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Force Control of a Shape Memory Alloy Spring Actuator 
Based on Internal Electric Resistance Feedback and Artificial 
Neural Networks
Nathan L.D. Sarmento, José Marques Basílio, Maxsuel F. Cunha, Cícero R. Souto, 
and Andreas Ries

Electrical Engineering Department, Federal University of Paraiba, Cidade Universitaria s/n, João Pessoa, 
Brazil

ABSTRACT
This paper presents a study of the resistive behavior of a Shape 
Memory Alloy spring, with a focus on the application of elec
trical resistance feedback in control systems. Artificial Neural 
Networks of different topologies were designed to learn the 
relation between spring electrical resistance and the force 
exerted. The feedback between layers in Neural Networks is 
demonstrated to be a key parameter in learning the non-linear 
and hysteretic behavior of Shape Memory Alloys. Experiments 
with closed-loop systems showed that shape memory alloy 
springs generated forces that converged satisfactorily to the 
desired reference values. The scientific contribution of this 
work is the use of electrical resistance variation as feedback for 
controlling the spring force, eliminating the use of an external 
force sensor. Neural networks were used for both, the sensing 
process and the system control; in that way the nonlinear and 
hysterical behavior of the shape memory alloy actuator was well 
considered.
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Introduction

Shape Memory Alloys (SMAs) are metallic alloys that demonstrate the capa
city of recovering their original shape after a pseudoplastic deformation, or 
apply a significant recovery force upon heating when previously a phase 
transformation was induced by strain (Otsuka and Wayman 1998). The 
Shape Memory Effect is a thermomechanical pheno-menon, and the conse
quence of a change in the crystalline structure; considering NiTi alloy, a low- 
temperature phase known as martensite is distinguished from a high- 
temperature phase, known as austenite (Lagoudas 2008).

Recently, the interest in SMA actuators has increased due to their promising 
properties such as reliability, high-energy density, simple design, and silent 
operation. Despite the great potential of SMA actuators in many fields, there 
are still challenges in actuator design due to low-energy efficiency, non- 
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linearity, hysteretic behavior, and slow response time, when compared with 
conventional actuators (Engeberg et al. 2015; Li and Tian 2018; Pan et al. 2017; 
Silva et al. 2013, 2017). Such characteristics must be considered since they can 
result in undesirable performance or unstable dynamics of the system.

A common challenge in the application of SMA actuators is the displace
ment control using a physical variable as feedback. A position is the most 
common feedback variable in this type of control and position sensors are 
expensive. Temperature feedback has also been studied, but it is less conve
nient due to the difficulty measuring temperature accurately. In most cases, the 
temperature shows a gradient over the actuator. The relation between electric 
resistance variation and deformation in a SMA actuator during phase trans
formation is deterministic and reproducible (Ma, Song, and Lee 2004), espe
cially due to the fact that resistivity depends directly on the martensite fraction 
of the material. Therefore, the electric resistance can be used as a feedback 
variable for controlling SMA actuators.

Several studies have been conducted to understand the electric resistance 
variation behavior in Shape Memory Alloys. Mathematical models have been 
proposed to describe the relation between electric resistance and deformation 
in SMA wires (Cui, Song, and Li 2010; Novák et al. 2008). Zhang (Zhang, Yin, 
and Zhu 2013) used electric resistance feedback for actuating SMA-based 
artificial muscles. Similarly, electric resistance feedback controlled a SMA 
servo actuator in an active endoscope (Ikuta, Tsukamoto, and Hirose 1988) 
and was investigated for aerospace applications at high altitudes (Ng et al. 
2017).

In general, the electric resistance behavior is non-linear and depends on 
many factors. Simple models may not be convenient, and more sophisticated 
control strategies are required. Considering the high complexity, Artificial 
Neural Networks (ANN) seem to be an interesting tool for implementing 
control based on electric resistance feedback.

Artificial neural networks learn certain behaviors and patterns iteratively, in 
order to achieve the desired output from certain input data. Neural networks 
learn by means of a training process. A selected data set is used to conduct 
network training, known as the training set. Network training is done follow
ing a set of rules, known as the learning algorithm. Each learning algorithm 
has its own characteristics and applications for which it is best suitable.

ANNs are capable to learn non-linear relations, they should be able to 
handle Shape Memory Alloy properties in a more natural way. Some research 
studies follow this philosophy. For example, position control of a SMA actua
tor based on electric resistance feedback was implemented by Ning et al. using 
an Artificial Neural Network (Ma, Song, and Lee 2004). Similarly, an Artificial 
Neural Network modeled the relation between an LVDT position and electric 
resistance, aiming to implement a sensorless control of a SMA actuator (Asua 
et al. 2010).
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In addition, Artificial Neural Networks can also be interesting tools for 
implementing controllers. For instance, a Hysteretic Neural Network con
trolled the sliding of a SMA beam (Hannen, Crews, and Buckner 2012). Nikdel 
et al. presented an ANN-based Model Predictive Controller for a manipulator 
built from SMA wires (Nikdel et al. 2014). An adaptive ANN was developed to 
adjust strain in SMA wires (Srivastava, Ward, and Patel 2017).

The relation between electric resistance and force of a SMA spring is studied 
and two different ANNs are designed: one network describes this relation 
eliminating the need for measuring the spring force by means of a load cell; 
the second one implements a simplified control for actuating the spring. The 
reason for using two different neural networks was to separate the sensing and 
control functions and to simplify the training process of each network 
separately.

The novelty of this study is the use of electric resistance variation as 
a feedback variable of the control system. This is important due to the fact 
that the continuous use of the SMA spring causes material fatigue, modifying 
the electric resistance of the actuator itself over time. Thus, the variation of 
electrical resistance of the actuator proved to be more repetitive and reliable in 
the control process than the electrical resistance itself. This allows the use of 
simpler and easier to implement neural networks for sensing and control. 
Feedback through position is most widely used, but has the disadvantage of its 
high cost. In this sense, the relationship between electrical resistance variation 
and strain in an SMA actuator during phase transformations is deterministic 
and repetitive, especially due to the fact that its resistivity depends directly on 
the martensite fraction in the material. Thus, the electrical resistance feedback 
can replace, for example, the position sensor, saving costs, reducing the 
required space and simplifying the electronic instrumentation of an embedded 
system that eventually uses this actuator. Besides that, using the electrical 
resistance as feedback makes the control system faster compared to 
a temperature-based control system.

Experimental Details

NiTi SMA springs (53% Ni and 47% Ti) with a final temperature of austenite 
formation Af � 17� C under zero deformation were used; these are super
elastic at room temperature. The length of the NiTi spring including the 
eyelets was 15 mm when fully relaxed. In applications, they are typically 
stretched from 35 to 45 mm. Their nominal force is 200 gf.

A SMA spring was mounted on a test platform, as shown in Figures 1 and 
Figure 2. A load cell measured the force exerted by the spring during the 
cycling processes. A microcontroller generated Pulse Width Modulated 
(PWM) current heated the spring. The frequency of the PWM signal was 
100 Hz. The electric current was gradually rising until the maximum Root 
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Mean Square value of 250 mA. This value was determined experimentally and 
it is the necessary current to induce the austenite phase in the SMA spring with 
minimum deterioration of the material. Then, the current was gradually 
decreased until the cycle is complete.

Figure 1. Experimental setup.

Figure 2. Layout of the experimental setup.
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Different PWM signal frequencies were tested: 100 Hz, 200 Hz, 400 Hz, 
500 Hz, 800 Hz, 1000 Hz, and 2000 Hz. No significant differences were 
observed in the spring behavior due to frequency variation. Thus, in terms 
of control, the choice of the lowest frequency was prioritized, aiming at 
decreasing the minimum sampling rate and not overloading the data acquisi
tion system.

The following data were collected during the experiment and served as the 
data basis for neural network training: the variation of electrical resistance 
(obtained from voltage and current readings) with respect to the initial 
resistance value before the corresponding cycle, the spring force, the initial 
values of resistance and force, as well as logical signals representing the 
corresponding phase transformation. A detailed description of the input 
data of each neural network is given in the subsections “Artificial Neural 
Network as Sensor” and “Artificial Neural Network as Model for Control.”

The training process was done using two different SMA springs of equal 
dimensions. The springs were subjected to 26 heating/cooling cycles to collect 
data for ANN training. A total of 7619 data points were collected; 75% of them 
were used for the training process, 15% for performance validation and the 
remaining 10% for specific tests. The Levenberg-Marquardt algorithm with 
cross-validation was implemented in all training tests. A third SMA spring 
(different from the springs used for training) was used for control experi
ments, aiming at evaluating the trained neural networks.

A USB-6212 acquisition board from National Instruments was used to 
acquire all the data used for training, as well as to implement the control 
system and the neural networks. All routines implemented on this hardware 
were developed by means of the LabView software. Only neural network 
training was done using the C programming language.

The load cell characterization was done with a correctly calibrated dynam
ometer and various weights. The dynamometer measured the weight force of 
the masses, which is correlated to the output voltage of the load cell. These data 
were collected and the characteristic curves of mass (weight force) versus 
output voltage of the load cell were drawn. Two different Artificial Neural 
Networks are designed to implement the control of the SMA spring: the first 
one actuated as a sensor based on electric resistance feedback, and the second 
one served as a part of the control system.

Methodology

Artificial Neural Network as Sensor

Feedforward ANNs are networks working without feedback loops between 
layers. Recurrent neural networks (RNN) are networks that have feedback 
loops between layers. ANNs using these two different topologies are designed 
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and the results are compared. The purpose of testing these two different 
Neural Network topologies is an evaluation of their ability to describe the non- 
linear and hysteretic behavior of the SMA actuator.

The feedforward ANN is shown in Figure 3, the RNN in Figure 4. Both 
neural networks have one hidden layer with 5 neurons; the activation function 
used was the hyperbolic tangent. A huge number of layers or neurons may lead 
the network to overfit, i.e. the network memorizes the behavior of the data 
presented for training, but it is not capable to generalize this behavior in 
different situations. As a practical rule for designing ANNs, the number of 
hidden layers and neurons should be as low as possible.

The input data for the feedforward ANN include the electric resistance 
variation values, the initial values of force and electric resistance and a tag 
signal. The tag signal’s purpose is to identify which transformation is happen
ing during the cycle, in other words, if the actuator is transformed from 
martensite to austenite (heating process) or from austenite to martensite 

Figure 3. Feedforward ANN to describe the relation between force and electric resistance.

Figure 4. Recurrent neural network to describe the relation between force and electric resistance.
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(cooling process). The electric resistance variation is the difference between 
the resistance measured at a given time during the experiment, and the initial 
resistance value at the beginning of the network training cycles. The output 
data are the force values, in gram-force (gf).

The input data for the RNN consist of two parts: the input data of the 
feedforward ANN, plus the feedback of its output layer. The resistance input is 
a vector of three elements, graphically represented by “(0:2)” in Figure 4, 
indicating a composition of the current value of electric resistance and the 
last two resistance values. The terms “(1:1)” and “(1:2),” also graphically 
represented in Figure 4, indicate vectors composed by the last output layer 
value and the two last hidden layer values, respectively.

The use of the initial force and resistance values as inputs to the ANN is 
important due to the fact that the electric resistance and the force applied by 
the SMA spring are influenced by factors, such as temperature and spring 
degradation. For this reason, electric resistance variation and force variation 
are used as input data and target data. In that way, when adding the initial 
values of electric resistance and force to the input data, the Neural Network 
becomes more overarching in many situations.

For all the training processes, the Levenberg-Marquardt algorithm with 
cross-validation was used. All training parameters are the same for both 
ANNs, in a way that the results depend basically on the type of network 
being used.

Artificial Neural Network as Model for Control

A feedforward ANN was designed to learn the relation between the electric 
current applied to the SMA spring and the force exerted by this spring. Electric 
current and the tag signal were used as input data for the ANN. In the same 
way the ANN was used as sensor. The output data are the force values, in 
gram-force (gf). The Artificial Neural Network that works as a model for 
controlling purpose is shown in Figure 5.

Contrary to the ANN trained as a sensor, the ANN serving as a model for 
control uses the electric current as input due to the fact that this is the 
manipulated variable of the system. In fact, the electric resistance values 
cannot be directly manipulated, but they are the direct consequence of changes 
in the electric current through the actuator. Therefore, the controller should 
provide a new electric current value.

Implementation of the Control System

The design of the controller for the system uses the Model Predictive Control 
based on Artificial Neural Networks as blueprint.
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The Model Predictive Control (MPC) is a method of process control, widely 
used in industry and academy. The basis of MPC is the calculation of a future 
sequence of input signals of a process, in order to minimize a cost function 
over a horizon of predictions (Georgieva and de Azevedo 2011). On the other 
hand, the implementation of the predictive control requires an appropriate 
dynamic model of the process to be controlled.

When working with SMA actuators, a mathematical model for the material 
may be hard to obtain or requires simplifications which limit the practical use 
of the actuator. Thus, an Artificial Neural Network may be an interesting tool 
in order to develop a dynamic controller model.

A cost function has to be chosen to implement the control. There are many 
cost functions that may be used for this purpose. In common, these cost 
functions utilize past inputs and outputs of the system to perform predictions. 
It is desirable, in terms of simplification of the project, that the cost function 
should be the simplest possible, without losing performance.

Thus, a modified MPC is designed, based on ANN, in which the cost 
function is the Mean Square Error (MSE) and the prediction horizon is unitary, 
i.e., the cost function is calculated with the last input value and the prediction is 
limited to the next iteration. From an experimental point of view, the choice of 
that particular cost function lead to a reasonable data processing time of the 
microcontroller, since the same board was used for driving, sensing, imple
mentation of neural networks, implementation of a Kalman filter for better 
signal reading, and real-time visualization of the variables studied.

A fundamental difference between a classic MPC and the controller imple
mented in this work is discretization. For the calculation of the cost function, 
an array of 330 allowed current values I to be driven through the actuator is 
created. The estimated force values Fest are calculated through the neural 
network that works as a model from the matrix of defined electric currents I 
and the value of tag signal T supplied to the network, according to the 
equation (1). The function f represents the estimation, or output of the neural 
network.

Figure 5. Artificial neural networks trained to work as controller model.
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The MSE values are then calculated from the estimated force matrix, 
according to the equation (2), in which the g function calculates the squares 
of the elements of the matrix applied to it (without changing the order of the 
matrix). 

Fest ¼ f I;Tð Þ (1) 

MSE ¼ g Fest; Frefð Þ ¼

Fest1 � Fref1

� �2

Fest2 � Fref2

� �2

..

.

Fest330 � Fref330

� �2

2

6
6
6
6
4

3

7
7
7
7
5

(2) 

Once the matrix of quadratic mean errors (MSE) is given, the lowest value 
of this matrix is determined and the electric current corresponding to the 
index of this lowest value is chosen from the matrix I. Obviously, such 
a simplified cost function may affect system performance. To solve this 
problem, a correction function is proposed, based on the error between 
output and the desired reference force, in order to compensate for the 
simplicity of the cost function. The purpose of the correction function is 
to increase or decrease the electric current applied to the SMA spring if the 
predicted current values are not sufficient to make the force converge to the 
desired output. In other words, the correction current added to the pre
dicted input increases proportionally to the difference between existing and 
desired output force, according to equation (3). The correction factor α can 
be determined according to Table 1; these values were obtained 
experimentally. 

ΔI ¼ α�error: (3) 

The system is convergent under the selected cost function, since the correction 
function implemented in the controller prevents that the electrical current 
flowing through the spring deviates from the desired value.

The block diagram of the simplified controller is shown in Figure 6 and the 
closed-loop system is implemented using both trained Neural Networks (see 
Figure 7).

Table 1. Values of the correction factor α 
according to the percent error between the 
measured force and the reference force.

Percent Error Correction Factor α

error > 20% 0:02
10% < error < 20% 0:015
5% < error < 10% 0:01
1% < error < 5% 0:005
error < 1% 0:002
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Experimental Results

Different tests were conducted with both neural networks. Initially, the ANN 
with the function of a sensor was tested, and one example of these results is 
shown in Figure 8. Equally the characterization of the ANN working as 
a controller model is given in Figure 9.

The output force values produced by the neural network were com
pared with those of a commercial force sensor module for load cells. 
Table 2 lists the observed numerical MSE values. Both trained ANNs 
approximate the desired force in a reasonable way; in fact, experimental 
MSE values are low compared to the force values produced by the 
springs.

In general, the ANN modeling a sensor always presents a worse estimate than 
the ANN modeling the controller. This is especially due to the fact that the 
variation of the electrical resistance of the spring is low when compared to the 
variation of the applied electric current. This makes the resistance readings more 
noisy.

Figure 6. Block diagram of the simplified predictive controller.

Figure 7. Block diagram of the closed loop system control.
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Figure 8. Example of a training experiment of the feedforward ANN that works as sensor with one 
hidden layer.

Figure 9. Example of a training experiments of the feedforward ANN that works as model to the 
controller with one hidden layer.

Table 2. MSE values of the test 
experiments for the trained 
neural networks.

ANN MSE

ANN used as sensor 6:25
ANN used as model 1:21
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Finally, experiments were conducted to test the efficiency of the control 
system. In these experiments, the desired force is changed over time and the 
force measured by a commercial sensor is compared to the trained ANN 
estimated force (see one example of these experiments in Figure 10). 
Figure 11 displays the current passing through the spring for the same 
experiment.

Figure 10. Force control in a SMA spring using the designed simplified predictive controller based 
on artificial neural network. Desired force, ANN estimated force and experimental force as function 
of time.

Figure 11. Force control in a SMA spring using the designed simplified predictive controller based 
on artificial neural network. Current passing through the spring as a function of time. Data are 
related to the specific experiment given in Figure 10
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As can be seen, the estimated force of the sensor ANN converges to the 
desired force in a better way than the force measured by the commercial 
sensor. This fact is emphasized in Figure 12, where the errors between the 
desired ANN output and the sensor over time are shown. These results can be 
explained in two ways:

(1) The feedback signal used for control is the estimated force, given by the ANN 
utilizing the resistance value of the SMA spring. Naturally, it is expected that the ANN 
force estimation follows the desired output signal in a better way. Also, the natural 
response of the SMA phase transformation tends to be slower than the estimation 
through the ANN model.

(2) It is possible that there are small changes in the standard hysteresis curve of the SMA 
spring when there is a sensitive temperature variation due to external factors (such as 
a small air stream from the air conditioning, for example). As neural networks have been 
trained taking into account complete hysteresis cycles, small errors could arise from this 
fact. Including incomplete hysteresis cycles into network training can improve the 
performance of the network in such situations.

This simplified predictive control based on artificial neural networks can be 
considered as efficient for controlling SMA actuators, as long as the ANNs 
were previously well trained.

It was experimentally found that an increase in the number of hidden layers 
for both recurrent and feedforward type networks does not provide 
a significant improvement in power estimation performance. Furthermore, 
the use of recurrent ANNs did not prove to be more efficient than feedforward 
ANNs. Therefore, taking these data as a basis, the feedforward type ANN with 

Figure 12. ANN force error and force sensor error as function of time.

e2015106-1418 N. L. D. SARMENTO ET AL.



one hidden layer is chosen for implementation of the sensor for electrical 
resistance feedback, aiming at simplicity of implementation and lower com
putational processing cost.

Conclusion

The use of Artificial Neural Networks was efficient for reproducing the 
non-linear and hysteretic behavior of a SMA spring in two ways: first the 
ANN is a suitable force sensor using electric resistance and second, it 
serves as a model of a simplified predictive controller. In addition, 
electric resistance variation as well as the simplified controller allow 
the use of neural networks with simpler topology throughout the sensing 
and control process. This provides the advantage of using simpler and 
cheaper processors for the implementation of the system.

The SMA spring hysteresis has shown repetitive when analyzing the 
force and electric resistance variations. It can be expected that similar 
results will be obtained for other SMA actuators, such as SMA wires or 
SMA beams. Obviously different actuators require new training 
processes.

In addition, if the ANN weights are well tuned, the use of electric 
resistance feedback has shown to be more efficient than the use of a load 
cell. Also, electric resistance feedback as network input should be more 
efficient than other variables, such as temperature or strain. This meth
odology may eliminate the need for other sensors in the electronic 
instrumentation of SMA actuators. Thus, equipment based on SMA 
actuators could be designed in a simpler, cheaper and more efficient way.
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