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Abstract 
 

This paper deals with the problem of computing optimal ordering policies for the probabilistic fixed 
lifetime inventory model with continuous demand rate. We proposed a probabilistic fixed lifetime 
inventory model with continuous demand rate. The necessary condition for minimizing the expected 
proposed cost model was derived. The condition is also sufficient because the model is convex in S. The 
optimal ordering policies for this probabilistic fixed lifetime inventory system with continuous demand 
rate were given. The objective of the study is to examine decisions regarding when to order or not. This 
was investigated under some conditions. The operating characteristics obtained in this article are very 
significant because, for practical problems, available mathematically optimal solutions to the fixed 
lifetime inventory problem cannot be realized due to their computational complexity arising from the fact 
that exact formulation of the problem requires information on the age distribution of the items in 
inventory and the corresponding quantity of items of each age. Hence there is a gap between theoretical 
results and practical requirements for computational results. We have been able to bridge the gap between 
theoretical results and practical requirements for computational results. We computed the ordering cost, 
expected holding cost, expected shortage cost and expected outdates cost, and these computations were 
applied to determine the expected cost for the fixed lifetime inventory system. The expected cost model 
with Set- up Cost and without Set- up Cost were useful costs for the determination of the optimal ordering 
policy for this type of inventory system Finally, organization may like to operate under a given aspiration 
scenario, values of inventory level that satisfy such condition are identified and are used in the cost 
function to determine optimal operating conditions, this will go a long way to reduce waste and holding 
cost. 

 

Keywords: Fixed lifetime; optimal ordering policies; ordering cost; expected holding cost; expected 
shortage cost; expected outdate cost; unique minimum. 
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1 Introduction 
 
In this paper we set up a model denoted by  E�C� (S)	  for the analysis of the problem of ordering fixed 
lifetime inventories that deal with the characteristics of this type of problems. The lifetime inventory system 
consist of an age-wise profile of item (state space).The size of the space is directly proportional to the life of 
the items. Consequently, the inventory management is faced with lots of challenges otherwise item will be 
outdated. The objective of the study is to examine decisions regarding when to order or not given some 
conditions. Fixed lifetime products have deterministic shelf life i.e. if a product remains unused up to its 
lifetime; it is considered to be out-dated and must be disposed off. Important examples of items in real life 
include: human blood used for transfusion, food stuffs, photographic film, vaccine, batteries chemicals and 
other pharmaceutical products. The fixed lifetime products in inventory are usually depleted following either 
First-In-First-Out (FIFO) or Last-In-First-Out (LIFO) issuing policy. It is, therefore, an important problem of 
finding the optimal ordering policy which is closely related to that of finding suitable issuing policy for such 
a perishable inventory system. Inventory models for fixed lifetime perishable products have been studied by 
various researchers.  
 

2 Literature Review    
 
Products with fixed lifetime and deterministic demand, ordering policies are similar to that of non-perishable 
products. In these cases, one would always order in such a way that the product never perishes. If a fixed 
lead time is included, then one simply adjusts the reorder point so that the product does not perish. The 
difficulty arises when the demand is random and one has to determine the right amount of inventory to hold. 
The most commonly used product that has a fixed lifetime and random demand is probably the newspaper. 
The newsvendor problem is one of the earliest works dealing with fixed life perishability. The simple 
newsvendor problem deals with finding the optimal single-period order quantity for a newsvendor who faces 
an uncertain demand. 
 
Firstly [1], examined the fixed lifetime perishable inventory system and obtained an estimator for the 
probability that an item will be sold in a given period; the probability is used to derive outdate and shortage 
quantities. The earliest work with respect to identifying the optimal order quantity was carried out by Ford 
Whitman Harris. The model developed by Harris is commonly referred to as the Economic Order Quantity 
(EOQ) model, and is also known as the lot sized model. The objective of the model is to find the right 
quantity of products to order, given the constant demand rate, the costs associated with ordering and holding 
inventory, such that the annual operating cost is minimized. Models have been developed for random 
demands with and without lead times. Performance measures like service levels, fill rates, etc. are used to 
calculate the safety stock to be carried and to determine order-up-to-levels and reorder points. Models were 
also developed to identify optimal order quantities for multi-echelon systems and systems with time-varying 
demand. For product with fixed lifetime and deterministic demand ordering policies are similar to that of 
non-perishable products. In these cases, one would always order in such a way that product never perishes. If 
a fixed lead time is included, then on simply adjusts the reorder point so that the product does not perish. 
The difficulty arises when the demand is random and one has to determine the right amount of inventory to 
hold. The most commonly used product that has a fixed lifetime and random demand is probably the 
newspaper.  
 
Enagbonma and Eraikhuemen [2], constructed a model from which optimal ordering policies for inventory 
that perishes after a fixed number of periods for the discrete demand scenario. They determine ordering 
decisions that takes into account the perishable nature of the inventory and recommend that the first in, first 
out, (FIFO) optimal issuing policy for the management of stock items with fixed lifetime should be used to 
minimizes expected outdates. Hence, advised decision-maker to enforce the FIFO issuing policy by exposing 
consumers to products of the same age. 
 
Venkata [3], states that products with a fixed lifetime are products whose lifetime is known in advance. 
These products do not deteriorate over the period of their lifetime but are not fit for consumption after 
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expiry. The utility of the product is assumed to be constant till it expires. Some examples of these kinds of 
products are canned goods, bottled milk, processed food, pharmaceutical products, etc. while products with a 
random lifetime are products that can be classified as age-dependent inventory as they experience 
continuous deterioration. Such products can fail at any point of time. In this case, the utility of the 
commodity decreases with time, and it becomes essential that the product be sold as soon as possible. 
Examples of products of this type are fresh vegetables, fruits, and other groceries, as well as blood in blood 
banks and organs for organ transplants. 
 
One of the most famous cases of perishable inventory is the classic newsvendor problem. This is a case of 
perishable inventory with a fixed lifetime, as a newspaper becomes obsolete after a day. The newsvendor has 
to make a decision on how much to order for the next day to maximize his profit. It is a one-period, 
stochastic demand inventory problem that has been widely studied. Azadivar and Rangarajan [4], discuss the 
basic problem, formulation, and the solution methodology. 
 
Furthermore [5], investigated an optimal procurement policy for items with an inventory level dependent 
demand rate and fixed lifetime. A mathematical model and solution methodology were developed. [6], 
considered a discrete-time supply chain for perishable goods where there are separate demand streams for 
items of different ages. The effect of substitution was particularly considered. The substitution options given 
were compared analytically in terms of the infinite horizon expected costs. Results with numerical 
experiments are given to explore the effects of problem parameters on performance.  
 
Agbadudu and Enagbonma [7], compared two expected cost functions in the management of fixed lifetime 
inventory model. since expected costs obtained in the proposed model are less than the expected cost of the 
single period inventory model. The models were developed under the assumption that demand has a discrete 
with a probability mass function (pmf) and under the deterministic fixed lifetime inventory system scenario. 
An extension of the study was suggested for fixed lifetime models when demand has a continuous 
probability density function.  
 
Dan et al. [8], considered a solution to lifetime buy quantity optimization implemented within the Life of 
Type Evaluation (LOTE) tool. It has also shown LOTE’s capability to analyze complex, multi-part systems 
with refresh dates, changing demand profiles, and modified demand distributions. The results for the 
Motorola Infrastructure Base Station case indicate that demand distribution plays an important role in the 
results obtained. The LOTE results have also revealed that organizations making lifetime buys may be 
placing more emphasis on the short-term under-buy penalty costs and less on the inventory and procurement 
costs that contribute as much or more to the lifecycle cost, and as a result organizations may be consistently 
overbuying their lifetime buys.      
 
John et al. [9], constructed an inventory model for deteriorating items with constant rate of replenishment, 
time and selling price dependent demand and decay has been developed and analyzed in the light of various 
parameters and costs and with the objective of maximizing the total system profit. The model was illustrated 
with numerical examples and sensitivity analysis of the model with respect to costs and parameters was also 
carried out. This model also includes the exponential decay model as a particular case for specific values of 
the parameters. The proposed model can further be enriched by incorporating salvage of deteriorated units, 
inflation, quantity discount, and trade credits etc. They develop and analyze an inventory model for 
deteriorating items with Weibull rate of decay having finite rate of replenishment and selling price 
dependent demand. The inventory level at any time “t” is governed by differential equations. With suitable 
cost considerations the total cost function and profit rate function are also obtained by maximizing the profit 
rate function, the optimal ordering and pricing policies of the model are derived. Nandakumar and Morton 
[10], derived near myopic bounds on the order quantities and used the bounds to evaluate the performance of 
the resulting heuristics. The near myopic approach, basically, casts any periodic inventory problem in the 
framework of a newsboy problem and attempts to bound the various newsboy parameters. The upper and 
lower bounds of various parameters lead to bound on the order quantity.  
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Liu and Lian [11], analyzed an (s, S) continuous review perishable inventory system with a general renewal 
demand process and instantaneous replenishments. Using a Markov renewal approach, they obtained closed-
form solutions for the steady state probability distribution of the inventory level and system performance 
measures. They also constructed a closed-form expected cost function and showed that for any fixed S, the 
cost function is either monotone or convex in s. Kalpakam and Sapna [12], studied an (s; S) model with 
Poisson demand, assuming an exponential lead time and an exponential lifetime. Based on Markov chain 
technique, the exact cost function was obtained. Some extensions of this model have been considered.     
 
Kalpakam and Shanthi [13], Proposed a similar model in which orders are placed only at demand epochs. 
Later, the authors consider the case of renewal demand [14], [15] considered a similar model and derived the 
total expected cost function. Perry [16], considered a perishable inventory system where the commodity's 
arrival and customer demand processes are stochastic and the stored items have a constant lifetime. The 
stock level is represented by the amount arriving during the life of the oldest item and it is assumed to 
fluctuate as an alternating two-sided regulated Brownian motion between barriers 0 and 1. Hitting of level 0 
are outdating and hitting of level 1 are unsatisfied demands. A useful martingale is introduced for analyzing 
the controlled process as well as the total expected discounted cost. Chiu [17], developed an approximate 
expression for the total expected average cost per unit time for the fixed lifetime inventory system under the 
assumption of positive lead time, but could not prove that the cost function was convex; however an iterative 
scheme for solving the problem was given.  
 
Williams and Patuwo [18], also obtained optimal order quantities for a product with a two- period lifetime 
and a positive lead time for replenishment. Most of the fixed lifetime models and all of the aforementioned 
models are based on the periodic review policy. Chiu [19], later developed a good approximation for the 
expected inventory level per unit time and compared it with existing approaches. The author also showed 
that inappropriate approximations result in distortions when identifying optimal policies.  
 
Goh et al. [20], studied perishable inventory models with random replenishments (with blood donation 
processes in mind). They have established the equivalences of the time between successive outdating and the 
time between successive demand losses with the busy periods of the corresponding single server queues with 
impatient customers. 
 
Ravichandran [21], analyzed a perishable model with a positive random lead time and a Poisson demand 
process. By assuming that the aging of the new stock only begins after the complete depletion of the existing 
stocks, some analytical results were obtained. 
 

3 Assumptions of the Proposed Model 
 
The proposed model is developed under the following assumptions.  
 

(i) The issuing policy is first in, first out (FIFO). 
(ii)  Periodic review and order-up to order policy with parameter S is used.  
(iii)  Units expire after the age m periods in the inventory   system.  
(iv) Time is divided into discrete periods.  
(v) The length of a period is arbitrary but fixed.  
(vi) The lead time is zero. 
(vii)  Demands in successive periods are independent and identically distributed random variables with 

known distribution. 
(viii)  The sequence of events within each period is as follows: (a) an order is placed and order arrives 

immediately,(b) demand for the period is filled and (c) any unit that has reached the age m and has 
not been used is outdated. 

(ix) he order quantity is determined as follows. If IP is the inventory position at the time of placing 
order, the order quantity is Q = S – IP. 
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3.1 Mathematical Notations 
 
The following Mathematical notations were used in the development of the proposed model. 
 
K = setup cost 
 
c = replenishment cost 
 
θ = mean demand 
 
S = Inventory level at the start of each period 
 
h = holding cost 
 
p = shortage cost 
 
i =  amount demanded 
 
f(t)  = probability density function of the uniform distribution 
 
m = fixed life time 
 
D(t)= demand in period t 
 
E(.) = the expectation function    
 
E (D(t)) = θ 
 
E
C(S)� = Expected total relevant cost function for the period without Setup cost.  
 
E�C� (S)	 = Expected total relevant cost function for the period with Setup cost 
 
E = Total expected average cost per unit time for the fixed lifetime inventory system under the assumption 
of positive lead time 
 

C    = Average cost per unit time 
 
IP = Inventory Position 
                      
W = Expected outdate quantity  
 
Q = Expected ordered quantity 
 
 The model is based on the probability that an item in the inventory system is sold in a period. The estimator 
for the probability that an item will be sold is given in [1] as         
       

  p =   θ

 �                                                                                                                                                 (1) 

Let  Q  be the expectation of units ordered at the end of period t and received 
 
at the beginning of period  t + 1,  given by the same expression of  [1]      
                 

Q =  E �Q(t)�  = θ

����� –θ����
                                                                                                               (2) 
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and W the expectation of units outdated at the end of period  t  also from [1] given by 
 

W =  E �W(t)�  =  Q �1 − Ɵ

��                                                                                                           (3)    
 
Succinctly 1 – P is the probability that an item is not sold in one period.  (1 – P) m is the probability that an 
item will be outdated, this is based on the fact that transaction in the period S are independent. 
 
In particular outdate decreases with increasing m, since 1 – P < 1.  This result was conjecture by Nahmias 
(1977). Using (2) in (3) we obtain 
 

w = θ(��")#
��(��")#                                                                                                                                (4) 

                        
This is an expression similar to that given by [22] and the same equation of [2] for the daily outdates 
quantity of cross-match blood, P is the proportion of cross-match blood that is actually transfused.    
 
Where D (t) is demand in period t,  
 

E �D(t)� =  θ                                                                                                                                             (5)   
                  

Ordering cost =  c(S − IP)                                                                                                                        (6)    
                

Expected   holding cost = h 4 (S − t5
6 ) f(t) dt                                                                                        (7) 

 
The probability of running out of stock is given by    
                     

P89: =   4 f(t)∞

�  dt = 1 − 4 f(t)�
6  dt                                                                                                              (8) 

 
and the shortage quantity is given by 
 

Z = 4 (t − S∞

� )  f(t) dt                                                                                                                                      (9) 
 

Expected  shortage cost = p 4 (t − S∞

� )  f(t) dt =    p[ θ −  4 t�
6  f(t) dt  − S P89: ]                     (10) 

 
Applying (8) in (10) yields 
 

Expected  shortage cost = p 4 (t − S∞

� )  f(t) dt =    p[ θ −  4 t�
6  f(t) dt  − S(1 − 4 f(t)�

6  dt )]  (11) 
 

Expected  outdate cost = w 4 (S − t5
6 ) f(t)dt                                                                                          (12) 

 
Applying   (6), (.7),  (10 ) and (12) yields the  mathematical model  given by   
                   

E�C� (S)	 = K +  c ( S − IP) +  h 4 (S − t�
6 ) f(t) dt  +  p 4 (t − S∞

� ) f(t) dt +   w 4 (S − t�
6 ) f(t)dt   (13) 

 

3.2    The Necessary Condition for a Minimum  
 
The function can be shown to be convex in s, thus having a unique minimization. Taking the first derivative 
of E�C� (S)	   with respect to s and equating to zero, 
 

 E�C� ′ (S)	 =  c + h 4 f(t)dt5
6  − p 4 f(t)dt + w 4 f(t)dt5

6
∞

6 = 0 
 
 c +  h P
C ≤ S� − p(1 − P
C ≤ S� + w P
C ≤ S�) = 0 
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c +  h P
C ≤ S� − p + pP
C ≤ S�) + w P
C ≤ E� = 0 
 
h P
C ≤ S� + w P
C ≤ S� + p P
C ≤ S� = p − c 
 
P
t ≤ S� (h + p + w) = p − c 
 

P
t ≤ S∗� = p − c
h + p + w 

 

The condition is also sufficient since   E�C� (S)	    is  a  convex function        
 
Since K  is the setup cost assumed to be independent of the quantity ordered or produced, the minimum 
value of E{C�  (S)} must occur at S* ,hence E{C(S)} and E{C� (S)} must appear as shown in fig .2 
 

4 Numerical Example and Guidelines 
    
We give an example to illustrate the method and suggest guidelines for the management of the fixed lifetime 
inventory problem. We considered inventory system with a probability density function of the uniform 
distribution .The ordered and outdate quantities are computed using the equation (2) and the equation (4) for 
(say) fixed lifetime m = 4, and mean  θ = 35, inventory level S = 37, 38, 39,…, 347 the results are given in 
tables 1 and 2 and these quantities are applied in the expected cost function. The results are given in tables 3, 
4, 5, and 6.    

 
Table 1.  Operating characteristics (S = 37 to 62) 

 
Inventory level (S) Expected ordered quantity  

Q = E(Q(t)) 
Inventory position Expected  outdate  quantity 

W = E(W(t)) 
37 35.0003 1.9986 0.0003 
38 35.0014 2.9961 0.0014 
39 35.0039 3.9915 0.0039 
40 35.0085 4.9839 0.0085 
41 35.0161 5.9730 0.0161 
42 35.0270 6.9580 0.0270 
43 35.0420 7.9386 0.0420 
44 35.0614 8.9144 0.0614 
45 35.0856 9.8852 0.0856 
46 35.1148 10.8506 0.1148 
47 35.1494 11.8107 0.1494 
48 35.1893 12.7652 0.1893 
49 35.2348 13.7142 0.2348 
50 35.2858 14.6576 0.2858 
51 35.3424 15.5956 0.3424 
52 35.4044 16.5281 0.4044 
53 35.4719 17.4552 0.4719 
54 35.5448 18.3771 0.5448 
55 35.6229 19.2939 0.6229 
56 35.7061 20.2057 0.7061 
57 35.7943 21.1126 0.7943 
58 35.8874 22.0147 0.8874 
59 35.9853 22.9123 0.9853 
60 36.0877 23.8054 1.0877 
61 36.1946 24.6942 1.1946 
62 36.3058 25.5789 1.3058 
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Fig. 1, Indicates expected costs against inventory level. Specifically, a positive directional relationship exist 
between (a) ordering cost and inventory level, (b) expected holding cost and inventory level, (c) expected 
outdate cost and inventory level. However an inverse relationship between expected shortage cost and 
inventory level, Fig. 2, indicates (y-Y) optimal ordering policies. Fig. 2 was obtained by plotting 
E�C� (S)	 and E
C (S)�   on  the scale.  The Tables 1-2 indicates expected ordered quantities, inventory 
positions and expected outdate quantities when   m = 4, θ = 35 and inventory level s = 37, 38, 39…347.  
 
Tables 3 – 6  indicates set up cost, ordering cost, expected holding cost, expected shortage cost , expected  
outdates cost, expected cost without setup cost {EC(S)} and  expected cost with setup cost {EĈ(S)}. 
 
 The value Y is equal to S* while the value y is determined from 
 
E {C(y)} =   E�C� (Y)	 = K + E {C(Y)}, Such that y < Y. 
 
 If   IP < y, order Y – IP 
 
 If   IP ≥ y, do not order. 
 
From the analysis using the proposed method, we recommend the following guideline for the management 
of the fixed lifetime inventory system. Firstly, the model is based on average demand, the demand 
distribution and inventory level. Secondly, effort should be geared towards obtaining accurate information 
on the demand distribution. 
 

Table 2. Operating characteristics (S = 63  to 347) 
 

Inventory level (S) Expected ordered quantity  
Q = E(Q(t)) 

Inventory position Expected  outdate  quantity 
W = E(W(t)) 

63 36.4211 26.4596 1.4211 
64 36.5404 27.3363 1.5404 
65 36.6637 28.2094 1.6637 
66 36.7906 29.0788 1.7906 
67 36.9212 29.9447 1.9212 
68 37.0553 30.8073 2.0553 
69 37.1927 31.6667 2.1927 
70 37.3333 32.5229 2.3333 
71 37.4771 33.3761 2.4771 
72 37.6239 34.2265 2.6239 
73 37.7735 35.0740 2.7735 
74 37.9260 35.9189 2.9260 
75 38.0811 36.7612 3.0811 
76 38.2388 37.6010 3.2388 
77 38.3990 38.4384 3.3990 
78 38.5616 39.2734 3.5616 
79 38.7266 40.1062 3.7266 
80 38.8938 40.9369 3.8938 
81 39.0631 41.7655 4.0631 
⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ 
342 99.8020 241.9516 64.8020 
343 100.0484 242.7052 65.0484 
344 100.2948 243.4588 65.2948 
345 100.5412 244.2123 65.5412 
346 100.7877 244.9658 65.7877 
347 101.0342 347.0000 66.0342 
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Table 3. Operating characteristics (S = 37 to 52) 
 
Inventory 
level (s) 

Setup 
cost 

Ordering 
cost 

Expected 
holding cost 

Expected 
shortage cost 

Expected 
outdate cost 

{EC(S)} {EĈ(S)} 

37 50 4200.0359 462.8378 2475 0.0055 7137.8792 7187.8792 
38 50 4200.1632 475.0000 2400 0.0258 7075.1890 7125.1890 
39 50 4200.4648 487.8205 2325 0.0755 7013.3609 7063.3609 
40 50 4201.0256 500.0000 2250 0.1709 6951.1966 7001.1966 
41 50 4201.9272 512.8049 2175 0.3292 6890.0613 6940.0613 
42 50 4203.2432 525.0000 2100 0.5676 6828.8108 6878.8108 
43 50 4205.0380 537.7907 2025 0.9026 6768.7313 6818.7313 
44 50 4207.3649 550.0000 1950 1.3502 6708.7152 6758.7152 
45 50 4210.2674 562.7778 1875 1.9251 6649.9703 6699.9703 
46 50 4213.7788 575.0000 1800 2.6409 6591.4197 6641.4197 
47 50 4217.9239 587.7660 1725 3.5101 6534.1999 6584.1999 
48 50 4222.7196 600.0000 1650 4.5439 6477.2635 6527.2635 
49 50 4228.1761 612.7551 1575 5.7526 6421.6838 6471.6838 
50 50 4234.2978 625.0000 1500 7.1454 6366.4432 6416.4432 
51 50 4241.0843 637.7451 1425 8.7304 6312.5598 6362.5598 
52 50 4248.5312 650.0000 1350 10.5151 6259.0463 6309.0463 

 

 
 

Fig. 1. Expected Costs against the Inventory Level 
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Table 4. Operating characteristics (S = 179 to 196) 
 
Inventory 
level (s) 

Setup 
cost 

Ordering 
cost 

Expected 
holding cost 

Expected 
shortage cost 

Expected 
outdate cost 

{EC(S)} {EĈ(S)} 

179 50 7226.8019 2237.5698 -8175 2257.4897 3546.8614 3596.8614 
180 50 7255.0995 2250.0000 -8250 2291.3246 3546.4242 3596.4242 
181 50 7283.4175 2262.5691 -8325 2325.4107 3546.3972 3596.3972 
182 50 7311.7553 2275.0000 -8400 2359.7477 3546.5030 3596.5030 
183 50 7340.1126 2287.5683 -8475 2394.3359 3547.0168 3597.0168 
184 50 7368.4892 2300.0000 -8550 2429.1751 3547.6643 3597.6643 
185 50 7396.8847 2312.5676 -8625 2464.2653 3548.7175 3598.7175 
186 50 7425.2987 2325.0000 -8700 2499.6065 3549.9052 3599.9052 
187 50 7453.7309 2337.5668 -8775 2535.1987 3551.4965 3601.4965 
188 50 7482.1811 2350.0000 -8850 2571.0419 3553.2230 3603.2230 
189 50 7510.6489 2362.5661 -8925 2607.1360 3555.3511 3605.3511 
190 50 7539.1341 2375.0000 -9000 2643.4811 3557.6152 3607.6152 
191 50 7567.6362 2387.5654 -9075 2680.0772 3560.2788 3610.2788 
192 50 7596.1551 2400.0000 -9150 2716.9241 3563.0792 3613.0792 
193 50 7624.6905 2412.5648 -9225 2754.0220 3566.2773 3616.2773 
194 50 7653.2421 2425.0000 -9300 2791.3707 3569.6129 3619.6129 
195 50 7681.8097 2437.5641 -9375 2828.9704 3573.3441 3623.3441 
196 50 7710.3929 2450.0000 -9450 2866.8209 3577.2138 3627.2138 
 

Table 5 . Operating characteristics (S = 53   to 185) 
 
Inventory 
level (s) 

Setup 
cost 

Ordering 
cost 

Expected 
holding cost 

Expected 
shortage cost 

Expected 
outdate cost 

{EC(S)} {EĈ(S)} 

53 50 4256.6308 662.7358 1275 12.5060 6206.8726 6256.8726 
54 50 4265.3727 675.0000 1200 14.7089 6155.0815 6205.0815 
55 50 4274.7445 687.7273 1125 17.1290 6104.6008 6154.6008 
56 50 4284.7323 700.0000 1050 19.7709 6054.5031 6104.5031 
57 50 4295.3206 712.7193 975 22.6386 6005.6786 6055.6786 
58 50 4306.4935 725.0000 900 25.7359 5957.2294 6007.2294 
59 50 4318.2342 737.7119 825 29.0659 5910.0120 5960.0120 
60 50 4330.5256 750.0000 750 32.6314 5863.1570 5913.1570 
61 50 4343.3504 762.7049 675 36.4349 5817.4902 5867.4902 
62 50 4356.6914 775.0000 600 40.4786 5772.1700 5822.1700 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
179 50 7226.8019 2237.5698 -8175 2257.4897 3546.8614 3596.8614 
180 50 7255.0995 2250.0000 -8250 2291.3246 3546.4242 3596.4242 
181 50 7283.4175 2262.5691 -8325 2325.4107 3546.3972 3596.3972 
182 50 7311.7553 2275.0000 -8400 2359.7477 3546.5030 3596.5030 
183 50 7340.1126 2287.5683 -8475 2394.3359 3547.0168 3597.0168 
184 50 7368.4892 2300.0000 -8550 2429.1751 3547.6643 3597.6643 
185 50 7396.8847 2312.5676 -8625 2464.2653 3548.7175 3598.7175 

 
4.1 No-Setup Cost Model 
 
The model without the setup cost is given by the equation (14) 
 

E
C(S)� = c( S − IP) +  h 4 (S − t�
6 ) f(t) dt + p 4 (t − S∞

� ) f(t) dt +   w 4 (S − t�
6 ) f(t)dt             (14) 
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Table 6. Operating Characteristics (S = 186 to 347) 
 

Inventory 
level (s) 

Setup 
cost 

Ordering 
cost 

Expected 
holding cost 

Expected 
shortage cost 

Expected 
outdate cost 

{EC(S)} {EĈ(S)}  

186 50 7425.2987 2325.0000 -8700 2499.6065 3549.9052 3599.9052 
187 50 7453.7309 2337.5668 -8775 2535.1987 3551.4965 3601.4965 
188 50 7482.1811 2350.0000 -8850 2571.0419 3553.2230 3603.2230 
189 50 7510.6489 2362.5661 -8925 2607.1360 3555.3511 3605.3511 
190 50 7539.1341 2375.0000 -9000 2643.4811 3557.6152 3607.6152 
191 50 7567.6362 2387.5654 -9075 2680.0772 3560.2788 3610.2788 
192 50 7596.1551 2400.0000 -9150 2716.9241 3563.0792 3613.0792 
193 50 7624.6905 2412.5648 -9225 2754.0220 3566.2773 3616.2773 
194 50 7653.2421 2425.0000 -9300 2791.3707 3569.6129 3619.6129 
195 50 7681.8097 2437.5641 -9375 2828.9704 3573.3441 3623.3441 
196 50 7710.3929 2450.0000 -9450 2866.8209 3577.2138 3627.2138 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
341 50 11946.6701 4262.5367 -20325 11006.7271 6890.9338 6940.9338 
342 50 11976.2355 4275.0000 -20400 11081.1356 6932.3711 6982.3711 
343 50 12005.8036 4287.5364 -20475 11155.7943 6974.1344 7024.1344 
344 50 12035.3744 4300.0000 -20550 11230.7032 7016.0776 7066.0776 
345 50 12064.9477 4312.5362 -20625 11305.8623 7058.3462 7108.3462 
346 50 12094.5236 4325.0000 -20700 11381.2715 7100.7951 7150.7951 
347 50 12124.1021 4337.5360 -20775 11456.9309 7143.5690 7193.5690 

 

 
 

Fig. 2. (y-Y) Optimal Ordering Policy 
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4.2 Setup Cost Model 
 
The model with setup cost K is given by the equation (15) 
 

E�C� (S)	 = K +  c( S − IP) +  h 4 (S − t�
6 ) f(t) dt + p 4 (t − S∞

� ) f(t) dt +   w 4 (S − t�
6 ) f(t)dt   (15) 

 
4.3 The y-Y Ordering Policy for the Inventory System with Fixed Lifetime 
 
The symbols y and Y are defined in fig 2.  The value Y is equal to s* while the value y is determined from 
E {C(y)} =  E�C� (Y)	 = K + E {C(Y)}  
Such that y<Y. 
 
Assuming IP, the amount on hand before an order is placed, the number of quantity to be is  
answered under these three conditions. 
 
 i   IP < y 
 
 ii    y ≤ IP ≤ Y 
 
 iii  IP > Y 
 
Condition 1:  (IP<y) 
 
Because IP is already on hand, its equivalent cost is given by E{C(IP)}. If any additional amount s-IP(s>IP) 
is ordered, the corresponding cost given s  is E�C� (S)	, which includes the setup cost K. from  above  see  fig 
2 , we have: 
 

min5 LM"E�C� (S)	 = E�C� (Y)	 < O
C(IP)� 
 
The implication is that the optimal inventory levels reach S* = Y and the amount ordered equals Y-IP 
 
Condition 2 : (y ≤ IP ≤ Y)   
 
From data extracted from Fig. 2, we have, 
 
E{C(IP)}  ≤  min5LM" E�C�(S)	 = E(C�(Y)    
 
Thus, it is not advantageous to order in this case and S* = IP. 
 
Condition 3: (IP > Y) 
 
From data extracted from Fig. 2, we have for s > IP, 
 
E(C(IP) < E
C�(S)� 
The condition indicates that, as in condition (2), it is not advantageous to place an order- that is s* = IP. 
 
The optimal inventory policy, frequently referred to as the y-Y policy, is summarized as: 
 
If   IP < y, order Y-IP 
 
If   IP ≥ y, do not order. 
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The optimality of the y-Y policy is guaranteed because the associated cost function is convex. 
 

5 Conclusions 
 
We have computed optimal ordering policies for a probabilistic fixed lifetime inventory system. Ordering 
decisions that take into account the perishable nature of the inventory were determined. The first in, first out, 
(FIFO) optimal issuing policy for the management of stock items with fixed lifetime should be used. The 
FIFO policy minimizes expected outdates. So, it is advisable for the decision-maker to enforce this issuing 
policy by exposing consumers to products of the same age. Contrariwise, if the consumer enforces the 
issuing policy, the last in, first out (LIFO) policy will result generally. From the analysis of the proposed 
model we found out that If inventory position IP < y, order Y-IP. However, If inventory position IP ≥ y, do 
not order.  Important practical use of the model in real life include: human blood used for transfusion, food 
stuffs, photographic film, vaccine, batteries chemicals and other pharmaceutical products.  
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