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ABSTRACT 
 
Background: Resistance to antimicrobial drugs has become an increasingly global problem, and is 
the main reason for an extended search for new drugs to treat microbial infections. Senecioneae is 
one of the largest tribes of Asteraceae, comprised of about 150 genera and 3000 plant species. 
Senecio graveolens, commonly called Chachacoma, is highly used as a medicinal plant for altitude 
sickness by the natives of the Andes Mountains around the Atacama Desert. Previous studies have 
demonstrated that S. graveolens extracts possess antibacterial properties, but its active compound 
and molecular mechanisms are still unknown. 
Methods: Form the ethanolic extract of S. graveolens the main compound 4-hydroxy-3-(3-methyl-2-
butenyl)acetophenone (4-H-3-(MB)AP) was identify and purified by nuclear magnetic resonance 
(NMR). Antibacterial activity of (4-H-3-(MB)AP) was assayed on Gram-positive and Gram-negative 
bacteria by microbiological techniques. Possible mechanisms of action of (4-H-3-(MB)AP) were 
explored by microbiological, flow cytometry and electron microscopy techniques. 
Results: Here we determined that S. graveolens extract has specific antibacterial activity against 
Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, and Mycobacterium 
smegmatis. The most abundant compound from S. graveolens extract, 4-H-3-(MB)AP, showed 
broad antibacterial activity against Gram-positive but no activity against Gram-negative strains. We 
determined that 4-H-3-(MB)AP permeabilizes bacterial membranes and precludes cell division by 
disrupting Gram-positive bacteria divisome, suggesting that the synthesis of teichoic acid is 
inhibited.  
Conclusions: We conclude that 4-H-3-(MB)AP is one of the active compounds of S. graveolens 
extract responsible for its antibacterial activity. 4-H-3-(MB)AP is a candidate for further chemical 
modification studies and practical approaches to design antimicrobial drugs.  
 

 
Keywords: Antimicrobial; Senecio graveolens; plant extract; gram-positive; 4-hydroxy-3-(3-methyl-2-

butenyl) acetophenone.  
 

1. INTRODUCTION 
 
Plant extracts have been utilized for centuries to 
accelerate wound healing and to treat common 
infectious diseases. Such traditional medicinal 
plants are still utilized in the routine treatment 
many of those [1]. Because of their curative 
potential, plant extracts have been investigated 
for the development of novel drugs to control 
bacterial infections [2-4].  
 
Due to the current increase in awareness of 
antibiotic resistance issues, self-medication with 
several plant products from herbal suppliers and 
natural-food stores is enjoying considerable 
popularity [5]. The World Health Organization 
(WHO) noted that the majority of the world's 
population depends on local traditional medicine 
for primary healthcare [6]. Indeed, in 2010, the 
global retail sale of botanical dietary supplements 
amounted to more than $25 billion in the United 
States [7]. 
 
Senecio is the largest genus in the family 
Senecioneae (Asteraceae) with more than 1500 
described species distributed worldwide [8]. 
Senecio species have been used in folk medicine 
for wounds treatment, as an antiemetic, anti-

inflammatory, and in vasodilator preparations [9]. 
Approximately 300 Senecio species are located 
in the Andes Mountains around the Atacama 
Desert [10,11]. S. graveolens, an endemic specie 
of the Atacama Desert highlands (over 3000 m of 
altitude) and known by the popular name of 
“Chachacoma”, is commercialized as folk 
medicine mainly for altitude sickness syndrome 
[12]. Previous studies demonstrated that extracts 
from Senecio species has antibacterial and 
antifungal activities [13-16]. Here we corroborate 
that S. graveolens extract exhibits antibacterial 
activity and in addition showed that this 
antibacterial activity is specific to Gram-positive 
bacterial species. 
 
Many plants produce antibacterial products as a 
defense mechanism in response to tissue 
disruption and pathogen attack, or are present 
constitutively, giving to the plant a characteristic 
odor, distinctive pigmentation, or flavor. Some of 
these plant-based antimicrobials can 
successfully fight infections and are being 
investigated for commercial development [1]. 
Here we purified the main component of S. 
graveolens extract, 4-hydroxy-3-(3-methyl-2-
butenyl)acetophenone (4-H-3-(MB)AP) also 
know as prenilatedacetophenone. 4-H-3-(MB)AP 
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was described for the first time by Bohlmann et 
al. [17] in Helianthella uniflora and later isolated 
from Senecio nutans [18], Helichrysum italicum 
[19], Xenophyllum poposum [20] and 
Xenophyllum incisum [21]. A previous study 
indicated that 4-H-3-(MB)AP is an effective 
antifungal agent possessing also a moderate 
antibacterial activity [19]. However, the specific 
antibacterial activity of 4-H-3-(MB)AP has not 
been determined. Here, we determined that 4-H-
3-(MB)AP isolated from S. graveolens 
permeabilize bacterial membranes and has 
specific bactericidal activity against Gram-
positive bacterial species by inhibiting cell 
division septum formation. 
 

2. MATERIALS AND METHODS 
 
2.1 Plant Material 
 
S. graveolens was collected during 2010 from 
the highlands of the Atacama Desert, near to the 
Chungara lake Chile at 4,500 meters above the 
sea level (Fig. 1). Approximately 180.87 g of dry 
and ground plant material (principally flowers, 
leaves and stems) were macerated in 95% 
ethanol for 72h. The specimen collection is 
conserved at CODECITE-CIHDE, Arica Chile. 
 

2.2 Phytochemical Extraction 
 
Dry and ground S. graveolensplant material 
(180.87g) was macerated in 95% ethanol for 72 
h at room temperature. The extract was filtered 
and concentrated under reducing pressure at 
40°C. The plant extract was subjected to 
separation with a mixture of ethyl acetate/water 
(EtOAc/H2O) (500 ml each) in separation funnel. 
The resulting organic phase was concentrated 
under reducing pressure. A total of 54.86 g of S. 
graveolens extract was obtained from the original 
plant material. 
 

2.3 Extraction and Compounds Isolation 
 
The organic phase (20 g) was chromatographed 
on silica gel using a mixture of hexane and ethyl-
acetate with increasing polarity (49:1 and 1:49) 
and monitored by thin layer chromatography 
(TLC). The samples with similar constitution were 
pooled and concentrated under reducing 
pressure. An impure solid product was obtained, 
which was recrystallized by using Et2O:MeOH 
(1:1) yielded a pure crystalline solid, identified as 
4-H-3-(MB)AP (2.42 g). Pure compound (12.1% 
yield from the crude extract) was obtained from 

the original concentrated organic phase isolated 
form the crude plant material, mp 94-95°C. The 
1H, 13C (DEPT 135), sel. 2D HSQC and 2D 
HMBC spectra were recorded in CDCl3 solutions 
on a Bruker Avance 400 Digital nuclear magnetic 
resonance (NMR) parameters spectrometer. 
Melting points were determined on a Stuart-
Scientific SMP3 apparatus. Column 
chromatography (CC) used silica gel Merck 60 G 
(0,032-0,063 nm). The parameter for the NMR 
were (1H-NMR) (CDCl3): 7.77 (1H, s, H-2 ); 7.76 
(1H, d, J = 8.0 Hz, H-6); 6.86 (1H, d, J = 8.0 Hz, 
H-5); 6.27 (1H, br s, HO); 5.32 (1H, t, J =7.0 Hz, 
H-2`); 3.40 (2H, d, J = 7,0 Hz, H-1`); 2.55 (3H, s, 
H-2``); 1,78 (6H, s, H-4`` + H-5``). 13C-RMN 
(CDCl3) δ: 197.5 (C-1``); 159.1 (C-4); 135.5 (C-
3`); 130.8 (C-2); 130.2 (C-1); 128.9 (C-6); 127.0 
(C-3); 121.0 (C-2`); 115.5 (C-5); 29.6 (C-1`); 26.3 
(C-2``); 25.8 (C-4`)#; 17.9 (C-5`)#. # assignment 
may be interchanged in accordance to literature 
[22]. 
 

2.4 Bacterial Strains and Regents 
 
The bacterial strains used in this work are listed 
in Table 1. Bacteriological media and 
components were purchased from Difco (Franklin 
Lakes, NJ). Luria Bertani (LB) broth [23], Bacto-
Brain Heart Infusion (BHI), and tripticase soy 
broth (TSB), were used routinely. When required, 
the media was supplemented with 1.5% agar. 
Bacterial growth was monitored 
spectrophotometrically and/or by plating.  
 

2.5 Minimal Inhibitory Concentration 
(MIC) 

 
The MIC was determined by the microplate serial 
dilution assay [24]. This assay was performed 
using flat bottom 96-well clear microtitre plates. 
10,000 µg/ml of 4-H-3-(MB)AP dissolved in 

ethanol 100% was serially diluted in 200 µl TSB 
and then inoculated with 2µl of mid-log-phase 
cultures (~1x10

8
cfu/ml) of the respective 

bacterial strain.   
 

2.6 Antimicrobial Assays 
 
Antimicrobial assays were performed according 
Otto et al. [25]. Briefly, bacterial strains were 
grown overnight and diluted with fresh medium to 
achieve an approximate density of 1 x 10

7
cfu/mL 

into 10ml. The bacteria culture was treated with 

100 µg of 4-H-3-(MB)AP. The cultures were 
incubated at 37°C with constant rotary agitation 
(180 rpm) for 3 h. Positive controls consisted of 
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cultures not inoculated and negative controls 
consisted of cultures inoculated with 40% of 
isopropanol. These controls were included in 
each series of independent experiments. After 
incubation, the assays were subjected to 

successive 10-fold serial dilutions and plated to 
determine the number of viable bacteria. Three 
independent assays were performed per 
bacterial strain.  

 

 
 

Fig. 1. Seneciograveolans environment. A. S. graveolans; B. S. graveolans leaves and flowers; 
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C. Lake Chungara area; D. Dry S. graveolans as folk medicinal “Chachacoma” plant 
Table 1. Bacterial strains used in this study 

 
Specie Relevant characteristics Source or 

reference 

χ289 Escherichia coli K12 F
-
supE42 λ

-
 T3

R
 Curtiss Lab 

χ7122 Avian Pathogenic E. coli APEC O78:K80:H9, gyrANal
r
, Str

r
 [47] 

χ3761 Salmonella entericaserovar 
Typhimurium UK-1 

Wild-type, smooth LPS [41,42] 
 

χ9944  S. Typhimurium UK-1 ∆wzy-48, semi-rough LPS [28] 

χ9945  S. Typhimurium UK-1 ∆rfaH49,  rough LPS [28] 

χ11308  S. Typhimurium UK-1 ∆waaG42, rough LPS [28] 

χ11309  S. Typhimurium UK-1 ∆waaI43,  rough LPS [28] 

χ11310  S. Typhimurium UK-1 ∆waaJ44,  rough LPS [28] 

χ11311  S. Typhimurium UK-1 ∆wbaP45,  rough LPS [28] 

χ11312  S. Typhimurium UK-1 ∆waaL46,  rough LPS [28] 

χ3769 S. Typhi Ty2 Wild type  [48] 
J100 Edwardsiella ictaluri Wild-type 2003/c; smooth LPS [43,44,45] 
Shigella flexneri Wild-type Curtiss Lab 
Vibrio vulnificus Wild-type Curtiss Lab 

Curtiss Lab 
Vibrio parahaemolyticus Wild-type  
G100 Micrococcus luteus Wild-type ATCC 4698 
G101 Bacillus subtilis Wild-type ATCC 11714 
G102 Streptococcus epidermus Wild-type ATCC 2228 
G103 Staphylococcus aureus Wild-type ATCC 12600 
G104 Bacillus megaterium Wild-type ATCC 14581 
G105 Streptococcus aureus Wild-type ATCC 14581 
G106 Methicillin-resistant 
Staphylococcus aureus (MRSA) 

Wild-type [46] 

G107 Penicillin-resistant 
Staphylococcus aureus (PRSA) 

Wild-type [46] 

M100 Mycobacterium smegmatis Wild-type ATCC 14468 
Listeria monocytogenes Wild-type Curtiss Lab 

 

2.7 Transmission Electron Microscopy 
(TEM) 

 
E. coli and MRSA exponential phase cultures 
were normalized to an initial concentration of 10

6 

CFU/mL. Following 30 min of exposure to 100 µg 
of 4-H-3-(MB)AP, the cells were fixed in 2% 
gluteraldehyde buffered in 50 mM phosphate, pH 
7, for 2 h at room temperature. The cells were 
then washed in 50 mM phosphate and 
resuspended in 1% agarose (final concentration). 
The agarose-embedded cell pellets were fixed in 
2% osmium tetroxide (buffered in 50 mM 
phosphate) for 2h at room temperature, washed 
three times in 50 mM phosphate buffer, washed 
three times in dH2O, and en bloc stained in 0.5% 
uranyl acetate overnight at 4°C. The pellets were 
dehydrated in 10min washes with a sequential 
acetone series (20%, 40%, 60%, 80%, 3× 100%) 
and infiltrated with Spurr's resin. Thin sections 
(70 nm) were cut using an Ultracut R 

ultramicrotome (Leica Microsystems, Vienna, 
Austria). Sections were captured on formvar-
coated, 300-mesh copper grids, post-stained in 
uranyl acetate and Sato's lead citrate, and 
observed on a Philips CM12 TEM at 80 kV. A 
minimum of 60 cells was counted from each of 
three independent replicates. 
 

2.8 Flow Cytometric Measurements 
 
To evaluate the membrane integrity of E. coli and 
MRSA following exposure to 4-H-3-(MB)AP, the 
BacLight LIVE/DEAD membrane permeability kit 
(Invitrogen, Carlsbad, CA, USA) was used 
following the manufacturer guidelines. E. coli and 
MRSA mid-logartithmic phase cultures were 
prepared as described above and harvested at 
an initial concentration of 10

8
 CFU/mL. A 

standard curve was prepared by mixing live 
(0.85% saline-exposed) cells and dead (40% 
isopropanol-exposed) cells together at various 
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proportions of live:dead cells (100%, 75%, 50%, 
25%, 0% alive). Following exposure to 4-H-3-
(MB)AP or control conditions, cells were 
incubated in 5µM SYTO9 and 30 µM propidium 
iodide (PI) for 15 min in the dark and then 
immediately subjected to flow cytometric 
analysis. E. coli and MRSA cells were analyzed 
following 3 h exposure to 4-H-3-(MB)AP. A 
Cytomics FC 500 flow cytometer (Beckman 
Coulter, Inc., Brea, CA, USA) fitted with a 488 
nm excitation laser was used for membrane 
permeability analyses. Green fluorescence was 
detected on channel FL1 with a 525 nm 
bandpass filter. Red fluorescence was detected 
on channel FL3 with a 620 bandpass filter. Since 
the SYTO9 dye emits a strong signal at a 
wavelength of 600 nm, it overlaps with the PI 
emission [26]. Therefore, membrane 
permeabilization was determined by a horizontal 
population shift that occurs down the green 
fluorescent intensity axis. For each series of flow 
cytometric measurements, 50,000 cells were 
counted and analyzed. 
 

2.9 Isolation of Strains Resistant to 4-H-3-
(MB)AP 
 
Concentration of 30, 50, and 100 µg/ml of 4-H-3-
(MB)AP and high osmolarity (300 and 500  
mMNaCl [27]) were used to prepare TSA. 10

8 

CFU of the selected strain was added and 
incubate at 37°C and lower temperatures (15 
and 28°C). The strains used were MRSA, PRSA 
and B. subtillis (Table 1). 
 

2.10 Statistical Analysis 
 

Statistical analysis was performed using Prism 4 
(GraphPad Software, San Diego, CA, USA) and 
was calculated using a two-tailed, paired 
Student’s t-test. A P value of <0.05 was 
considered statistically significant. 
 

3. RESULTS 
 

3.1 Minimal Inhibitory Concentration of S. 
graveolens Extract 
 

The S. graveolens organic extract did not present 
significant antibacterial activity against Gram-
negative bacteria including Salmonella, 
Escherichia, Edwardsiella, Shigellaand 
Vibrio(Table 2). In contrast, S. graveolans extract 
showed significant activity against the Gram-
positive organisms Listeria, Bacillus and 
Streptococcus species, and against 
Mycobacterium smegmatis (Table 2). 
 

3.2 4-hydroxy-3-(3-methyl-2-butenyl) 
acetophenone Purification and 
Identification 

 

We determined that the main compound at the 
organic face was 4-H-3-(MB)AP (C13H16O2; MW: 
204.26884 g/mol) (Fig. 2). The crystal    
presented the characteristic aromatic smell of    
S. graveolens.  
 
 
 

 
 

Fig. 2. Nuclear magnetic resonance (NMR) analysis. A. 1H-NMR; B. 13C-NMR; C. DEPT-135 
NMR spectrum; D. 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone 
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3.3  Minimum Inhibitory Concentration 
(MIC) of 4-hydroxy-3-(3-methyl-2-
butenyl)acetophenone 

 

The purified 4-H-3-(MB)AP resulted in a MIC 

against Gram-negative species over 1000 µg/ml 
with exception of Vibrio that had an MIC of 800 

µg/ml (Table 3). We evaluated whether the 
lipolysaccharide (LPS) is involved in this 
resistance. We tested several S. Typhimurium 
LPS mutants with oligopolysaccharide, core, and 
lipid A modifications [28]. We found that LPS is 
not related to 4-H-3-(MB)AP resistance in Gram-
negative bacteria (Table 3). In contrast, the MIC 
against Gram-positive species and M. 

smegmatis ranged between 25-200 µg/ml (Table 
3). These data demonstrate that 4-hydroxy-3-(3-
methyl-2-butenyl)acetophenone has specific 
activity against Gram-positive bacteria.  
 

3.4 Antibacterial Activity of 4-hydroxy-3-
(3-methyl-2-butenyl)acetophenone 
 

The bactericidal activity of 100 µg/ml of 4-H-3-
(MB)AP on E. coli, S. aureus, and MRSA was 
determined in agar and in liquid following a 3 h 
exposure (Fig. 3).  E. coli viability was reduced 
by 2-log10 units after a 3 h exposure and MRSA 
and S. aureus viability was reduced by 6-log10 
units, respectively, 3 h post treatment (Fig. 3).  
Together, these data demonstrate that, while E. 
coli is susceptible to some killing, the magnitude 
of killing does not meet clinical lab standards for 
bactericidal activity (minimum 3-log10 unit 
decrease).  Alternatively, 100 µg/ml of 4-H-3-
(MB)AP had bactericidal activity against both S. 
aureus and MRSA at clinically-relevant levels 
(Fig. 3). 
 

3.5 Bacterial Membrane Permeabilization 
 

E. coli treated with 4-H-3-(MB)AP was 
immediately permebilalized, affecting ~50% of 
the cell population (Fig. 4C). This effect in E. coli 
membrane permeabilization was constant during 
the entire assay (Fig. 4C). In contrast, MRSA 
and S. aureus treated with 4-H-3-(MB)AP 
exhibited delayed membrane permeabilization. 
MRSA and S. aureus membrane integrity decay 
was observed 3 h post treatment and almost all 
the cell population was affected (Figs. 4A-B).      
 

3.6 TEM 
 

Differences between E. coli treated with 4-H-3-
(MB)AP and the non-treated were not detected 
(Fig. 5A-B). In contrast, MRSA treated with 4-H-
3-(MB)AP for 30 min did not show membrane 

integrity damage, however, approximately 10% 
of the cells showed a disrupted division septum 
that was not observed in the non-treated MRSA 
cells (Fig. 6C-D). Similar results were observed 
at 3 h post 4-H-3-(MB)AP exposure. These 
results suggest that 4-H-3-(MB)AP affects the 
Gram-positive cell division process. 
 

Table 2. Minimum inhibitory concentration 
(MIC) of S. groevelans 

 

Bacterial strain MIC (µµµµg/ml) 

Gram negative  
Salmonella Typhi 12,500 
Salmonella Typhimurium 12,500 
Salmonella Enteritidis >25,000 
Shigella flexneri >25,000 
Escherichia coli K-12 12,500 
Escherichia coli APEC >25,000 
Vibrio parahaemolyticus 3,000 
Vibrio vulnificus 3,000 
Gram positive  
Listeria monocytogenes 1,500 
Staphylococcus aureus 1,500 
Bacillus subtilis 1,000 
Acid Fast  
Mycobacterium smegmatis 1,000 

 

Table 3. Minimal inhibitory concentration 
(MIC) of 4-H-3-(MB)AP purified from  

S. groevelans 
 

Bacterial strain MIC 

(µµµµg/ml) 

Gram negative  
S. Typhi Ty2 >1,000 
S. Typhimurium UK-1 >1,000 
S. Typhimurium∆waaG42, rough LPS >1,000 

S. Typhimurium∆waaI43, rough LPS >1,000 

S. Typhimurium∆rfaH49, rough LPS >1,000 

S. Typhimurium∆waaJ44, rough LPS >1,000 

S. Typhimurium∆wbaP45, rough LPS >1,000 

S. Typhimurium∆waaL46, rough LPS >1,000 

S. Typhimurium∆wzy-48, semi-rough LPS >1,000 
Shigellaflexneri >1,000 
Escherichia coli K-12 >1,000 
Escherichia coli APEC >1,000 
Vibrio parahaemolyticus 800 
Gram positive  
Listeria monocytogenes 100 
Bacillus megaterium 50 
Bacillus subtilis 25 
Staphylococcus aureus ATCC 12600 50 
Staphylococcus aureus ATCC 11632 100 
Methicillin-resistant Staphylococcus 
aureus 

100 

Penicillin-resistant Staphylococcus aureus 100 
Staphylococcus epidermis 200 
Micrococcus luteus 50 
Acid Fast  
Mycobacterium smegmatis 100 
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Fig. 3. Antibacterial activity of 4-H-3-(MB)AP. A. BHI agar; B. BHI agar supplemented with 100 
µg/ml of 4-H-3-(MB)AP; C. BHI agar supplemented with 200 µg/ml of 4-H-3-(MB)AP. D-H. 

Growth inhibition of 3-(2-Hydroxy-3-methylbut-3-enyl)-4-hydroxyacetophenone in TSB at 37°C 
with aeration (180 rpm). D-F. Cell viability after 0 and 3 h post treatment. G-H. Growth 

inhibition. MRSA: Methicillin-resistant Staphylococcus aureus 
 

 

 
Fig. 4. Membrane permeabilization assay. A. MRSA; B. S. aureus; C. E. coli 
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Fig. 5. TEM of cells non-treated and treated 
with 4-H-3-(MB)AP after 30 min. A. E. coli non-
treated; B. E. coli treated with 100 µg/ml; C. 
MRSA non-treated; D. MRSA-treated. 

3.7 Isolation of Strains Resistant to 4-H-3-
(MB)AP 

 

Using concentration from 30 to 200 µg/ml of 4-H-
3-(MB)AP, high osmolarity conditions (300 and 
500  mMNaCl [27]) and low temperatures (15 
and 28ºC) in the solid media was not possible to 
isolate resistant mutants of MRSA, PRSA and B. 
subtillis. Suggesting that 4-H-3-(MB)AP affects 
essential processes for Gram-positive bacteria.  
 

4. DISCUSSION 
 
Since the pre-colonial period, a variety of native 
plants from the highlands of the Atacama Desert 
have been used as medicinal herbs by the 
Aymara culture and are currently used in popular 
folk medicine [29]. In particular, S. graveolens is 
known for its healing and anti-inflammatory 
properties that help to relive altitude sickness 
symptoms. Previously it has been determined 
that S. graveolens extract has antibacterial 

activity [13-16], but the specific antibacterial 
compound in the extract and the antibacterial 
mechanisms were unknown. We determined that 
the ethanolic extract of S. graveolens has a mild 
antibacterial activity against Gram-positive 
bacteria (Table 2). From this extract, we 
identified and isolated the molecule 4-H-3-
(MB)AP as the main compound (Fig. 2) and 
showed that 4-H-3-(MB)AP has specific anti-
bacterial activity against Gram-positive strains 
(Table 3). Plants produce many products as a 
mechanism of defense in response to tissue 
disruption or pathogen attack. Some of these 
compounds are known as phytoanticipins, which 
are constitutively synthesized in an inactive form, 
giving the plant a characteristic odor, distinctive 
pigmentation, and flavor (e.g., the terpenoid 
capsaicin from chili peppers) [1,30,31]. 4-H-3-
(MB)AP has the characteristic odor of S. 
graveolens, suggesting that this compound might 
be related to a constitutive mechanism of plant 
defense.   
 
As mentioned previously, 4-H-3-(MB)AP has 
been isolated from other Senecio species 
[12,13,22,32] and its antibacterial activity has 
been successfully evaluated. However its range 
of activity and mechanisms of action have not 
been determined. Here we showed that 4-H-3-
(MB)AP has specific bactericidal activity against 
Gram-positive, including antibiotic-resistant 
strains (Table 3), and bacteriostatic activity 
against Gram-negative organisms (Fig. 3). 4-H-3-
(MB)AP caused mild membrane permeabilization 
in E. coli (Fig. 4) , but did not result in 
correlatively killing. These data demonstrate that 
4-H-3-(MB)AP affects Gram-negative membrane, 
but also suggest that membrane permabilization 
is not the antibacterial mechanism of action of 4-
H-3-(MB)AP. The lipopolysaccharide (LPS) is the 
most external structure of the Gram-negative 
bacterial membrane, which is not present in 
Gram-positive bacteria. We evaluated whether 
the LPS is involved in the Gram-negative 
resistance to 4-H-3-(MB)AP (Table 3). We 
determined that LPS does not play a role in 
Gram-negative bacteria resistance to 4-H-3-
(MB)AP, suggesting that its activity might be 
related to cell wall disruption or to another 
specific target present only in Gram-positive 
bacteria (Table 3). We unsuccessfully tried to 
isolate resistant mutants of MRSA, PRSA and B. 
subtillis under different conditions, including high 
and low osmolarity and low temperature. 
Suggesting that 4-H-3-(MB)AP affects essential 
processes for Gram-positive bacteria.   
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Teichoic acids are critical and abundant anionic 
glycopolymers found in Gram-positive cell 
envelopes, but not present in Gram-negative 
bacterial membrane [33]. Two kinds of these 
negative charge polymers are located on the 
surface of Gram-positive bacteria, lipoteichoic 
acids (LTA) and wall teichoic acids (WTA). 
Because teichoic acids are essential for bacterial 
viability [34,35], inhibition of the teichoic acid 
pathway is a promising antibacterial target [35-
37]. Defective mutants of LTA or WTA are able to 
grow only under permissive temperature 
conditions and under non-permissive conditions 
these mutants present cell division defects in the 
divisome [38]. Depleted mutant of both LTA and 
WTA are not viable [34].  
 
TEM showed that Gram-negativeand Gram-
positive treated cells do not have membrane 

disruption (Figs. 5A-6B), but Gram-positive cells 
showed evident defects in the divisome after 30 
min post treatment (Figs. 5C-6D) and 3 h post 
treatment. Compounds that preclude cell division 
through inhibition or disruption of the divisome 
typically cause cell elongation [38,39]. However, 
we did not observe cell elongation in the strains 
treated with 4-H-3-(MB)AP. The overall of these 
results suggests that 4-H-3-(MB)AP might have a 
pleiotropic effect in Gram-positive bacteria, 
perhaps affecting teichoic acid and cell wall 
synthesis. Recently, we evaluate the cytotoxicity 
effects of 4-H-3-(MB)AP [40]. We found that 4-H-
3-(MB)AP is cytotoxic in human cell lines [40]. 
Further research is required to determine the 
precise antibacterial mechanism of action of 4-H-
3-(MB)AP in Gram-positive bacteria and to 
modify this compound to maximize efficacy and 
minimize cytotoxicity activity. 

 

 
 

Fig. 6. TEM of cells non-treated and treated with 4-hydroxy-3-(3-methyl-2-
butenyl)acetophenone after 30 min. A.E. coli non-treated; B.E. coli treated with 100 µg/ml; C. 

MRSA non-treated; D. MRSA-treated 
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5. CONCLUSION 
 

We conclude that 4-H-3-(MB)AP is one of the 
active compounds of S. graveolens extract 
responsible for its antibacterial activity. In light of 
the need of new drugs against multi-resistant 
bacteria, 4-H-3-(MB)AP is a candidate for further 
chemical modification studies and practical 
approaches.  
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