inventory problem that has been widaliedtuAzadivar and Rangarajan [4], discuss the
basic problem, formulation, and the solution methodology.

Furthermore [5], investigated an optimal procurement policyittms with an inventory level dependent
demand rate and fixed lifetime. A mathematical moaled solution methodology were developed. [6],
considered a discrete-time supply chain for perishable gwbdse there are separate demand streams for
items of different ages. The effect of substitution wadigularly considered. The substitution options given
were compared analytically in terms of the infinite horizexpected costs. Results with numerical
experiments are given to explore the effects of problermpaters on performance.

Agbadudu and Enagbonma [7], compared two expected cost fundatidghe management of fixed lifetime
inventory model. since expected costs obtained in the pedposdel are less than the expected cost of the
single period inventory model. The models were developed thderssumption that demand has a discrete
with a probability mass function (pmf) and under the deterniirfisied lifetime inventory system scenario.
An extension of the study was suggested for fixed lifetimodels when demand has a continuous
probability density function.

Dan et al. [8], considered a solution to lifetime buy ditaroptimization implemented within the Life of
Type Evaluation (LOTE) tool. It has also shown LOTE'’s ¢dligt to analyze complex, multi-part systems
with refresh dates, changing demand profiles, and modified derdistributions. The results for the
Motorola Infrastructure Base Station case indicate thataddndistribution plays an important role in the
results obtained. The LOTE results have also revealad diganizations making lifetime buys may be
placing more emphasis on the short-term under-buy penalty @odtless on the inventory and procurement
costs that contribute as much or more to the lifecyokt, and as a result organizations may be consistently
overbuying their lifetime buys.

John et al. [9], constructed an inventory model for detatiiny items with constant rate of replenishment,
time and selling price dependent demand and decay has beéwpddvand analyzed in the light of various
parameters and costs and with the objective of maximitia total system profit. The model was illustrated
with numerical examples and sensitivity analysis of the mafdthlrespect to costs and parameters was also
carried out. This model also includes the exponential decadel as a particular case for specific values of
the parameters. The proposed model can further be entighiedorporating salvage of deteriorated units,
inflation, quantity discount, and trade credits etc. yTtuevelop and analyze an inventory model for
deteriorating items with Weibull rate of decay having téinrate of replenishment and selling price
dependent demand. The inventory level at any time “t” is g@ekby differential equation§Vith suitable
cost considerations the total cost function and profit tatetfon are also obtained by maximizing the profit
rate function, the optimal ordering and pricing policieshef model are derived. Nandakumar and Morton
[10], derived near myopic bounds on the order quantities andilusdxbunds to evaluate the performance of
the resulting heuristics. The near myopic approach, basicaltys any periodic inventory problem in the
framework of a newsboy problem and attempts to bound theuganewsboy parameters. The upper and
lower bounds of various parameters lead to bound on the qudetity.
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Liu and Lian [11], analyzed an (s, S) continuous revierishable inventory system with a general renewal
demand process and instantaneous replenishments. Using aviviamkaval approach, they obtained closed-
form solutions for the steady state probability distributad the inventory level and system performance
measures. They also constructed a closed-form esgbectst function and showed that for any fixed S, the
cost function is either monotone or convex in s. KalpakamSapgha [12], studied an (s; S) model with
Poisson demand, assuming an exponential lead time and aeneatial lifetime. Based on Markov chain
technique, the exact cost function was obtained. Some exterdi this model have been considered.

Kalpakam and Shanthi [13], Proposed a similar model in whidbrsrare placed only at demand epochs.
Later, the authors consider the case of renewal demahd1%#tconsidered a similar model and derived the
total expected cost function. Perry [16], considered ssipable inventory system where the commodity's
arrival and customer demand processes are stochastiharsifoted items have a constant lifetime. The
stock level is represented by the amount arriving durirglife of the oldest item and it is assumed to
fluctuate as an alternating two-sided regulated Browniation between barriers 0 and 1. Hitting of level O
are outdating and hitting of level 1 are unsatisfied demahdseful martingale is introduced for analyzing

the controlled process as well as the total expected dismbenst. Chiu [17], developed an approximate
expression for the total expected average cost per om@tfor the fixed lifetime inventory system under the
assumption of positive lead time, but could not prove tleatdst function was convex; however an iterative
scheme for solving the problem was given.

Williams and Patuwo [18], also obtained optimal order dtiastfor a product with a two- period lifetime
and a positive lead time for replenishment. Most of thedf lifetime models and all of the aforementioned
models are based on the periodic review policy. Chiu [18dr ldeveloped a good approximation for the
expected inventory level per unit time and compared it eitisting approaches. The author also showed
that inappropriate approximations result in distortions wtentifying optimal policies.

Goh et al. [20], studied perishable inventory models wéhdom replenishments (with blood donation
processes in mind). They have established the equivalentiestirhe between successive outdating and the
time between successive demand losses with the busy perith@ésaairresponding single server queues with
impatient customers.

Ravichandran [21], analyzed a perishable model with aipesiatndom lead time and a Poisson demand
process. By assuming that the aging of the new stogkbains after the complete depletion of the existing
stocks, some analytical results were obtained.

3 Assumptions of the Proposed Model

The proposed model is developed under the following assursption

(i)  Theissuing policy is first in, first out (FIFO).

(i)  Periodic review and order-up to order policy with parameisruSed.

(i)  Units expire after the age m periods in the inventaystem.

(iv) Time is divided into discrete periods.

(v) The length of a period is arbitrary but fixed.

(vi) The lead time is zero.

(viiy Demands in successive periods are independent and identisatiputed random variables with
known distribution.

(viii) The sequence of events within each period is as foll@@san order is placed and order arrives
immediately,(b) demand for the period is filled and (¢) anit that has reached the age m and has
not been used is outdated.

(ix) he order quantity is determined as follows. If IP is the ritogy position at the time of placing
order, the order quantity is Q =S — IP.
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3.1 Mathematical Notations

The following Mathematical notations were used in theetopment of the proposed model.
K = setup cost

¢ = replenishment cost

0 = mean demand

S = Inventory level at the start of each period

h = holding cost

p = shortage cost

i = amount demanded

f(t) = probability density function of the uniform distriimn

m = fixed life time

D(t)= demand in period t

E(.) = the expectation function

E (D(t)) =6

E{C(S)} = Expected total relevant cost function for the period witt®etup cost.
E{C (S)} = Expected total relevant cost function for the period wittugeost

E = Total expected average cost per unit time for the fiiketime inventory system under the assumption
of positive lead time

C = Average cost per unit time
IP = Inventory Position

W = Expected outdate quantity
Q = Expected ordered quantity

The model is based on the probability that an item innthentory system is sold in a period. The estimator
for the probability that an item will be sold is given in g

0
p= < )
Let Q be the expectation of units ordered at the endrfcpeand received

at the beginning of period t+ 1, given by the same sgjpe of [1]

Q=E@Q®) = ( = @)

1-(1 'E)m)
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and W the expectation of units outdated at the end of perialdo from [1]given by

W= E(W() = Q(l—g)m €)

Succinctly 1 — P is the probability that an item i$ sald in one period. (1 — P)is the probability that an
item will be outdated, this is based on the fact thaisaetion in the period S are independent.

In particular outdate decreases with increasing m, sined® < 1. This result was conjecture by Nahmias
(1977). Using (2) in (3) we obtain

_ 6(1-p)™m
T i-a-pm 4)

This is an expression similar to that given by [22] and ghme equation of [2for the daily outdates
guantity of cross-match blood, P is the proportion of croatsh blood that is actually transfused.

Where D (t) is demand in period t,

E(D®) =0 (5)
Ordering cost = c(S —IP) (6)
Expected holding cost = h fOS(S — 1) f(t) dt )

The probability of running out of stock is given by

Poue = [ f(H) dt=1— [J£(t) dt 8)
and the shortage quantity is given by

Z= [ (-9 f(vdt 9)

Expected shortage cost = p [J"(t—S) f() dt= p[6 — fost f() dt — S Pyy ] (10)
Applying (8) in (10) yields

Expected shortage cost = pfsw(t -S) f()dt= p[o — fost f(t) dt —S(1 — fos f(t) dt)] (11)

Expected outdate cost = w fOS(S —t) f(t)dt (12)
Applying (6), (.7), (10) and (12) yields the matlatical model given by

E[C()} =K+ c(S—IP)+ h[J(S—0f®dt + p[Jt—S) D dt + w[(S—1f(Ddt (13)

3.2 The Necessary Condition for a Minimum

The function can be shown to be convex in s, thus havinggaeiminimization. Taking the first derivative
of E{C (S)} with respect to s and equating to zero,

E{C' (9)} = c+h [Jf(Ddt —p [ f(O)dt+w [ f(H)dt =0

c+ hP{t<S}—p(1—-P{t<S}+wP{t<SH=0
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c+ hP{t<S}—-p+pP{t<SH+wP{t<S}=0
hP{t<S} +wP{t<S}+pP{t<S}=p-c
Pt<S}(h+p+w)=p-c

p—c

Ple<sy = o w

The condition is also sufficient sincé{C (S)} is a convex function

Since K is the setup cost assumed to be independent of théyjaedgred or produced, the minimum
value of E€ (S)} must occur at S* ,hence E{C(S)} and(E{S)} must appear as shown in fig .2

4 Numerical Example and Guidelines

We give an example to illustrate the method and suggéilmes for the management of the fixed lifetime
inventory problem. We considered inventory system with agbadility density function of the uniform
distribution .The ordered and outdate quantities are comusiag the equation (2) and the equation (4) for
(say) fixed lifetime m = 4, and meaé = 35, inventory level S = 37, 38, 39,..., 347 the resuksgaren in
tables 1 and 2 and these quantities are applied in the edpastefunction. The results are given in tables 3,
4,5, and 6.

Table 1. Operating characteristics (S = 37 to 62)

Inventory level (S) Expected ordered quantity Inventory position Expected outdate quantity

Q = E(QQ(}) W = E(W(1))
37 35.0003 1.9986 0.0003
38 35.0014 2.9961 0.0014
39 35.0039 3.9915 0.0039
40 35.008¢ 4.983¢ 0.008t¢
41 35.0161 5.9730 0.0161
42 35.027( 6.958( 0.027(
43 35.0420 7.9386 0.0420
44 35.0614 8.9144 0.0614
45 35.085¢ 9.885: 0.085¢
46 35.1148 10.8506 0.1148
47 35.149: 11.810° 0.149¢
48 35.1893 12.7652 0.1893
49 35.2348 13.7142 0.2348
50 35.285¢ 14.657¢ 0.285t¢
51 35.3424 15.5956 0.3424
52 35.404¢ 16.528: 0.404¢
53 35.4719 17.4552 0.4719
54 35.5448 18.3771 0.5448
55 35.6229 19.2939 0.6229
56 35.7061 20.2057 0.7061
57 35.794! 21.112¢ 0.794:
58 35.8874 22.0147 0.8874
59 35.985! 22.912: 0.985:
60 36.0877 23.8054 1.0877
61 36.1946 24.6942 1.1946
62 36.305¢ 25.578¢ 1.305¢
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Fig. 1, Indicates expected costs against inventory lepelcifically, a positive directional relationship exist
between (a) ordering cost and inventory level, (b) expeabidiny cost and inventory level, (c) expected
outdate cost and inventory level. However an inverse reldtipnbetween expected shortage cost and
inventory level, Fig. 2, indicates (y-Y) optimal ordegi policies. Fig. 2 was obtained by plotting

E{C (S)} and E{C (S)} on the scale. The Tables 1-2 indicates expected ordered quantities, imyento
positions and expected outdate quantities when n®=45 and inventory level s = 37, 38, 39...347.

Tables 3 — 6indicates set up cost, ordering cost, expected holdisiy expected shortage cost , expected
outdates cost, expected cost without setup cost {EC(S)} apdcted cost with setup cost§ES)}.

The value Y is equal to S* while the value y is deterhiftem
E {C(y)} = E{C(Y)} =K+ E {C(Y)}, Such thaty < Y.
If IP<y,orderY —IP

If IP>y, do not order.

From the analysis using the proposed method, we recommefolltdveing guideline for the management
of the fixed lifetime inventory system. Firstly, the modsl based on average demand, the demand
distribution and inventory level. Secondly, effort should barge towards obtaining accurate information
on the demand distribution.

Table 2. Operating characteristics (S = 63 to 347)

Inventory level (S) Expected ordered quantity Inventory position Expected outdate quantity

Q = E(Q() W = E(W(t))
63 36.4211 26.4596 1.4211
64 36.5404 27.3363 1.5404
65 36.6637 28.2094 1.6637
66 36.790¢ 29.078t¢ 1.790¢
67 36.9212 29.9447 1.9212
68 37.0553 30.8073 2.0553
69 37.1927 31.6667 2.1927
70 37.3333 32.5229 2.3333
71 37.477: 33.376: 24771
72 37.6239 34.2265 2.6239
73 37.773¢ 35.074( 2.773¢
74 37.9260 35.9189 2.9260
75 38.0811 36.7612 3.0811
76 38.238t¢ 37.601( 3.238¢
77 38.3990 38.4384 3.3990
78 38.561¢ 39.273: 3.561¢
79 38.7266 40.1062 3.7266
80 38.8938 40.9369 3.8938
81 39.0631 41.7655 4.0631
342 99.8020 241.9516 64.8020
348 100.048- 242.705: 65.048:¢
344 100.2948 243.4588 65.2948
345 100.5412 244.2123 65.5412
34¢€ 100.787 244.965! 65.787"
347 101.0342 347.0000 66.0342
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Table 3. Operating characteristics (S = 37 to 52)

Inventory Setup Ordering  Expected Expected Expected {EC(S)} {EC(S)}
level (s) cost cost holding cost shortage cost outdate cost
37 50 4200.035' 462.837: 247¢ 0.005¢ 7137.879. 7187.879
38 50 4200.1632 475.0000 2400 0.0258 7075.1890 7125.1890
39 50 4200.464: 487.820! 232t 0.075¢ 7013.360° 7063.360
40 50 4201.0256 500.0000 2250 0.1709 6951.1966 7001.1966
41 50 4201.9272 512.8049 2175 0.3292 6890.0613 6940.0613
42 50 4203.243.  525.000! 210c¢ 0.567¢ 6828.810. 6878.810
43 50 4205.0380 537.7907 2025 0.9026 6768.7313 6818.7313
44 50 4207.364' 550.000! 195( 1.350: 6708.715. 6758.715:
45 50 4210.2674 562.7778 1875 1.9251 6649.9703 6699.9703
46 50 4213.7788 575.0000 1800 2.6409 6591.4197 6641.4197
47 50 4217.923° 587.766! 172¢ 3.510! 6534.199° 6584199¢
48 50 4222.7196 600.0000 1650 4.5439 6477.2635 6527.2635
49 50 4228.176  612.755: 157¢ 5.752¢ 6421.683 6471.683
50 50 4234.2978 625.0000 1500 7.1454 6366.4432 6416.4432
51 50 4241.0843 637.7451 1425 8.7304 6312.5598 6362.5598
52 50 4248.5312  650.0000 1350 10.5151 6259.0463 6309.0463
15000
10000 -
5000 -
0 — Setup Cost
—— Ordering Cost
Expected Holding Cost
-5000
Expected Shortage Cost
Expected Outdate Cost
-10000 — [EC(S)}
-15000 -
-20000 -
-25000

Fig. 1. Expected Costs against the Inventory Level
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Table 4. Operating characteristics (S = 179 to 196)

Inventory Setup Ordering Expected Expected Expected {EC(S)} {EC(S)}

level (s) cost cost holding cost shortage cost outdate cost

179 50 7226.8019 2237.5698 -8175 2257.4897 3546.8614 3596.8614
18C 50 7255.099. 2250.000! -825( 2291.324 3546.424; 3596.424

181 50 7283.4175 2262.5691 -8325 2325.4107 3546.3972 3596.3972
182 50 7311.7553 2275.0000 -8400 2359.7477 3546.5030 3596.5030
18: 50 7340.112' 2287.568: -847¢ 2394.335! 3547.016: 3597.016!

184 50 7368.4892 2300.0000 -8550 2429.1751 3547.6643 3597.6643
18t 50 7396.884 2312.567 -862¢ 2464.265 3548.717. 3598.717

186 50 7425.2987 2325.0000 -8700 2499.6065 3549.9052 3599.9052
187 50 7453.7309 2337.5668 -8775 2535.1987 3551.4965 3601.4965
188 50 7482.1811 2350.0000 -8850 2571.0419 3553.2230 3603.2230
189 50 7510.6489 2362.5661 -8925 2607.1360 3555.3511 3605.3511
19C 50 7539.134 2375.000! -900( 2643.481 3557.615. 3607.615;

191 50 7567.6362 2387.5654 -9075 2680.0772 3560.2788 3610.2788
192 50 7596.1551 2400.0000 -9150 2716.9241 3563.0792 3613.0792
193 50 7624.6905 2412.5648 -9225 2754.0220 3566.2773 3616.2773
194 50 7653.2421 2425.0000 -9300 2791.3707 3569.6129 3619.6129
19t 50 7681.809 2437.564 -937¢ 2828.970. 3573.344  3623.344

196 50 7710.3929 2450.0000 -9450 2866.8209 3577.2138 3627.2138

Table 5 . Operating characteristics (S = 53 to 185)

Inventory Setup Ordering  Expected Expected Expected {EC(S)} {EC(S)}

level (s) cost  cost holding cost shortage cost outdate cost

53 50 4256.6308 662.7358 1275 12.5060 6206.8726 6256.8726
54 50 4265.3727 675.0000 1200 14.7089 6155.0815 6205.0815
55 50 4274.744! 687.727. 112¢ 17.129( 6104.600: 6154.600:

56 50 4284.7323 700.0000 1050 19.7709 6054.5031 6104.5031
57 50 4295.3200  712.719: 97t 22.638¢ 6005.678 6055.678

58 50 4306.4935 725.0000 900 25.7359 5957.2294 6007.2294
59 50 4318.2342 737.7119 825 29.0659 5910.0120 5960.0120
60 50 4330.525'  750.0(00 75C 32.631¢ 5863.1571 5913.157

61 50 4343.3504 762.7049 675 36.4349 5817.4902 5867.4902
62 50 4356.691.  775.000I 60C 40.478t¢ 5772.1701 5822.170

179 50 7226.8019 2237.5698 -8175 2257.4897  3546.8614 3596.8614
180 50 7255.0995 2250.0000 -8250 2291.3246  3546.4242 3596.4242
181 50 7283.4175 2262.5691 -8325 2325.4107  3546.3972 3596.3972
182 50 7311.°55% 2275.000! -840(C 2359.747  3546.503' 3596.503

183 50 7340.1126 2287.5683 -8475 2394.3359  3547.0168 3597.0168
184 50 7368.489. 2300.000! -855( 2429.175  3547.664. 3597.664

185 50 7396.8847 2312.5676 -8625 2464.2653  3548.7175 3598.7175

4.1 No-Setup Cost Model

The model without the setup cost is given by the equation (14)

E{C(S)} = c(S—1IP) + h [(S— ) () dt +p ['(t— ) f(©) dt+ w [>(S —t) f(D)dt

(14)

10
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Table 6. Operating Characteristics (S = 186 to 347)

Inventory  Setup Ordering Expected Expected Expected {EC(S)}
level (s) cost cost holding cost shortage cost outdate cost
186 50 7425.2987  2325.0000 -8700 2499.6065 3549.9052 3599.9052
187 50 7453.7309  2337.5668 -8775 2535.1987 3551.4965 3601.4965
18¢ 50 7482.181  2350.0001  -885C 2571.041  3553.2231 3603.223
189 50 7510.6489  2362.5661 -8925 2607.1360 3555.3511 3605.3511
19C 50 7539.134  2375.0000  -900C 2643.481 3557.615. 3607.615:
191 50 7567.6362  2387.5654 -9075 2680.0772 3560.2788 3610.2788
192 50 7596.1551  2400.0000 -9150 2716.9241 3563.0792 3613.0792
193 50 7624.690. 2412.564:  -922t 2754.0220  356€.277: 3616.277.
194 50 7653.2421  2425.0000 -9300 2791.3707 3569.6129 3619.6129
19t 50 7681.809  2437.564 -937¢ 2828.970.  3573.344 3623.344
196 50 7710.3929  2450.0000 -9450 2866.8209 3577.2138 3627.2138
341 50 11946.6701 4262.5367 -20325 11006.7271 6890.9338 6940.9338
34z 50 11976.235 4275.0000  -2040( 11081.135 6932.371 6982.371
343 50 12005.8036 4287.5364 -20475 11155.7943 6974.1344 7024.1344
344 50 12035.3744 4300.0000 -20550 11230.7032 7016.0776 7066.0776
34t 50 12064.947 4312.536.  -2062¢ 11305.862 7058.346. 7108.346:
346 50 12094.5236 4325.0000 -20700 11381.2715 7100.7951 7150.7951
347 50 12124.102 4337.536/  -2077¢ 11456.930 7143.5691 71€3.569(

16000

14000

12000 -

10000 - i

— {EC(S)}
2000 -
EC(V)}
6000
e(c (v}

2000

0

L0 L0010 000 R B i

ST, OMOOONUNOE TN OMODONUNOASTNO
NS WM OMNOODO S MM NNNOODONMMT O 0O
e A A A A A AN NN NANNANM

Order Do not order

Fig. 2. (y-Y) Optimal Ordering Policy
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4.2 Setup Cost Model

The model with setup cost K is given by the equation (15)
E{C()} =K+ c(S—1P) + h [S(S— ) f(©) dt +p [ (t—S) f() dt+ w [ (S— 1) f(dt (15)
4.3 The y-Y Ordering Policy for the Inventory Systen with Fixed Lifetime

The symbols y and Y are defined in fig 2. The value Y isktus* while the value y is determined from
E{C()} = E{C (M} =K+ E{C(V)}
Such that y<Y.

Assuming IP, the amount on hand before an order is pldwedumber of quantity to be is
answered under these three conditions.

i IP<y

i y<IP<Y

i IP>Y
Condition 1: (IP<y)

Because IP is already on hand, its equivalent cost is giyee{C(IP)}. If any additional amount s-IP(s>IP)
is ordered, the corresponding cost given E{&(S)}, which includes the setup cost K. from above see fig
2, we have:

minE{C ()} = E{C M} < E{CP)}
The implication is that the optimal inventory levels te&¢ = Y and the amount ordered equals Y-IP
Condition 2: (y<IP<Y)
From data extracted from Fig. 2, we have,
E{C(IP)} < mingp E{C(S)} = E(C(Y)
Thus, it is not advantageous to order in this case ard®S
Condition 3: (IP >Y)
From data extracted from Fig. 2, we havdor s > IP,

E(C(IP) < E{C(S)} .
The condition indicates that, as in condition (2), it isathtantageous to place an order- that is .

The optimal inventory policy, frequently referred to as yhY policy, is summarized as:
If IP <y, order Y-IP

If IP>Yy, do not order.

12
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The optimality of the y-Y policy is guaranteed becauseatisaciated cost function is convex.

5 Conclusions

We have computed optimal ordering policies for a probabilfsted lifetime inventory system. Ordering
decisions that take into account the perishable natufeoftventory were determined. Thiest in, first out,
(FIFO) optimal issuing policy for the management of stoekng with fixed lifetime should be used. The
FIFO policy minimizes expected outdates. So, it is adwsé&ll the decision-maker to enforce this issuing
policy by exposing consumers to products of the same age.a@wge, if the consumer enforces the
issuing policy, the last in, first out (LIFO) policy wilesult generally. From the analysis of the proposed
model we found out that If inventory position IP <y, ordelPY However, If inventory position IP y, do

not order. Important practical use of the model in lifmainclude: human blood used for transfusion, food
stuffs, photographic film, vaccine, batteries chemicalsathdr pharmaceutical products.
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