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A Novel Multi-Neural Ensemble Approach for Cancer 
Diagnosis
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aSchool of Computer Science and Engineering Department Shri Mata Vaishno Devi University, Katra, 
Jammu and Kashmir, India; bSchool of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu 
and Kashmir, India

ABSTRACT
Cancer is a complex worldwide health concern that resulted in 
10 million cancer deaths in 2018; hence, early cancer detection 
is crucial. Early detection involves developing more precise 
technology that offers information about the patient’s cancer, 
allowing clinicians to make better-informed treatment options. 
This study provides an in-depth analysis of multiple cancers. 
This study also exhibits a good survey of the machine or deep 
learning techniques used in cancer research. Also, the study 
proposed a stacking-based multi-neural ensemble learning 
method’s prediction performance on eight datasets, including 
the benchmark datasets like Wisconsin Breast cancer dataset, 
mesothelioma, cervical cancer, non-small cell lung cancer survi
val dataset, and prostate cancer dataset. This study also analyzes 
the three real-time cancer datasets (Lung, Ovarian & Leukemia) 
of the Jammu and Kashmir region. The simulation findings 
indicate that the methodology described in our study attained 
the highest level of prediction accuracy across all types of 
cancer data sets. Additionally, the proposed approach has 
been statistically validated. The purpose of this investigation 
was to develop and evaluate a prediction model that might be 
used as a biomarker for malignancy based on anthropometric, 
clinical, imaging, and gene data.
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Introduction

Cancer is a deadly issue responsible for most deaths worldwide that rise with 
an estimate of 18.1 million new cancer cases each year (Ferlay 2018). The 
study’s motivation is the alarming rate at which new cancer cases increase 
(Islami et al. 2018). According to the World Health Organization’s most recent 
data, 10 million cancer deaths occurred in 2020 alone, and millions of new 
incidences are recognized each year. Table 1 summarizes the study’s statistical 
findings on the tumors examined (Bray, Ferlay, and Soerjomataram 2020).
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Lung malignant growth is the most widely recognized cancer, i.e., 11.6% of 
the total cases on the planet. Regardless of advances in chemotherapy, the 
forecast for malignant lung growth stays poor, with 5-year relative endurance 
fewer than 14% among men and approximately 18% among females in most 
countries (Bray, Ferlay, and Soerjomataram 2020). Tobacco use and impacts of 
cigarette smoking is the chief risk factor for malignant lung growth (Cruz, 
Tanoue, and Matthay 2011). Breast Cancer is the second most threatening 
cancer in the world. It has a high incidence and mortality rate (Key, Verkasalo, 
and Banks 2001). According to the latest cancer statistics mentioned in 
Table 1, Breast malignancy alone accounts for the majority of cancer deaths 
worldwide (Ferlay 2018). Ovarian Cancer (OC) is the seventh most generally 
analyzed malignant growth among ladies on the planet (3% of women died). 
OC is ordinarily detected at a late stage when the 5-year relative endurance 
rate is just 29%. Hardly any cases (15%) are determined to have restricted 
tumors (Stage 1) when the 5-year endurance rate is 92%. Strikingly, the general 
endurance rate for most cases runs between 30% and 40% over the globe and 
has seen increments (2%–4%) since 1995 (Allemani et al. 2014; Torre et al. 
2018). OC risk factors incorporate natural and way of life factors, for example, 
asbestos and powder exposures and cigarette smoking (Reid, De Klerk, and 
Bill Musk 2011).

In 2018, 4.5% of people died of leukemia. As indicated by the review case 
surveys of leukemia, typical signs and side effects incorporate fever (17% to 
77%), dormancy (12% to 39%), and dying (10% to 45%) (B. M. Reid, Permuth, 
and Sellers 2017). Around 33% of youngsters had musculoskeletal manifesta
tions, especially in the spine and long bones, 75% had an expanded liver or 
spleen, in roughly 7% of kids at finding (Sinigaglia et al. 2008). Leukemia 
survivors require sequential complete blood record checking, just as age-and 
sex-explicit malignancy screening (Shouval et al. 2019). Grown-ups addition
ally present with protected side effects, for example, fever, tiredness, and 
weight reduction. They may have experienced shortness of breath, chest 
irritation, unreasonable wounding, nosebleeds, or abnormal menstrual peri
ods in ladies (Cornell and Palmer 2012).

Early discovery of malignancy guarantees a unique possibility of expanding 
survivability of malignant growth patients (B. M. Reid, Permuth, and Sellers 
2017). Various models dependent on clinical information are proposed in the 

Table 1. Cancer deaths in the world (2018).
CANCER NEW CASES DEATHS

Lung 2,093,876 1,761,007
Breast 2,088,849 627000
Prostate 1,276,106 358,989
Cervical 570 000 311 000
Leukemia 437,033 309,006
Ovarian 295,414 184,799
Mesothelioma 30,443 25576
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prior studies and might be employed in emergency clinics or clinical investi
gation. These automated systems are noteworthy as these add to the more 
screening instruments (Breiman 2001; Wolpert 1992; Yoav and Schapire 
1996). This study plans to assess how models grounded on the anthropo
metric, clinical, image, and gene information can help forecast various types of 
cancer (Wei et al. 2022; Coccia 2017; Chen et al. 2021; Korte et al. 2020; Coccia 
2016). The learning architecture proposed in the current study depends on the 
predominance of neural systems and emphasizes the importance of automated 
learning for further development (Cho and Won 2003; Coccia 2019; Coccia 
and Bellitto 2018; Kourou et al. 2015a; Tan and Gilbert 2003; Xiao et al. 2018) 
and ensemble methods (Kavakiotis et al. 2016) in earlier investigations (Adem, 
Kiliçarslan, and Cömert 2019; Bourlard and Kamp 1988; Hu and Zebo 2019; 
Kononenko 2001; Lecun, Bengio, and Hinton 2015; Levine et al. 2019; Masters 
1993). The study’s purpose is to develop a revolutionary classification algo
rithm capable of accurately predicting cancer diagnosis. The significant con
tributions made by the study are as follows:

● The study proposed a firsthand approach to the ensemble (stack) multiple 
deep learning models with a gradient-boosting technique named stacking- 
based multi-neural ensemble to classify cancer datasets to predict cancer 
diagnosis, stage, and survival time.

● This study has focused on the limitations of previous studies, thereby 
presenting an improved approach.

● Three real-time cancer datasets (Lung, Ovarian & Leukemia) are collected 
from the Jammu & Kashmir region.

● The proposed model is tested on five benchmark datasets: the 
Wisconsin Breast cancer dataset, Mesothelioma, Cervical cancer dataset, 
non-small cell lung cancer (NSCLC) survival dataset, and prostate 
cancer dataset.

● The performance of the proposed models is compared with previous 
studies, and the proposed model, i.e., stacking-based multi-neural ensem
ble, attained better prediction results than all the previous studies.

All the implementation details of the established Prediction Model are 
accessible on Github to facilitate the model’s reusability by other researchers.

Medical data can now be found in multiple public and private data reposi
tories, thanks to advances in database technology and the Internet. The 
healthcare industry is anticipated to create terabytes of data each year. 
Extracting valuable information for excellent healthcare is a difficult and 
vital task, and we now have many data in our databases to do so. However, 
the amount of information gleaned from it is minuscule. As a result, effective 
data organization, analysis, and interpretation are critical if tangible knowl
edge extraction is accomplished. In order to identify relevant patterns and 
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hidden knowledge from these enormous datasets of medical data, multiple 
computational techniques are necessary. We often analyze massive and large 
observational datasets in the data mining process and then extract important 
hidden patterns for data classification. The automated learning techniques 
have now begun to experiment with clinical data.

In this study, we have assessed the proposed strategy on eight datasets. Two 
datasets are extricated from digitized images, three real-time cancer datasets, 
two electronic health records databases comprising clinical properties, and 
datasets dependent on gene expressions and clinical information. From a vast 
collection of literature in malignancy prediction modeling, deep learning 
approaches have signified their vastness effectively and accomplished incred
ible outcomes; however, none of the systems is entirely exact. The conclusive 
results of our study confirm that the proposed stacking-based multi-neural 
ensemble learning strategy utilizes the cancer patient’s data and produces 
more precise expectations than single classifiers. The remaining article is 
grouped into seven sections. Section 2 describes the review of related research 
studies and prediction models. Section 3 describes the proposed methodology 
employed in the current study along with the dataset analysis. Section 5 shows 
the simulation results and their discussion. Finally, the article is concluded in 
the last section.

Theoretical Framework

Several research works have been done in the field of cancer detection 
(Coccia 2019; Korbar et al. 2021; Deshmukh and Kashyap 2022; Zhang 
et al. 2022; Gupta M.; Kumar et al. 2021; Kohli et al. 2021; Kumar 2020; 
Gupta and Gupta 2021). Many researchers have used automated learning 
techniques for the prediction of cancer (Gupta and Gupta 2021; Kumar et al. 
2020; Kumar and Mahajan 2019; Kumar and Single, 2021). Few such studies 
are mentioned in this section.

Lung Cancer: In 2017, Lynch (Lynch et al. 2017) led an examination work 
to anticipate malignant lung growth utilizing unsupervised learning and 
achieved Root Mean Square Error (RMSE) values (16.193 for k-Means). This 
study used approximately 10.4k lung cancer records from the Surveillance, 
Epidemiology, and End Results (SEER) program database. Also, some 
researchers have assessed the endurance period of lung cancer patients by 
examining data mining approaches on the lung cancer records from the SEER 
database, containing collaborative clustering-based techniques (D. Chen et al. 
2009), Support Vector Machine (SVM), and Logistic Regression (LR) 
(Fradkin, Muchnik, and Schneider 2005), and unsupervised methods in 2017 
(Lynch et al. 2017). A similar study was proposed in 2017 (Lynch et al. 2017) 
that examined the supervised classification models to predict lung cancer 
survival. The classification models employed in the study are Decision Trees 
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(DTs), Gradient Boosting Machines (GBM), SVM & Ensemble model. The 
best results were achieved using the Ensemble model (RMSE = 15.3). This 
investigation established the superiority of ensemble learning over single 
classifiers. Yen-Chen (Y. Chen, Ke, and Chiu 2014) 2014 utilized Artificial 
Neural Network (ANN), to foresee the survival of Lung cancer patients with 
risk classification. The gene expression dataset used in the examination was 
gathered from different research centers. This examination accomplished 
a precision of 83%.

Breast Cancer: Another study performed in 2017 Kumar, Sai Nikhil, and 
Sumangali 2017) used the Wisconsin breast cancer dataset and investigated 
the performance of DTs, K-Nearest Neighbors (KNN), and Neural Networks 
(NN) for predicting breast cancer. A reexamining study conducted by Xiao in 
2018 (Xiao et al. 2018) employed an ensemble classifier to predict breast cancer 
diagnosis. Xiao compared multiple-ensemble techniques and concluded the 
superior performance of stacking various classifiers. A research study pub
lished in 2019 (Saygili 2019) employed different machine-learning techniques 
to diagnose breast cancer. The best classification accurateness was attained by 
Random Forests (RF), followed by the neural technique. Many of the recent 
research works have employed deep learning strategies (Gupta and Gupta 
2021) on big-size breast cancer datasets.

Prostate Cancer: A research article published in 2017 (Liu and Xiaomei 
2017) employed deep-learning models to classify prostate cancer to predict 
cancer diagnosis. The accurateness achieved by the Convolutional Neural 
Networks (CNN) model is 78% (approx.). In another research work carried 
in 2019 (Yoo et al. 2019), a novel model based on CNN was applied for 
prostate cancer diagnosis. The data used in the study consisted of 427 patients, 
where 175 were cases, and 252 were controls. The recommended model 
attained an area under the receiver operating characteristic curve (AUC) of 
0.87. A computation model based on deep learning was projected in 2020 
(Tolkach et al. 2020) to predict prostate cancer. Classification precision of the 
deep learning architecture reaches 98%. Another research study in 2020 
(Gupta and Gupta 2020) proposed an automatic diagnosis of prostate cancer. 
This study evaluated multiple Classification models like KNN, Naïve Bayes 
(NB), SVM, DT, and the best performance was achieved by neural learning 
models. Also, computer simulations demonstrate that the data balancing 
strategy increased predictive performance from 84% to 93% with balanced 
data. Recent research (Gupta and Gupta 2021) proposed multiple-balancing 
techniques for attaining high accurateness. Many of the research studies done 
to predict the prostate cancer diagnosis has successfully shown the importance 
of computer-aided diagnosis.

Cervical cancer: Cervical cancer was diagnosed using automated learning 
methodologies (Wu and Zhou 2017). The technique based on Support Vector 
Machine (SVM) was used for classification along with Principal Component 
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Analysis (PCA) and Recursive Feature Elimination (RFE) techniques. SVM- 
PCA, SVM-RFE with different feature sets was proposed in the study, and 
SVM-PCA displayed the best performances attaining the highest classification 
score (93%). Another study carried in 2017 (Ceylan and Pekel 2017) proposed 
multiple-classification models to predict the risk of cervical cancer and com
pared the Bayesian model, DTs, and RF. RF achieved the highest accurateness, 
i.e., 82% (approx.). Cervical cancer was diagnosed using the proposed strategy 
of balancing the data with Smote and used PCA for dimension reduction in 
2018(Abdoh, Rizka, and Maghraby 2018). The technique was compared with 
the feature set selected by the RFE technique. The proposed design achieved 
97.4% accuracy. Cervical cancer diagnosis was done using stacked 
Autoencoders and softmax classification in 2019 (Fernandes, Chicco, and 
Cardoso 2018) and achieved a top AUC score of 97.25%. Also, recent research 
by (Gupta and Kumar Gupta, 2021b) investigated the performance of stacking 
ensemble of different classifiers on cervical cancer dataset.

Leukemia: In 2018, a research study (Mei et al. 2018) applied neural 
Learning to predict acute myeloid leukemia (AML). The dataset used in the 
study was taken from TCGA (The Cancer Genome Atlas) database. The 
implementation used stacked Autoencoders to formulate a categorized DL 
model. The model implemented in R language attained exceptional correct
ness of 83% in forecasting prognosis. A review article published in 2019 (Salah 
et al. 2019) emphasized the utilization of ML models to predict leukemia 
diagnosis. A total of 58 research studies were revised. A significant factor 
observed in this study was that none of the articles applied ML models in real- 
world scenarios. More than 90% of articles utilized small and homogenous 
samples. A research study was done in 2019 (Shouval et al. 2019) worked on 
predicting the survival of leukemia patients after the Autologous Stem Cell 
Transplantation. A recent research study 2020 (Maria, Devi, and Ravi 2020) 
employed ML to predict diagnosis. The respective research presented 
a comparative study of SVM, KNN, Neural Networks, and NB for the classi
fication of leukemia into its subtypes.

Ovarian Cancer: (Miao et al. 2018) used deep CNN for predicting the 
diagnosis of ovarian cancers. The 10-folder cross-validation validated simula
tion results. Also, classification accurateness improved from 72.76% to 78.20% 
by using the strategy proposed in the study. Another study conducted in 2019 
(Kawakami et al. 2019) used 334 epithelial ovarian cancer (EOC) cases, out of 
which 101 cases belonged to the benign group, and the rest belonged to the 
malignant group. ML models comprising Gradient Boosting Machine (GBM), 
SVM, RF, NB, and Neural Network were used. The ensemble technique (GBM 
& RF) presented the top prediction performance of 92.4% AUC. A recent 
study 2020 (Mingyang et al. 2020) aimed to access the practical value of ML 
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models in OC detection. The data comprised 349 patients with 49 features. 
The study established notable features. The learner produced a better forecast 
and outperformed the prevailing OC prediction approaches.

Mesothelioma: Research work (Mukherjee 2018) on the same feature set 
and attained 99% with SVM. The study made by Ilhan and Celik (Ilhan and 
Celik 2017) deployed Ensemble Learning with 10-fold Cross-validation and 
successfully achieved 100% accuracy in classification. Also, recent research 
(Gupta and Kumar Gupta, 2021a) explores the performance of multiple 
classifiers on the dataset. The research work (Kaur and Singh 2019) used 
K-NN and claimed 99.07% accuracy. A retrospective study (Hu and Zebo 
2019) trained numerous deep learning algorithms and confirmed stacked 
sparse auto-encoder (SSAE) as the best model for MM diagnosis. Two feature 
selection methods, i.e., Genetic Algorithm (GA) and ReliefF methods, were 
used to select the features. Genetic Algorithms (GA) chose a set of 19 highly 
significant features and confirmed that GA and Stacked Sparse Autoencoder 
(SSAE) achieved the highest attainable accuracy (100%). All the above-stated 
studies claimed high accuracies but, after examination, we observed that an 
input feature (“diagnosis method”) used in the model duplicated the target 
diagnosis class, confirmed by (Chicco and Rovelli 2019). This trivial feature 
makes the model virtually perfect yielding high estimation accuracy. Hence, 
we don’t advocate their results as it violates the fundamentals and can’t be 
considered. Recent work done by (Chicco and Rovelli 2019) on the same 
dataset confirmed that the accuracy stated by (Orhan et al. 2012) was trivial, 
and Probabilistic Neural Network (PNN) could not perform well, obtaining an 
accuracy of 0.52. Their study made the first move to address the repetitive 
feature in the dataset. Also, they handled the imbalance problem of the data by 
using the under-sampling technique. The highest accuracy was 0.82 and was 
recorded using Random Forest Classifier on the balanced set. Under-sampling 
established its effectiveness to upgrade the prediction results, even though it 
imposes the constraint of omitting a portion of valuable data. Table 2 sum
marizes the literature review of the cancer research studies.

Proposed System

This section holds the flowchart of the cancer prediction procedure, algorithm 
of the proposed classification model, description of the hyperparameters used, 
and the proposed architecture. Missing value imputations are done using 
k-Nearest Neighbors (“An Introduction to Kernel and Nearest Neighbor 
Nonparametric Regression” 1992) (k-NN) imputation methods. Next, data is 
transformed using data scalar procedures. K-fold (K = 10) Cross-Validation 
(CV) approach was adopted, wherein MLP models were built on a training set 
and assessed on a test set. The training set corresponded to 75% of the total 
amount of data. Figure 1 depicts the proposed workflow.
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Data Analysis

This section provides the description of the datasets that have been explored in 
this research. The eight datasets used in the study fall under the category of 
clinical databases, real-time databases, gene expression-based databases, and 
digitized datasets.

Clinical Databases

Cervical cancer and mesothelioma cancer clinical datasets utilized in this 
study are authentic electronic health records of patients. They are freely 
available on the UCI Machine Learning Repository (University of 
California, Irvine).

● Cervical Cancer Dataset (Fernandes, Cardoso, and Fernandes 2017): 
An aggregate of eight hundred fifty-eight cases depicting records of 
patients were diagnosed and tested. There are four target factors, 
specifically “biopsy,” “schiller,” “Hinselmann,” and “citology.” In the 
dataset, all occurrences exclusively have 32 features with multivariate 
factors by the direction provided by clinical experts; these are more 

Figure 1. Proposed workflow.
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viable than other element subsets. A considerable lot of the examples 
have “obscure” or “missing qualities.” The four target variables are 
decision-makers.

● Mesothelioma (Orhan et al. 2012): The dataset utilized right now is 
a genuine electronic health record of patients. The dataset overseers 
(Orhan et al. 2012) gave the principal examination of this dataset in 
2011 and distributed the dataset openly in 2016. An aggregate of Three 
hundred and twenty-four (324) examples portraying records of patients 
was analyzed and tested. In the dataset, all cases independently have 35 
columns, i.e., features. One of the dataset features named “diagnosis 
method” is replicating the target variable “class of diagnosis.” 
Henceforth, we exclude this feature from further analysis to improve 
the reliability of the study.

Real-Time Datasets

Three real-time cancer datasets, i.e., ovarian cancer, lung cancer, and leukemia 
dataset, are incorporated in the study. The patients diagnosed with cancer 
were selected from multiple hospitals and clinics of the Jammu and Kashmir 
Region. For each patient, the diagnosis results were histologically confirmed. 
Records of cancer patients and healthy volunteers with the consent of all the 
participants were included in the present study. In this study, we assembled 
Clinical, demographic, and anthropometric information for all participants 
under similar conditions. The predictors identical in all the three datasets are 
age, weight, height, BMI.

● Ovarian Cancer Dataset (Verma et al. 2019): Ovarian cancer dataset 
was used in the study (Verma et al. 2019). Later on, we gathered 
more data and a total record of 697 participants was collected com
prising 248 ovarian cancer patients (mean age 58.7 years, range 22– 
89) and 449 controls (mean age 56.44 years, range 25–89). Collected 
data includes menopausal status (that determine the pre/post or 
bleeding after menopause again), Pre/Post Menopause (for each par
ticipant, this status expressed whether patient experience menopause 
earlier or later), age of menarche i.e. age of onset of menses, presence 
of breast cancer nodules (stating whether the patient is diagnosed 
with breast nodules also), and use of oral contraceptives. These 
clinical features have been marked as important risk factors 
(B. M. Reid, Permuth, and Sellers 2017). The target variable is ovarian 
code that determines whether a person has ovarian cancer or not. The 
statistical description of the ovarian cancer dataset is provided in 
Table 3. Range and missing values are given for each predictor.
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These clinical features have been marked as important risk factors 
(B. M. Reid, Permuth, and Sellers 2017). The target variable is ovarian code 
that determines whether a person has ovarian malignant growth or not.

● Lung Cancer Dataset (Bhat et al. 2019): The lung Cancer dataset was 
first used in the study (Bhat et al. 2019). Then we incorporated new 
records in the dataset, and the final dataset comprises 225 lung cancer 
patients. Out of 225, 10 patients belong to Stage 1, 69 to stage II, 96 to 
stage III, and 50 to Stage IV. Out of 225, there were 187 males and 38 
females identified with Lung Cancer. Clinical information about lung 
cancer patients (mean age 61 years, mean BMI 22 kg/m2) was registered. 
The age range of onset of cancer is [29, 84]. The risk factors or symptoms 
of lung cancer included in creating the dataset are weakness or weight 
loss, hoarseness of voice, pain in the chest, dyspnea, cough, fever, and 
tobacco intake (Cruz, Tanoue, and Matthay 2011). Other factors included 
in the dataset are the age of onset of cancer, duration of onset of cancer, 
Gutkha, and alcohol intake (Tumors 2008). These clinical features have 
been marked as significant risk factors in the research studies (Cooley 
2000; Skaug, Eide Msci, and Gulsvik 2007; Monila 2008). Table 4 depicts 
the statistical description of the dataset. Smoking and age of onset are 
expressed in terms of years. Duration is defined in terms of months. 
Cough is recorded in terms of days. The target variable is “Stage,” 
which determines the cancer stage of the patient. Due to inadequacy in 
stage-I records, we have excluded stage-I patients from further analysis. 
As most rows are missing from a few of the predictors like cough, 
hoarseness of voice, dyspnea, and fever, these features are excluded 
from the future analysis.

● Leukemia Dataset (Bhat et al. 2019): An absolute record of 613 members 
was made containing 207 Leukemia patients (mean age 40.47 years, run 
3–93) and 407 healthy people (mean age 49.18 years, extend 14–89). Out 
of 207, 140 males and 67 females were determined to have leukemia, i.e., 
More records of male leukemia patients are included in the dataset. The 

Table 3. Statistical description of ovarian cancer dataset.
S.No. Variables Range Missing

1. Age (years) [22,85] 0
2. Weight (kg) [40,90] 0
3. BMI (kg/m2) [14,38] 0
4. Menopausal Status [0,2] 0
5. Pre/Post Menopause [0,1] 2
6. BC Nodules [0,1] 17
7. Age at Menarche [0,1] 48
8. Oral Contraceptive use [0,1] 3
9. Ovarian Code [0,1] 0
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hemoglobin tally differs from 8.6 (mean) in cases to 9.7 (median) in 
controls. Gathered information incorporates the smoking status, the 
alcoholic propensities, the proximity of fever, unusual augmentation of 
spleen or liver (Splenomegaly/Hepatomegaly), and hemoglobin tally of 
the patient. These clinical highlights have been set apart as significant 
hazard factors in prior studies (Davis, Viera, and Mead 2014). Dataset 
description is given in Table 5.

Variable 7 i.e. “Alcoholic” depicts whether person consumes alcohol (2), 
does not consume alcohol (2) and sometimes/occasionally drinks (1). 
Hemoglobin count is a significant factor as it depicts the amount of red 
blood cells (RBC) in the body and is expressed in terms of gm/dL (grams 
per deciliter). The objective variable is “case/control” that decides if an indi
vidual is a case (leukemia patient) or control (healthy person).

Table 4. Statistical description lung cancer dataset.
S.No Variables Missing Values

1 Age 0
2 Weight 0
3 BMI (kg/m2) 0
4 Sex 0
5 Age of Onset 0
6 Duration 0
7 Smoking 0
8 Gutkha 25
9 Alcohol 16
10 Cough 142
11 Hoarseness of Voice 127
12 Dyspnea 89
13 Fever 98
14 Pain in Chest/ Other Parts 58
15 Weakness 32
16 Stage 0

Table 5. Statistical description of Leukemia dataset.
S.No Variables Range

1 Gender [0,1]
2 Age (years) [3,93]
3 Height [1.3,6.4]
4 Weight (kg) [10,90]
5 BMI (kg/m2) [9,63.6]
6 Smoker [0,1]
7 Alcoholic [0,1,2]
8 Fever [0,1]
9 Splenomegaly/Hepatomegaly [0,1]
10 Hemoglobin Count(gm/dL) [3,14]
11 Case/ Control [0,1]
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Digitized Image Datasets

The breast cancer Wisconsin dataset and prostate cancer dataset are obtained 
from the digitized images. Both the datasets are online accessible on the Kaggle 
data vault.

● Breast Cancer Wisconsin Dataset (Publisher, Bennett, and Mangasarian 
2011): The cancer dataset comprises 569 occasions in which 357 belong to 
the benign class and 212 belong to the malignant class. Absolute 32 
highlights figured from a digitized picture of a breast mass’s fine needle 
suction (FNA) are available. The highlights/properties utilized in the 
dataset portray qualities of the cell cores present in the picture, and 
“diagnosis” is the objective/target variable that determines the status of 
breast cancer diagnosis outcome.

● Prostate Cancer Dataset: This dataset is accessible from the Kaggle 
database (https://www.kaggle.com/sajidsaifi/prostate-cancer). It com
prises record of 100 occasions and ten factors. One variable indi
cates the distinguishing proof number; the other 8 are numerical 
factors. The objective variable is “determination result,” which is all 
out having two classifications to be specific Malignant (M) and 
Benign (B). Dangerous class contributes to 62% of situations, 
whereas 38% have a place with benign class. Accordingly, harmful 
cells cosmetics the dominant part class while generous cells con
tribute to framing the minority class. There emerges the issue of 
class imbalance as a class with more data points can overshadow the 
class with fewer instances

Table 6. Summary of NSCLC patients.
Variables Categories Patients

Gender Male 223
Female 219

Risk Low 166
Intermediate 145
High 131

N_Stage N0 299
N1 87
N2 53
NX 1
T0 251

T_Stage T1 150
T2 28
T3 11

ADJUVANT_CHEMO No 233
Yes 120
Unknown 89

ADJUVANT_RT No 256
Yes 121
Unknown 65
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Gene Expression Based Datasets

Various examinations have detailed the utilization of quality articulation 
information and other high-dimensional genomic information for 
endurance expectation (Chaddad et al. 2017; Skaug, Eide Msci, and 
Gulsvik 2007; Sun et al. 2018; Xiao et al. 2018; Cho and Won 2003; 
Shedden et al. 2008; Størvold et al. 2007; Y. Chen, Ke, and Chiu 2014). 
For example, non-small-cell lung carcinoma (NSCLC) patients’ quality 
articulation crude information (CEL files) and clinical information 
downloaded from the NCI database, a vault of high-throughput gene 
expression data microarrays.

● Lung Cancer Survival Dataset: We investigated numerous informa
tional indexes to evaluate the prognostic estimation of different 
parameters in lung disease. We utilized the survival time (< year 
and a half) as a high-risk group and survival time [18, 48] as the 
moderate-risk group, and survival time > 4 years as a low-risk 
group. This NSCLC information was recorded basically from four 
establishments and constituted of 442 NSCLC patients. Patients’ 
survival durations, ages, breakdown phases, treatment, and smoking 
history were all included in the clinical data. All gene expression 
data profiling was carried out using Affymetrix HG-U133A chips. 
The treatment response data includes age, race, sex, survival time, 
adjuvant chemotherapy, adjuvant radiation therapy, and stage sta
tistics. Cases with missing survival time are omitted from further 
analysis. The summary of the patient’s information and NSCLC 
patients, along with classified risk groups, is depicted in Table 6.

Classification Model

Given the accomplishment of neural networks in biomedicine in earlier studies, 
we resorted to employing deep learning architectures (Gupta and Gupta 2021; 
Gupta and Kumar 20212022; Kumar et al. 2021). Henceforth, to construct 
learning models that can learn the unknown relationships among various 
classifiers, we embrace the Stacking-based ensemble learning of neural 
classifiers.

Ensemble Learning: Taking into account the way that ensemble learning 
can integrate various learning techniques. The resultant model that takes 
pluses of compound learning strategies would prompt superior performance. 
A few examinations have been portrayed in the writings to incorporate models 
to raise the exactness of the expectation. For example, Bagging was acquainted 
by Breiman (Breiman 2001) to consolidate outputs from decision trees pro
duced by a few arbitrarily chose sub-sets of the training information and 
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decisions in favor of the ultimate result. Boosting is an improved adaptation of 
Bagging that was advanced by Freund and Schapire (Vladimir et al. 2005). This 
strategy works by uplifting the weights of training samples in each iteration 
and finally joins the classification outcomes by weighted votes. Wolpert 
(Wolpert 1992) proposed using linear models to integrate results of the 
learning structures, otherwise called Stacking or blending. Contrasting the 
majority voting that takes just the linear connections among classifiers into 
thought, stacking classifiers can “learn” non-linear structures. Stacking utilizes 
a learning approach to integrate the models that make it a significantly more 
remarkable outfit strategy.

Multiple Layer Perceptrons: Rosenblatt constructed a single-layer percep
tron that permits the neural systems to demonstrate a shallow neural system, 
wound up forestalling this network from performing non-linear classification 
(Rosenblatt 1958). Quick forward to 1986, when Hinton, Rumelhart, and 
Williams distributed a paper ”Learning representations by back-propagating 
errors,” presenting ideas about Backpropagation and hidden layers – subse
quently bringing forth Multilayer Perceptrons (MLPs)(Rumelhart and Hintont 
1986). In the forward pass, the data stream flows from the information layer 
through the shrouded (“hidden”) layers to the final (“output”) layer, and the 
selection of the last layer is estimated against the ground truth labels. Hidden 
Layers are neuron hubs stacked in the middle of sources of info and outcomes, 
permitting neural systems to learn intricate features gradually. In 
Backpropagation, weights are updated repeatedly to minimize the error rate 
utilizing the chain rule of calculus, partial derivatives of the error function. Such 
strategy provides us a gradient or a scene of blunder. Also, this may balance the 
parameters as it can estimate the error in various ways, including by Mean 
Square Error (MSE).

Measures and Parameters of Variables

Model Hyperparameters are properties that govern the entire training process. 
They include variables that decide the system structure (for instance, Number 
of Hidden Units) and the factors which determine how the system is prepared 
(for example, Learning Rate). Model hyperparameters are set before preparing 
(before upgrading the loads and predisposition). Hyperparameters are signifi
cant since they straightforwardly control the classification performance. Also, 
it has a substantial effect on the execution of the model under training. 
Optimization Hyperparameters are connected more to the advancement and 
preparing process like learning rate and number of epochs. In addition, model 
Hyperparameters are more associated with the structure of the model, like 
hidden layers and hidden units.
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● Learning rate: If the model’s learning rate is significantly below than 
optimum quality, it will take significantly longer (hundreds or thousands) 
of epochs to reach optimum state. Then again, on the off chance that the 
learning rate is a lot bigger than ideal worth, at that point it would 
overshoot the perfect state and the calculation probably won’t merge. 
We chose the learning rate = 0.001 in the wake of tuning the neural model.

● Epochs: We used 500 epochs for the training phase of each MLP classifier. 
The intuitive manual method is to train the model for as much iterations 
as the validation error continues to decrease.

● Hidden units: It is one of the more perplexing hyper parameters. The 
number of the hidden units is proportional to the learning limit of the 
model. We used units of 50, 150, and 200 in MLP 1, MLP 2, and MLP 3, 
respectively. Another heuristic regarding the first hidden layer is that 
empirical observation indicates that increasing the number of hidden 
units above the number of inputs results in improved performance on 
a variety of tasks.

● Layers: MLP_1 is fabricated using two hidden layers while MLP_2 is 
prepared using three hidden layers. Consequently, MLP_3 is constructed 
with four hidden layers.

● Optimizer: AdaM represents Adaptive Momentum. It joins the 
Momentum and RMS prop in a solitary methodology making AdaM an 
exceptionally incredible and quick streamlining agent. Adaptive Moment 
Estimation (Adam) computes adaptive learning rates for each parameter 
and favors flat minima on the error surface. As followed, we calculate the 
decay average of the previous squared gradients (StÞ and past gradients Ct 
in eq. (i) and (ii).

Ct ¼ α1Ct� 1 þ 1 � α1ð Þgt (i) 

St ¼ α2st� 1 þ 1 � α2ð Þgt2 (ii) 

Ct and St are approximations of the gradients’ initial moment (the mean) 
and secondary moment (the un-centered variance). The biases were countered 
using bCtandbSt i.e. bias-corrected first and second moment estimates respec
tively. These are mathematically expressed in equation (iii) and (iv). 

bCt ¼
Ct

1 � αt
1

(iii) 

bSt ¼
St

1 � αt
2

(iv) 

Finally, the ADAM rule is expressed in eq. (v). 

APPLIED ARTIFICIAL INTELLIGENCE e2018182-1437



φtþ1 ¼ φt �
ηbCt
ffiffiffiffiffiffiffiffiffiffiffiffi
bSt þ ε

q (v) 

● Activation function: For input layer, ReLU activation function is used. 
We utilized the Sigmoid as the activation function in the hidden and 
output layer. It is a rather straightforward architecture, yet complex 
enough to serve as a valuable function.

● Rectified Linear Units (ReLU): ReLU function guarantees that if y is 
more prominent than zero, our yield remains y; else if y is negative, our 
yield is zero. In short, we select the most extreme among 0 and y. ReLU is 
expressed mathematically in equation (vi).

f yð Þ ¼ max 0; yð Þ (vi) 

● Sigmoid activation: The enactment work utilized in the inside layer of 
ANN is Sigmoid. The arrival estimation of sigmoid capacity is mono
tonically expanding, lies between 0 and 1 or from −1 to 1. Sigmoid 
capacity is characterized scientifically in eq. (vii).

S xð Þ ¼
1

1þ e� y (vii) 

A sigmoid function is a statistical function with a characteristic “S”-shaped 
curve that is called the sigmoid curve.

Friedman Ranking Test
The Friedman Test is a non-parametric variant to ANOVA with Repeated 
Measures. It is used to detect there is or is not a statistical substantial 
distinction of three or more groups that contain the same participants. 
The Friedman test is used to determine the classifiers’ ranks. At the 0.5 
and 95% confidence levels, the null hypothesis (H0: there is no significant 
variation in classifier performance) is discarded. Thus, the alternative 
hypothesis (H1) is supported, implying a considerable difference exists 
between the classification results. Bonferroni–Holm adjustments were 
employed to determine the significance of the multi-neural ensemble 
above other classifiers.

Working Methodology

The dataset denoted by X is made of x belonging to a set of attributes, and 
y denotes the target column. Also, z represents the size of the data. The base 
learners (MLP1, MLP2 & MLP3) are represented by M1, M2 & M3, respectively. 
The algorithms work by training each base learner applying MLPs on original 
data (X) and saving it as S1, S2, and S3 (M1, M2, & M3, respectively).Then a new 
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dataset (P1) is generated to hold predictions (p) made by the S1, S2, and S3. 
Then the prediction dataset (P1) made using base learners is passed as input 
through meta-model GDC or G and stored in S’. Finally, the desired model is 
obtained. The algorithm of the stacking-based neural ensemble model is given 
in Figure 2.

(MLP1, MLP2 & MLP3) are represented by M1, M2 & M3, respectively, 
predictions (p), prediction dataset (P1)

The approach used in this study attempts to use a Gradient-boosting 
classifier (GBC) to stack deep neural networks, to construct a multi-model 
ensemble model to predict cancer in normal and tumor conditions. The 
selected features in each of the cancer datasets are supplied to the three neural 
models. After that, the GBC is used to stack the outputs of the three base 
learners to acquire the last forecast outcome. Figure 3 shows the learning 
architecture proposed in the study.

Multilayer Perceptrons_1 (MLP_1), Multilayer Perceptrons_2 (MLP_2), 
and Multilayer Perceptrons_3 (MLP_3), Prediction (P)

Figure 2. Algorithm of the stacking-based neural ensemble model.
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Gradient Boosting Classifier (GBC) basically works by updating the weights 
of the wrongly classified instances in the subsequent layers. The error (€) is 
calculated using the Equation (viii), where sm denotes all the instances in the 
training data and s < S (S = number of weak learners). 

€s ¼

PI
i¼1 β sð Þ

i � y
PI

i¼1 β sð Þ
i

(viii) 

β ¼
1
i

where irepresents the data � size 

Z qmð Þis the hypothesis that all instances qð Þare predicted correctly 

Here γ is the conditional function assessing the hypothesis Z qmð Þ, y ¼ 1 if 
the condition γ is true else 0 and is calculated in the Equation (ix). 

y ¼ γ qi�Zs qmð Þð Þ (ix) 

Then the misclassified cases are assigned a weight on the succeeding layer 
using the equation (x). 

αs ¼ log
1 � €s

€s
(x) 

Weights of data instances are updated in each iteration as shown in the 
equation (xi). 

Figure 3. Proposed stacking based neural ensemble model.
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β sþ1ð Þ
i ¼ β sð Þ

i � exp μs � γ qs�Zs qið Þð Þ
� �

(xi) 

The principal behind weight updation approach is to tempt learning where 
the classification models learn from the mistakes of the models at preceding 
layers. Further γ = 0 implies no Updation in the weight of the instance given in 
Equation (xii). 

β sþ1ð Þ
i ¼ β sð Þ

i (xii) 

In case of misclassification, weight updation for the particular instance is given 
in Equation (xiii). 

β sþ1ð Þ
i ¼ β sð Þ

i � exp αsð Þ (xiii) 

After the s repetitions, the final output is given in the Equation (xiv). 

fs qð Þ ¼ sign
XS

s
αs � Zs qð Þ

 !

(xiv) 

Thus, Gradient Boosting Classifier (GBC) works on the basis of weighted vote 
scheme where the working of the classification models depends on the pre
diction performance of (n-1)th classifiers.

Figure 4. Cervical cancer.
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Execution Details

The models were created using a Dell −15JPO9P computer equipped with an 
Intel Core i7-8550 U processor running at 1.80 GHz and 8 GB of Random- 
Access Memory (RAM). All machine learning algorithms are implemented in 
Python 3.7 via Anaconda Navigator.

Figure 5. Mesothelioma.

Figure 6. Ovarian cancer.
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Results and Discussion

This segment holds the experimental outcomes gathered after applying the 
proposed classification procedure. The graphs used to display the simulation 
results are plotted using “matplotlib” library in python.

The evaluation parameters used for the assessment of the prediction models 
are described in Table A1. These evaluation parameters lay the standard for 
evaluating the advantages and shortcomings of the AI-based learning 
approaches. In Table A1, true positive (P) refers to the correctly recognized 
cases, false positive rate (Q) refers to the cases that are negative and wrongly 

Figure 7. Lung cancer.

Figure 8. Leukemia.
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identified by the model, true negative rate (R) refers to the outcomes that are 
correctly predicted as negative by the technique, and false-negative rate (S) 
refers to the negative cases wrongly predicted by the model. The description of 
commonly used evaluation parameters for instance accuracy (Acc), Specificity 
(Spec.), Sensitivity (Sens.), F-measure, Receiving operator characteristic 
(ROC) curve, and Area under the curve (AUC) is given in Table A1 
(appendix).

Figure 9. Breast cancer.

Figure 10. Prostate cancer.
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● Clinical Datasets: The proposed architecture performed best on both the 
datasets containing clinical data.

● Cervical Cancer: The proposed Stacked_Model achieved 98.9% accu
rateness. The MLP with a single hidden layer realized the lowest 
prediction results are revealed in the Figure 4.

● Mesothelioma: The stacked MLP model attained highest prediction 
accuracy (94%). Neural networks with less hidden layers performed 
better than those with more layers as presented in the Figure 5.

● Real Time Datasets: The stacked model acquired the best prediction 
accuracy on all the three real-time datasets of J&K cases.

● Ovarian Cancer: Inferring from Figure 6, the best prediction accuracy 
on the Ovarian Cancer dataset was attained by the proposed stacked 
model (98% approximately) followed by the neural network built using 
three or more hidden layers.

● Lung Cancer: Figure 7 shows that the best prediction accuracy on the 
Lung Cancer dataset was attained by the proposed stacked model 
(95.7%) followed by the MLPs with two or more hidden layers (84%).

● Leukemia: Figure 8 expresses that the most appreciable accurateness of 
99% was achieved using Stacked Model can predict leukemia.

Figure 11. Lung cancer survival.

Table 7. Assessment of stacked model.
Dataset Cancer Acc AUC F1 MCC Sens. Spec.

Clinical Cervical 98.5 98.6 97 98.4 97.8 98.9
Mesothelioma 94.1 93.5 88.2 94.1 96.8 91.4

Real-Time Ovarian 97.62 97.68 95.35 97.79 95.19 99.95
Lung 95.7 95 94.9 90.62 96.6 92.5
Leukemia 99 99 99.3 99.5 99.5 99.3

Digital Breast 98.94 98.6 97.77 98.81 99.75 97.89
Prostate 87 88.46 65.88 81 90 87.12

Gene-expression Lung Cancer Survival 88.47 88.38 77.16 88.64 86.31 90.97

APPLIED ARTIFICIAL INTELLIGENCE e2018182-1445



● Digitized Image Datasets: The best performance was displayed by the 
proposed learning technique followed by the MLP_2 on the datasets 
derived using digitized images.

● Breast Cancer: Breast Cancer prediction accuracy (99% approx.) is 
obtained with the proposed technique. The neural architecture with 
more layers performed better as compared to the MLP with less hidden 
layers as depicted in Figure 9.

● Prostate Cancer: Figure 10 displays the accuracy results achieved using 
all the neural techniques. The proposed model predicts prostate cancer 
with the highest accuracy (87%).

● Gene Expression Dataset: The proposed machine learning algorithm 
worked the best on gene expression-based dataset.

● Lung Cancer Survival: Figure 11 illustrates that the accuracy achieved 
by the proposed model predicts the survival of lung cancer patients 
with the highest accuracy (88.47%) followed by MLP_1.

Prediction Results of the Proposed Model Accuracy

The final stacked neural model was assessed on each of the cancer datasets 
using different performance assessment parameters. The classification model 
was validated using a 10-Fold Cross-Validation approach. The performance of 
the model was investigated using evaluation parameters (Powers 2020) like 
Accuracy (Acc), Area under the Curve (AUC), F1_Score (F1), Mathew’s 
Correlation Coefficients (MCC), Specificity (Spec.), Sensitivity (Sens.). The 
prediction results thus attained are depicted in Table 7. The description of 
evaluation parameters is given in Table A1.

Table 8. Stacked model results.
Dataset study Classification Model Accuracy

Cervical Cancer (Wu and Zhou 2017) Support Vector Machines 93%
(Ceylan and Pekel 2017) Random Forests 82%
(Fatlawi 2017) Decision Trees 55.7%
(Abdoh, Rizka, and Maghraby 2018) Random Forest-PCA 97.4%
(Adem, Kiliçarslan, and Cömert 2019) Stacked Auto encoders 97.25
Our study stacking-based multi-neural ensemble 99%

Mesothelioma (Orhan et al. 2012) Probabilistic Neural Networks 53%
(Nilashi and Ibrahim 2017) fuzzy rule & CART 93%
(Mukherjee 2018) Support Vector Classifier 72%
(Chicco and Rovelli 2019) Random Forests 82%
Our study stacking-based multi-neural ensemble 94%

Breast Cancer (Seera and Peng Lim 2013) DT-RF 98.8%
(Sumbaly 2014) J48 94.42
Kumar, Sai Nikhil, and Sumangali 2017) SVM-Naive Bayes-J48 97.3%
(Saygili 2019) RF 98.7%
Our study stacking-based multi-neural ensemble 99%

NSCLC (Y. Chen, Ke, and Chiu 2014) Artificial Neural Networks 83%
Our study stacking-based multi-neural ensemble 88%
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Table 7 infers that the prediction architecture proposed in the study performs 
well on all the cancer datasets. Following inferences need to be highlighted:

● The Stacked Neural model worked well with both cervical cancer and 
Mesothelioma dataset attaining a great prediction score.

● The prediction model worked well with the three real-time ovarian cancer 
datasets (binary), lung cancer dataset (multi-class problem) where the 
target is to predict stage (stage 2, 3 and 4), and leukemia dataset (binary 
target). The proposed prediction model performed exceptionally well on 
all the parameters concerning the Wisconsin breast cancer dataset.

● The projected model worked well on NSCLC gene-expression dataset 
achieving appreciable prediction outcomes where the target is to predict 
the survival time of the lung cancer patients.

Comparison of the Proposed Model

To evaluate the effectiveness of the proposed study, we compared several 
approaches to predicting cancer or patient survival using the benchmark 
datasets (Cervical Cancer, Mesothelioma, Breast Cancer, and NSCLC 
gene expression-based lung cancer survival data. Comparisons based 
on the prediction accurateness (accuracy score) achieved by several 
research studies are summarized, and the highest accuracy scores are 
bold-faced in Table 8.

Table 8 reasons that the proposed classification technique, i.e., stack
ing-based multi-neural ensemble system, shows an incredible perfor
mance on all cancer datasets. Our proposed strategy performed better 
than the techniques employed in previous research studies.

Statistical Analysis

Using Friedman statistical significance tests (WALs and Kelleher 1971) and 
Holms post-hoc analysis, the proposed stacking-based multi-neural ensemble 
is statistically compared to three deep learning approaches for each dataset 
(Holm 1979). Table 9 contains the average Friedman ranks (the higher the 
rating, the better (Evans 2019)) and the adjusted p.

Table 9. Statistical results.
ML Methods Friedman Rank Adjusted P

MLP_1 2.432 0.000478
MLP_2 3.2 0.005372
MLP_3 3.68 0.011821
Stacked Model 6.2 (Control)
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Friedman rankings of each classifier demonstrated that the suggested stacked 
model beat the MLP 1, MLP 2, and MLP 3 algorithms significantly (at 0.05).

Based on the results, we perceive that the proposed gradient boosting-based 
multi-neural approach produces noticeable results superior to each of the neural 
classification models. Due to the complication and high mortality of cancer, 
diagnosis precision is critical. Consequently, improvement in diagnosis predic
tion by applying machine learning systems is of great aid to cancer cure. 
According to the interpretations in an earlier study (Kourou et al. 2015a), neural 
networks have been used in 70% of cancer research studies. This interpretation 
encouraged us to integrate multiple neural models for attaining a more precise 
classification model. In the study, we presented an evaluation of the proposed 
multi-neural technique and the three different MLP models acting solo. Also, 
Simulation results on the eight data sets express that the proposed strategy yields 
greater accurateness than all the other learners performing individually. The 
sensitivity analysis shown in Figure 12 specifies that the single classification 
model displays uneven performance for different data sets.

Conclusion

A gradient boosting-based multi-neural approach is presented to predict 
cancer diagnosis, stage and survival. Multiple cancer datasets like real-time 
datasets, clinical, image-driven datasets, and gene expression data have been 
analyzed. The multi-neural ensemble model based on stacking ensembles the 
outputs of the three neural classifiers. Employing gradient boost learning at 
the second level enables the ensemble method to recognize the intricate 

Figure 12. Sensitivity analysis.
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relationships among the classifiers are automatically to achieve better pre
diction. This exploratory investigation conveys that the proposed stacking- 
based deep learning model can be an integral asset for a viable biomarker of 
various tumors. An ideal classifier must achieve higher sensitivity as diag
nosing tumorous patients as nonmalignant would be a significant hazard. 
For cancer studies, this misclassification can be more hazardous than cate
gorizing a healthy patient as malignant. Proposed gradient boosting used in 
the ensemble stage spontaneously acquires complicated structures. The 
instance labels are learned, such that the yield of MLPs and the associations 
amid them are considered. The gradient boosting learner works in a step- 
wise fashion by placing more weight on the instances that have been mis
classified in the former stage. Subsequently, the appreciable accurateness of 
cancer prediction is achieved. The classification outcomes achieved by the 
predictive model in each of the cancer datasets are exceptionally sound to 
advocate the worth of the proposed model in further studies and medicinal 
practices. The study has some limitations; for instance, the model has been 
evaluated on small-size datasets only, and there is a requirement to validate 
the model on considerably large-sized datasets. Also, the proposed approach 
has been evaluated on only cancer datasets; for the sake of generalizability, 
the proposed model needs to be validated on other disease datasets as well. 
Regarding future directions, we aim to analyze the performance of the 
proposed model on other disease datasets.
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Data Availability Statement

The following are the links of online datasets: https://github.com/surbhigupta24/Stacking- 
Based-Multi-Neural-Ensemble-

Cervical Cancer (Risk Factors) Data Set

https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
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Mesothelioma’S Disease Data Set

https://archive.ics.uci.edu/ml/datasets/Mesothelioma%C3%A2%E2%82%AC%E2%84%A2s 
+disease+data+set

Breast Cancer Wisconsin (Diagnostic)

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Prostate Cancer Data Set

https://www.kaggle.com/sajidsaifi/prostate-cancer
Code Software: The python code along with all the developed for the cancer diagnosis 

prediction pronounced in this study made available on Github.com at the following URL: 
https://github.com/surbhigupta24/Stacking-Based-Multi-Neural-Ensemble-

All the data files used in the study along with python code are uploaded privately on https:// 
github.com/ and can be made public afterwards or can be provided to readers.
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Appendix

Table A1. Description of metrices.
Metrics Description Formula

Accuracy (Acc.) It identifies the total amount of cases 
appropriately identified by the model.

(P + Q)/ (P + Q + R + S)

Specificity (Spec.) It identifies the negative cases correctly 
determined by the model.

R/ (R + Q)

Sensitivity (Sens.) It outlines the number of genuine cases 
recognized from all correct cases.

P/(P + S)

F1-Score It evaluates the model based on the harmonic 
mean of Pr and Re

2 × ((Pr × Re)/(Pr + Re))

Receiver Operating  
Characteristic (ROC)

It considers the true positive rate against the 
false-positive rate on a range of thresholds.

–

Area Under the Curve (AUC) AUC measures the area under the ROC curve and 
is also scale-invariant.

–
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