

__

*Corresponding author: E-mail: ming_li@mail2000.com.tw;

British Journal of Applied Science & Technology
4(21): 3069-3095, 2014

SCIENCEDOMAIN international

 www.sciencedomain.org

Software Quality Factors and Software Quality
Metrics to Enhance Software Quality Assurance

Ming-Chang Lee1*

1
National Kaohsiung University of Applied Sciences (Taiwan), 415 Chien Kung Road,

Kaohsiung, Taiwan.

Author’s contribution

This whole work was carried out by authors MCL.

Received 31
st

 March 2014
Accepted 1

st
 May 2014

Published 2
nd

 June 2014

ABSTRACT

Aims: Software quality assurance is a formal process for evaluating and documenting the
quality of the work products during each stage of the software development lifecycle. The
practice of applying software metrics to operational factors and to maintain factors is a
complex task. Successful software quality assurance is highly dependent on software
metrics. It needs linkage the software quality model and software metrics through quality
factors in order to offer measure method for software quality assurance. The contributions
of this paper build an appropriate method of Software quality metrics application in quality
life cycle with software quality assurance.
Design: The purpose approach defines some software metrics in the factors and
discussed several software quality assurance model and some quality factors measure
method.
Methodology: This paper solves customer value evaluation problem are: Build a
framework of combination of software quality criteria. Describes software metrics. Build
Software quality metrics application in quality life cycle with software quality assurance.
Results: From the appropriate method of Software quality metrics application in quality
life cycle with software quality assurance, each activity in the software life cycle, there is
one or more QA quality measure metrics focus on ensuring the quality of the process and
the resulting product. Future research is need to extend and improve the methodology to
extend metrics that have been validated on one project, using our criteria, valid measures
of quality on future software project.

Original Research Article

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3070

Keywords: Software quality assurance; software metric; software quality factor; software life
cycle.

1. INTRODUCTION

Software quality assurance (SQA) is a technique to help achieve quality. SQA is becoming a
critical issue in software development and maintenance [1]. SQA can monitor that
the software engineering processes and methods used to ensure quality. Software metric
deals with the measurement of software product and software product development process
and it guides and evaluates software development [2]. Software metric is quantitative
measure of the extent to which a system, component, or process. Software factors are going
importance and acceptance in corporate sectors as organizations grow nature and strive to
improve enterprise quality. The metrics are the quantitative measures of the degree to which
software processes a given attribute that affects its quality. SQA is a formal process for
evaluating and documenting the quality of the products produced during each stage of the
software development lifecycle.

There have four quality models: McCall’s quality model [3], Boehm’s quality model [4],
FURPS mode; [5], Dromey’s quality model [6], and ISO/IEC 25000 standard. Each model
contains different quality factors and quality criteria [7]). They are indicators of process and
product and are useful in case of software quality assurance [8]. The aim of this paper
present what are software quality factors and their criteria and their impact on the SQA
function.

The remaining part of this paper is organized as follows section 2 describes literature review,
it discuses the content of the relation of quality factors with quality criteria. Section 3 builds a
relationship of software quality criteria between metrics. Section 4 describes software
metrics, it found in the software engineering. Section 5 builds an appropriate method of
Software quality metrics application in quality life cycle with software quality assurance. Fig.
1 is a research framework.

Fig. 1. A Research framework

Software quality model and ISO/IEC 25000 standard

Quality criteria and quality metric Quality factors and quality criteria

Criteria of software quality factors

Quality assurance in the software life cycle

An appropriate method for Software quality assurance with
quality measure metrics in quality life cycle

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3071

2. LITERATURE RESEARCH

2.1 Software Quality Assurance Model

In this section, it discusses the contents of the following quality assurance model: McCall
quality model, Boehm quality model, FURPS model, and Dromey model.

The McCall quality model [3] has three quality of software product: product transition
(adaptability to new environment), product revision (ability to undergo changes), and product
operations (its operation characteristics). Product revision includes Maintainability, Flexibility,
and Testability. Product Transition includes Portability, Reusability, and Interoperability. This
model contains 11 quality factors and 23 quality criteria. The quality factors describe different
types of system characteristics and quality criterions are attributes to one or more of the
quality factors. Table 1 is denoted as the factors and criteria of McCall quality mode

Table 1. The factors and criteria of McCall quality mode

Category Software metrics 11 Quality factors Quality criteria
McCall’s
quality

Product Operation Correctness Completeness, consistency, operability
Reliability

Accuracy, complexity, consistency,
error tolerance, modularity, simplicity

Efficiency

Concision, execution, efficiency,
operability

Integrity Audit ability, instrumentation, security
Usability Operability, training

Product Revision Maintainability

Concision, consistency, modularity,
instrumentation, self-documentation,
software independence

Flexibility

Generality, hardware independence,
modularity, self-documentation,
software independence

Testability Audit ability, complexity,
instrumentation, modularity, self-
documentation, simplicity

Product Transition Portability

Complexity, concision, consistency,
expandability, generality, modularity,
self-documentation, simplicity

Reusability

Generality, hardware independence,
modularity, self-documentation,
software independence

Interoperability Communications commonality, data
communality

Boehm quality model attempts to automatics and qualitatively evaluate the quality of
software. The high – level characteristics address three classification; general utility into as
utility, maintainability, portability. In the intermediate level characteristics, Boehm quality
model have 7 quality factors like portability, reliability, efficiency, Usability, Human
engineering, understandability, flexibility [4,9]. Table 2 is denoted as the quality factors and
quality criteria of Boehm quality mode.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3072

Table 2. The factors and criteria of Boehm quality mode

Factors Criteria
Portability Self contentedness, device independence
Reliability Self contentedness, accuracy, completeness, robustness/

integrity, consistency
Efficiency Accountability, device efficiency, accessibility
Usability Completeness
Human engineering
(testability)

Accountability, communicativeness, self descriptiveness,
structuredness

Understanding Consistency, structured, conciseness
Modifiability (Flexibility) Structured, augment ability

Dromey quality model proposed a framework for evaluate requirement, design and
implementation phases. The high-level product properties for the implementation quality
model include: correctness, internal, contextual, and descriptive ([6], [10]). Table 3 is
denoted as the factors and criteria of Dromey quality mode.

Table 3. The factors and criteria of Dromey quality mode

Factors Criteria
Correctness Functionality, Reliability
Internal Maintainability, Efficiency, Reliability
Contextual Maintainability, Reusability, portability, reliability
Descriptive Maintainability, Efficiency, reliability, usability

Furps model originally presented by Grady [5], then it is extended by IBM Rational Software
([11] ~ [12]) into FURPS+. The “+’’ indicates such requirements as design constraints,
implementation requirements, interface requirements and physical requirements [11]. There
are four characteristics in FURPS model. Table 4 is denoted as the factors and criteria of
FURPS quality mode.

Table 4. The quality factors and quality criteria of FURPS quality mode

Factors Criteria
Functionality Capabilities, and security
Usability Consistency, user documentation, training materials
Reliability Frequency and security of failure, Recoverability, predictability,

accuracy, mean time between failure
Performance Speed efficiency, availability, accuracy, throughput, response

time, recovery time, resource usage
Supportability Testability, extensibility, adaptability, maintainability, compatibility,

configurability, serviceability, install ability, localizability

ISO 9000 – it provides guidelines for quality assurance [8]. ISO 9000 is a process oriented
approach towards quality management [13]. It processes designing, documenting,
implementing, supporting, monitoring, controlling and improving [14]. Recently, the ISO/IEC
9126-1: 2001 software product quality model, which defined six quality characteristics, has
replaced by ISO/IEC 205010:2011 system and software product quality model [15]. ISO
25010 is the most commonly used quality standard model. It contains eight quality factors:

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3073

Functional suitability, reliability, operability, security, performance efficiency, compatibility,
maintainability, and portability. The 28 quality factors are arranged in six quality
characteristics. Table 5 is denoted as the factors and criteria of ISO/IEC 2510 quality mode

([15) ~ [16]).

Table 5. The factors and criteria of ISO/IEC 25010 quality mode

Factors Criteria
Functional suitability Functional appropriateness, accuracy
Performance efficiency Time behavior, resource utilization
Reliability Maturity, fault tolerance, recoverability, Availability
Operability Appropriateness reconcilability, Ease of use, User error

protection, User interface aesthetics, Technical learn ability,
technical accessibility

Security Confidentiality integrity, Non-repudiation, Accountability,
Authenticity

Compatibility Co-existence, Interoperability
Maintainability Modularity, Reusability, Analyzability, Modifiability, testability,
Portability Adaptability, install-ability, replace-ability

The quality models described above contain several factors in common, like Maintainability,
Efficiency, and Reliability. However, some of factors like correctness, understandability,
modifiability and supportability are not so common and are in one or two models. Table 5
compared of fours quality model and ISO/IEC 25010. Table 6 is denoted as a comparison of
the factors of four quality model and ISO/IEC 25010.

Table 6. A comparison of criteria of the four quality model and ISO/IEC 2510

factors McCall Boehm Dromey FURPS ISO/IEC25010
Correctness
Integrity
Usability
Efficiency
Flexibility
Testability
Maintainability
Reliability
Portability
Reusability
Interoperability
Human engineering
Understandability
Modifiability
Functionality
Performance
Supportability
Security

*
*
*
*
*
*
*
*
*
*
*

*
*

*
*

*
*
*

*

*
*
*
*
*

*

*

*

*
*
*

*
*

*
*
*
*

*
*
*

*

17 11 7 7 5 8
Extended Al-Outaish [17]

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3074

3. COMBINATION OF SOFTWARE QUALITY CRITERIA AND SOFTWARE
METRICS

Under the software quality assume model and ISO/IEC 25000 standard, it found the
combination of software quality factors and criteria. In this section, it need describe the
relationship of software quality criteria and software quality metrics.

There are four reasons for developing a list of criteria for each factor:

1. Criteria offer a more complete, concrete definition of factors.
2. Criteria common among factors help to illustrate the interrelation between factors.
3. Criteria allow audit and review metrics to be developed with greater ease.
4. Criteria allow us to pinpoint that area of quality factors which may not be up to a

predefined acceptable standard.

3.1 Software Quality Factors and Quality Criteria

Criteria are the characteristics which define the quality factors. The criteria for the factors
are the attributes of the software product or software production process by which the factor
can be judged or definition. The relationships between the factors between the criteria can
be found in Table 7.

Table 7. The relationships of factors with criteria of software quality

Factors Criteria
Correctness Completeness, consistency, operability
Efficiency Concision, execution, efficiency, operability
Flexibility Complexity, concision, consistency, expandability, generality,

modularity, self-documentation, simplicity
Integrity Audit ability, instrumentation, security
Interoperability Communications commonality, data communality
Maintainability Concision, consistency, modularity, instrumentation, self-

documentation, software independence
Portability Generality, hardware independence, modularity, self-documentation,

software independence
Reliability Accuracy, complexity, consistency, error tolerance, modularity,

simplicity
Reusability Generality, hardware independence, modularity, self-documentation,

software independence
Testability Audit ability, complexity, instrumentation, modularity, self-

documentation, simplicity
Usability Operability, training
Modifiability Structure, augment ability,
Understandability Consistency, Structure, conciseness. legibility
Documentation Completeness
Functionality Capability, security
Performance Flexibility, efficiency, Reusability
Supportability Testability, extensibility, maintainability, compatibility

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3075

3.2 Quality Criteria and Related Factors

Table 8 is criteria for software quality factors. It provides an illustration of the relationship
between these criteria and the factors [3].

Table 8. Criteria of software quality factors

Criterion Definition Related factors
Traceability Those attributes of the software that provide a

thread from the requirements to the
implementation with respected to the specific
development and operational environment.

Correctness

Completeness Those attributes of the software that provide full
implementation of the function required

Correctness

Consistency Those attributes of the software that provide
uniform design and implementation techniques
and notation.

Correctness
Reliability
Maintainability

Accuracy Those attributes of the software that provide
the required precision in calculation and
outputs.

Reliability

Error Tolerance Those attributes of the software that provide
continuity of operation under monomial
conditions.

Reliability

Simplicity Those attributes of the software that provide
implementation of functions in the most
understandable manner. (usually avoidance of
practices which increase complexity)

Reliability
Maintainability
Testability

Modularity Those attributes of the software that provide a
structure of highly independent modules

Maintainability
Flexibility
Testability
Portability
Reusability
Interoperability

Generality Those attributes of the software that provide
breadth to the functions performed

Flexibility
Reusability

Expandability Those attributes of the software that provide for
expansion of data storage requirements or
computational functions.

Flexibility

Instrumentation Those attributes of the software that provide for
the measurement of usage identification of
errors.

Testability

Self-
Descriptiveness

Those attributes of the software that provide
explanation of the implementation of function.

Flexibility
Testability
Portability
Reusability

Execution Efficiency Those attributes of the software that provide for
minimum processing time.

Efficiency

Storage Efficiency Those attributes of the software that provide for
minimum storage requirements during
operation.

Efficiency

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3076

Table 8 Continued…
Access Control Those attributes of the software that provide for

control of the access of software and data
Integrity

Access Audit Those attributes of the software that provide for
audit of the access of software and data

Integrity

Operability Those attributes of the software that determine
operation and procedure concerned with the
operation of the software

Usability

Training Those attributes of the software that provide
transition from current operation or initial
familiarization

Usability

Communicativeness Those attributes of the software that provide
useful inputs and outputs which can be
assimilated

Usability

Software System
Independence

Those attributes of the software that determine
its dependency on the software environment
(operating systems, utilities, input/output
routines, etc.)

Portability
Reusability

Machine
independence

Those attributes of the software that determine
its dependency on the hardware system.

Portability
Reusability

Communications
Commonality

Those attributes of the software that provide
the use of standard protocols and interface
routines

Interoperability

Data Commonality Those attributes of the software that provide
the use of standard data representations.

Interoperability

Conciseness Those attributes of the software that provide for
implementation of a function with minimum
amount of code.

Maintainability

3.3 Criteria of Software Quality Factors

The following table lists all software metrics. They copied from volume II of the specification
of software quality attributes software quality evaluation guidebook [18]. Table 9 is denoted
as the relationship of criteria between software quality metrics.

3.4 Quality Assurance in the Software Life Cycle

Product metrics, process metrics, and project metrics are three important types of software
metrics. Product metrics measures the efficiency of accomplishing product targets for
instance size, complexity, design features, performance, and quality level. Process metrics
measures the efficiency of performance the product development process for instance
turnover rate. Project metrics measures the efficiency of product development process, for
instance schedule performance, cost performance, team performance [19].

In order to be efficient, quality assurance activities should following stage in the software life
cycle. For each activity in the software life cycle, there is one or more QA support activities
focus on ensuring the quality of the process and the resulting product. A concept framework
of QA support software quality life cycle as shown in Fig. 2.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3077

Table 9. The relationship of criteria between software quality metrics

Criteria Software quality metrics
Accuracy Accuracy checklist
Self-Descriptiveness Quality of comments

Effectiveness of comments
Descriptiveness of language

Simplicity Design structure
Structured language
Data and control flow complexity
Coding simplicity
Halstead’s level of difficulty measure

System accessibility Access control
Access audit

System clarity Interface complexity
Program flow complexity
Application functional complexity
Communication complexity
Structure clarity

System compatibility Communication compatibility
Data compatibility
Hardware compatibility
Software compatibility

Traceability Documentation for other system
Cross reference

Document accessibility Access to documentation
Well structured documentation

Efficiency process Processing effectiveness measure
Data usage effectiveness measure

Efficiency communication Communication effectiveness measure
Efficiency storage Storage effectiveness measure
Functional Function specifically

Function commonality
Function selective usability

Generality Unit referencing
Unit implementation

Independence Software independence for system
Machine independence

Modularity Modular design
Operability Operability checklist

User output communicativeness
User input communicativeness

Training Training checklist
Virtual System/data independence
Visibility Unit testing Integration testing

Case testing
Application independence Database management

Database implementation
Database independence
Data structure
Architecture standardization
Microcode independence
Function independence

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3078

Augment ability Data storage expansion
Computation extensibility
Channel extensibility
Design extensibility

Completeness Completeness checklist
Consistency Procedure consistency

Data consistency
Autonomy Interface complexity

Self- sufficiency
Re-configurability Restructure checklist
Anomaly management Error tolerance Improper input data

Communications faults Hardware faults
Device error Computation failures

Fig. 2. A concept framework of QA support software quality life cycle

4. SOFTWARE QUALITY METRICS

This section concentrates on different metrics found in the software engineering literature. A
classical classification of the software quality metrics: Halstead’s software metrics, McCabe’s
cyclomatic complexity metric, RADC’s methodology, Albrecht’s function points metric,
Ejiogu’s software metrics, and Henry and Kafura’s information metric.

4.1 Halstead’s Software Metrics

Halstead’s measure for calculation of module conciseness is essentially based on the
assumption that a well structured program is a function of only its unique operators and
operands. The best predictor of time required to develop and run the program successfully
was Halstead’s metric for program volume.

Halstead [20] defined the following formulas of software characterization for instance.

Project

Requiremen

Analyze and Design

Construction

Test

Deployment
Support

Change

Review project plan

Review Requirements

Analyze Design

Inspect code

Assess Tests

Evaluate quality

Ensure Project Deployment Track support and change

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3079

The measure of vocabulary: 21 nnn 

Program length: 21 NNN 

Program volume: nNV 2log

Program level:
V

V
L

*



Where

1n = the number of unique operators

2n = the number of unique operand

1N = the total number of operators

2N = the total number of operands

Christensen et al. [21] have taken the idea further and produced a metrics called difficulty.
*V is the minimal program volume assuming the minimal set of operands and operators for

the implementation of given algorithm:

Program effort: E =
L

V *

Difficulty of implementation: D =
2

21

2n

Nn

Programming time in seconds: T =
S

E

Difficulty:
2

21
2 n

Nn 

With S as the Stroud number ()205  S which is introduced from the psychological science.

*
2n is the minimal set of operands. 0E is determined from programmer’s previous work. The

based on difficulty and volume Halstead proposed an estimator for actual programming
effect, namely.

Effort = difficulty * volume

Table 10 is denoted as the formulas of Halstead’s software metrics with software quality
factors.

4.2 McCabe’s Cyclomatic complexity metrics

 McCable [22] has proposed a complexity metric on mathematical graph theory. The
complexity of a program is defined in terms of its control structure and is represented by the
maximum number of “linearly independent” path through the program. Software developer
can use this measure to determine which modules of a program are over-complex and need
to be re-coded.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3080

Table 10. The formulas of Halstead’s software metrics with software quality factors

Software metrics Software quality factors Formulas
Implementation length N Maintainability

Number of Bugs
Modularity
Performance
Reliability

21 NNN 

)22log212log1 nnnn 

Volume V Complexity
Maintainability
Number of Bugs
Reliability
Simplicity

nNV 2log

Potential Volume *V
Conciseness Efficiency

)*21(2log)*21(
* nnnnV 

Program Level L Conciseness Simplicity

V

V
L

*



Program Effort Clarity Complexity
Maintainability Modifiability
Modularity Number of Bugs
Performance Reliability
Simplicity Understandability

E =
L

V *

Number of Bugs Maintainability Number of
BugsTestability.

0E

V
B 

The formulas for the cyclomatic complexity proposed by [3] are:

V (G) = e - n + 2p

Where

e = the number of edges in the graph
n = the number of nodes in the graph
P = the number of connected components in the graph.

The Cyclomatic complexity metric is based on the number of decision elements (IF-THEN-
ELSE, DO WHILE, DO UNTIL, CASE) in the language and the number of AND, OR, and
NOT phrases in each decision. The formula of the metric is: Cyclomatic complexity =
number of decisions +number of conditions + 1[23].

The Essential complexity metricb is based on the amount of unstructured code in a program.
Modules containing unstructured code may be more difficult to understand and maintain.
The essential complexity proposed by McCable [22]:

mGVGEV )()(

Where

V (G) = the cyclomatic complexity
m = the number of proper sub graphs

McCabe’s Cyclomatic complexity measure has been correlated with several quality factors.
These relationships are listed in Table 11.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3081

Table 11. The formulas of McCabe’s Cyclomatic complexity metrics

Software metrics Software quality factors Formulas
Cyclomatic complexity
V(G)

Complexity
Maintainability
Number of Bugs
Modularity
Simplicity
Reliability
Testability
Understandability

V(G) = e - n + 2p

Essential Complexity
EV(G)

Complexity
Conciseness
Efficiency
Simplicity

EV (G)= V(G) - m

4.3 RADC’s Methodology

RADS expanded Boehm model. The metrics discussed in this section are based on
continuing development effort [18]. The requirements present a ratio of actual occurrence to
the possible number of occurrence for each situation: these results in a clear correlation
between the quality criteria and their associated factors. Table 12 is denoted as the
formulas of RADC’s methodology.

Table 12. The formulas of RADC’s methodology

Software metrics Software
quality factors

Formulas (for example)

Traceability Completeness
Consistency Accuracy
Error Tolerance Simplicity
Structures programming
Modularity Generality
Expandability Computation
extensibility Instrumentation
Self-Descriptiveness
Execution efficiency Storage
Efficiency
Access control Access Audit
Operability Training
Communicativeness Software
system independence
Machine independence
Communication commonality
Data commonality
Conciseness

Completeness
Consistency
Correctness
Efficiency
Expandability
Flexibility
Integrity
Interoperability
Maintainability
Modularity
Portability
Reliability
Survivability
Usability
Verifiability

Traceability (1)
Cross reference relative modules to
requirements
Completeness (2)

1. Unambiguous references (Input,
function, output)

2. All external data references defined,
computed or obtained from external
source

3. All detailed functions defined
4. All conditions and processing defined

for each decision point
5. All defined and reference calling

sequence parameters agree
6. All problem reports resolved
7. Design agree with requirements
8. Code agree with design

Source: Bowen et al. [18]

1
)(tsrequiremenofnumbertotaltracedtsrequiremenitemizedofNumbertyTraceabili 

2
)

9

9

1(




ielementforscore

ssCompletene

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3082

4.4 Albrecht’s Function Points Metrics

Albrecht developed a metric to determine the number of elementary functions, hence the
value of source code. This metric was developed to estimates the amount the effort needed
to design and develop customer applications software [24].

1. Calculation the function counts (FCs) based on the following formula:

  
 

5

1

3

1i j
ijij xwFC

Where ijw are the weighting factors of the five components by complexity level (low,

average, high) and ijx are the numbers of each component in the application.

It is a weighted of five major components [25] are:

・External input: Low complexity, 3; average complexity, 4; high complexity, 6

・External output: Low complexity, 4; average complexity, 5; high complexity, 7

・Logical internal file: Low complexity, 5; average complexity, 7; high complexity, 10

・External interface file: Low complexity, 7; average complexity, 10; high complexity, 15

・External inquiry: Low complexity, 3; average complexity, 4; high complexity, 6

2. Calculation the value adjustment factor, it involves a scale from 0 to 5 to assess the

impact of 14 general system characteristics in terms of their likely on the application.
There are 14 characteristics: data communication distributed function, heavily used
configuration, transaction rate, online data entry, end user efficiency, online update,
complex processing, reusability, installation ease, operational ease, multiple sites, and
facilitation of change.

The scores (ranging from 0 to 5) for these characteristics are then summed, based on the
following formulas, to arrive at the value adjustment factor (VAF)




14

1
01.065.0
i

icVAF

ic : the score of general system characteristics.

3. The number of function points is obtained by multiplying function counts and the value

adjustment factor:
VAFFCFP 

4.5 Ejiogu’s Software Metrics

Ejiogu’s software metrics uses language constructs to determine the structural complexity of
a program. The syntactical constructs are nodes. These metrics are related to the structural
complexity of a program. They are also related to other quality factors, such as usability,
readability, and modifiability.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3083

The structural complexity metrics gives a numerical notion of the distribution and
connectedness of a system’s components [26].

MtRHcS 

Where

H: the height of the deepest nested node,
Rt: the Twin number of the root,
M: the Monadicity [27]

The height for an individual node is the number of levels that a node is nested below the root
node. The Twin number is the number of nodes that branch out from a higher level node.
Monads are nodes that do not have branches emanating from them. They also are referred
to as “leaf nodes”.

Software size is the size of a set of nodes of source code. It is calculated using the number
of modes in the tree.

1 nodesofumbertotalS

Where

1: represents the root node.

4.6 Henry and Kafura’s Information Metrics

Information flow complexity (IFC) [28] describes the amount of information which flows into
and out of a procedure. This metrics use the flow between procedures to dhow the data flow
complexity of a program. The Formula is:

2)*(outfaninfanLengthIFC 

Where

Fan-in: The number of local flows into a procedure plus the number of global data
structures from which a procedure retrieves information.

Fan-out: The number of local flows into a procedure plus the number of global data
structures from which a procedure updates.
Length is the number of lines of source code in the procedure. In
implementing this count, embedded comments are also counted, but not
comments preceding the beginning of the executable code.

4.7 Project Metrics

PMI PMBOK (Project management institute’s project management body of knowledge)
describes Project Management Processes, tools and techniques and provides one set of
high level businesses for all industries. The PMBOK includes all nine knowledge areas and
all associated with them tools and techniques: Integration management, Scope management,
Time management, Cost management, Quality management, Human Resource
management, Communication Management, Risk management, and Procurement
management (PMBOK [29]).

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3084

Some of those processes often are not applicable or even irrelevant to Software
Development industry. CMM (Capability Maturity model) speaks about software project
planning processes without mentioning specific methodologies for project estimating
described in PMBOK (PMBOK). Basic key process areas (KPA) of the SEI CMM is
requirement management, project planning, project tracking and oversight, subcontract
management, quality assurance, and configuration management. The Table 13 is mapping
of some relevant to CMM activities, tools and techniques:

Table 13. Mapping of project management processes to process groups and
knowledge areas

Knowledge Areas /
Process Group

Initiating Planning Executing Controlling Closing

Project integration
management

 Project plan
development

Project plan
execution

Integrated
change control

Project scope
Management

Initiation
scope
definition

Scope planning Scope
change
control

Scope
verification

Project tine
management

 Activity definition
Activity
sequencing
Activity duration
estimating
Schedule
development

 Schedule
control

Project cost
management

 Resource
planning
Cost estimating
Cost budgeting

 Cost control

Project quality
management

 Quality planning Quality
assurance

Quality control

Project Human
resource
management

 Organization
planning
Staff Acquisition

Team
development

Project
communication
management

 Communication
planning

Information
distribution

Performance
reporting

Administ
rative
closure

Risk project
management

 Risk
management
planning
Risk
identification
Qualitative risk
analysis
Risk response
planning

 Risk
monitoring and
control

Project procurement
management

 Procurement
planning
Solicitation
planning

Solicitation
Source
selection
Contract
administration

 Contract
closeout

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3085

4.8 Reliability Metrics

A varies often used measure of reliability and availability in computer-based system is mean
time between failures (MTBF) [30]. The sum of mean time to failure (MTTF) and mean time
to repair (MTTR) gives the measure, i.e.

MTBF = MTTF + MTTR

The availability measure of software is the percentage that a program is operating according
to requirement at a given time and is given by the formula:

Availability = MTTP / (MTTF +MTTE)* 100%

The reliability growth models assume in general that all defects during the development and
testing phases are correct, and new errors are not introduced during theses phases. All
models seem to include some constraints on the distribution of defects or the hazard rate,
i.e. defect remaining in the system.

Increase software reliability gives the metrics:

Failure rate (FR) =
timeExecution

failuresofNumber

4.9 Readability metrics

Walston and Felix [31] defined a ratio of document pages to LOC as:

01.149LD 

Where

D= number of pages of document
L = number of 1000 lines of code.

4.10 Metrics-Based Estimation Models

4.10.1 COCOMO Model

Most of the models presented in this subsection are estimators of the effort needed to
produce a software product. Probably the best known estimation model is Boehm’s
COCOMO model [32]. The first one is a basic model which is a single-value model that
computes software development effort and cost as a function of program size expressed as
estimated lines of code (LOC). The second COCOMO model computes software
development effort as a function of program size and a set of “coat drives” that include
subjective assessment of product, hardware, personal, and project attributes.
The basic COCOMO equations are:

ib
i KLOCaE)( , id

iEcD 

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3086

Where

E is the effort applied in person-month.
D is the development time in chronological months

 The coefficients ia and ic and the exponents ib and id are given in Table 14.

Table 14. Basic COCOMO

Software project ia ib ic id

Organic
Semi-detached
Embedded

2.4
3.0
3.6

1.05
1.12
1.20

2.5
2.5
2.5

0.36
0.35
0.32

The second COCOMO has some special features, which distinguish it from other ones. The
usage of this method is very wide and its results are accurate. The equations are use to
estimate effort and schedule see [33].

4.10.2 Putnam estimation model

The Putnam estimation model ([34] ~ [35]) assumes a specific distribution of effort over the
software development project. The distribution of effort can be described by the Royleigh-
Norden curve. The equation is:

3/43/1
dk tKcL 

Where

kc is the state of technology constant (the environment indictor),

k is the effort expended (in person-years) over the whole life cycle.

dt is the development time in year.

The kc valued ranging from 2000 for poor to 11000 for an excellent environment is used [36].

4.10.3 Source line of code

SLOC is an estimation parameter that illustrates the number of all comments and data
definition but it does not include instructions such as comments, blanks, and continuation
lines. Since SLOC is computed based on language instructions, comparing the size of
software which uses different language is too hard. SLOC usually is computed by
considering LS as the lowest, HS as the highest and MS as the most probable size [37].

6

4 HSMSLSS




4.10.4 Productive estimation model

Walston and Fellix [31] give a productivity estimator of a similar form at their document
metric. The programming productivity is defined as the ratio of the delivered source lines of
code to the total effort in person-months required to produce the delivered product.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3087

91.02.5 LE  E
Where

E is total effort in person-month
L is the number of 1000lines of code.

4.11 Metrics for software maintenance

 During the maintenance phase, the following metrics are very important: [37]

・ Fix backlog and backlog management index
・ Fix response time and fix responsiveness
・ Percent delinquent fixes
・ Fix quality

Fix backlog is a workload statement for software maintenance. To manage the backlog of
open, unresolved, problems is the backlog management index (BMI). If BMI is large then
100, it means the backlog is reduced. If BMI is less than 100, then the backlog increased.

%100


monththeduringarrivalsproblemofNumber

monththeduringclosedproblrmsofNumber
BMI

4.12 Customer Problem Metrics

The customer problems metric can be regarded as an intermediate measurement between
defects measure and customer satisfaction. The problems metric is usually expressed in
terms of problem per user month (PUM). PUM is usually calculated for each month after the
software is released to market, and also for monthly averages by user.

Several metrics with slight variations can be Constructed and used, depending on the
purpose of analysis. For example: ([38] ~ [40]).

・ Percent of completely satisfied customers.
・ Percent of satisfied customers (satisfied and completely satisfied)
・ Percent of dissatisfied customers(dissatisfied and completely dissatisfied)
・ Percent of non (neutral, dissatisfied, and completely dissatisfied).
・ Customer – founded defects (CFD) total

sizesourcetotalequivalentAssembly

defectsfoundedcustomerofNumber
totalCFD






・ Customer – founded defects (CFD) delta

sizesourcetotalequivalentAssembly

tdevelopmensoftwarentalincreaseme

bycauseddefectsfoundedcustomerofNumber

totalCFD






British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3088

PUM = Total problems that customers reported (true defects and non-defects- orients
problems) for a time period + Total number of License- months of the software during the
period.

Where Number of license- months = Number of install license of the software Number of
months in the calculation period.

4.13 Test Product and Process Metrics

Test process metrics provide information about preparation for testing, test execution and
test progress. Some testing metrics ([36,41,42]) as following:

1. Number of test cases designed
2. Number of test cases executed
3. DA = Number of defects rejected / Total number of defects *100%
4. Bad Fix Defect =Number of Bad Fix Defect / Total number of valid defects *100%
5. Test case defect density = (Number of failed tests / Number of executed test cases)

*100
6. Total actual execution time/ total estimated execution time
7. Average execution time of a test case

Test product metrics provide information about the test state and testing status of a software
product. Using these metrics we can measure the products test state and indicative level
quality, useful for product release decision [42].

1. Test Efficiency = (DT/(DT+DU)*100
2. Test Effectiveness = (DT/(DF+DU)*100
3. Test improvement TI = number of defects detected by the test team during / source

lines of code in thousands
4. Test time over development time TD = number of business days used for product

testing / number of business days used for product
5. Test cost normalized to product size (TCS) = total cost of testing the product in

dollars / source lines of code in thousands
6. Test cost as a ration of development cost (TCD) = total cost of testing the product in

dollars / total cost of developing the product in dollars
7. Test improvement in product quality = Number of defects found in the product after

release / source lines of code in thousands
8. Cost per defect unit = Total cost of a specific test phase in dollars / number of

defects found in the product after release
9. Test effectiveness for driving out defects in each test phase = (DD/(DD+DN)*100
10. Performance test efficiency (PTE) = requirement during perform test / (requirement

during performance time + requirement after signoff of performance time) * 100%
11. Cost per defect unit = Total cost of a specific test phase in dollars / number of

defects found in the product after release
12. Estimated time for testing
13. Actual testing time
14. % of time spent = (actual time spent / Estimating time)*100

Where

DD : Number of defects of this defect type that are detected after the test phase.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3089

TD : Number of defects found by the test team during the product cycle

DU : Number of defects of found in the product under test (before official release)

FD : Number of defects found in the product after release the test phase

ND : Number of defects of this defect type (any particular type) that remain uncovered

after the test phase.

4.14 Method of Statistical Analysis

The revisions on the software measurement methods, developed with the purpose of
improving their consistency must be empirically evaluated so as to determine to what extent
is the pursued goal fulfilled. The most used statistical methods are given in the following
table ([43] ~ [48]). Some commonly used statistical methodology (include nonparametric
tests) are discussed as follow:

1. Ordinary least square regression models: Ordinary least square regression (OLS)
model is used to subsystem defects or defect densities prediction

2. Poisson models: Poisson analysis applied to library unit aggregation defect analysis
3. Binomial analysis: Calculation the probability of defect injection
4. Ordered response models: Defect proneness
5. Proportional hazards models: Failure analysis incorporating software characteristics
6. Factor analysis: Evaluation of design languages based on code measurement
7. Bayesian networks: Analysis of the relationship between defects detecting during

test and residual defects delivered
8. Spearman rank correlation coefficient: Spearman's coefficient can be used when

both dependent (outcome; response) variable and independent (predictor) variable
are ordinal numeric, or when one variable is an ordinal numeric and the other is a
continuous variable.

9. Pearson or multiple correlations: Pearson correlation is widely used in statistics to
measure the degree of the relationship between linear related variables. For the
Pearson correlation, both variables should be normally distributed

10. Mann – Whitney U test: Mann – Whitney U test is a non-parametric statistical
hypothesis test for assessing whether one of two samples of independent
observations tends to have larger values than the other

11. Wald-Wolfowitz two-sample Run test: Wald-Wolfowitz two-sample Run test is used
to examine whether two samples come from populations having same distribution.

12. Median test for two samples: To test whether or not two samples come from same
population, median test is used. It is more efficient than run test each sample
should be size 10 at least.

13. Sign test for match pairs: When one member of the pair is associated with the
treatment A and the other with treatment B, sign test has wide applicability.

14. Run test for randomness: Run test is used for examining whether or not a set of
observations constitutes a random sample from an infinite population. Test of
randomness is of major importance because the assumption of randomness
underlies statistical inference.

15. Wilcoxon signed rank test for matcher pairs: Where there is some kind of pairing
between observations in two samples, ordinary two sample tests are not
appropriate.

16. Kolmogorov-Smirnov test: Where there is unequal number of observations in two
samples, Kolmogorov-Smirnov test is appropriate. This test is used to test whether
there is any significant difference between two treatments A and B.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3090

5. SOFTWARE QUALITY METRICS IN QUALITY LIFE CYCLE WITH SOFTWARE
QUALITY ASSURANCE

Software quality metrics focus on quality aspects of product metrics, process metrics,
maintenance metrics, customer metrics and project metrics.

Product metrics are measures of the software product at any stage of its development, from
requirements to installed system. Product metrics may measure the complexity of the
software design, the size of the final program, or the number of pages of documentation
production. Process metrics are measure of the software development process, such as
overall development time, the average level of experience of the programming staff, or type
of methodology used. The test process metrics provide information about preparation for
testing, test execution and test progress. Some test product metrics are number of test
cases design, % of test cases execution, or % test cases failed. Test product metrics
provide information of about the test state and testing status of a software product and are
generated by execution and code fixes or deferment. Some rest product metrics are
Estimated time for testing, average time interval between failures, or time remaining to
complete the testing.

The software maintenance phases the defect arrivals by time interval and customer problem
calls. The following metrics are therefore very important: Fix backlog and backlog
management index, fix response time and fix responsiveness, percent delinquent fixes, and
fix quality.

Subjective metrics may measure different values for a given metric, since their subjective
judgment is involved in arriving at the measured value. An example of a subjective product
metric is a classification of the software as “organic”, ”semi-detached” or “embedded” as
required in the COCOMO cost estimation model.

From the customer’s perspective, it is bad enough to encounter functional defects when
running a business on the software. The problems metric is usually expressed in terms of
problem per user month (PUM). PUM is usually calculated for each month after the software
is released to market, and also for monthly averages by user.

The customer problems metric can be regarded as an intermediate measurement between
defects measure and customer satisfaction. To reduce customer problems, one has to
reduce the functional defects in the products, and improve other factors (usability,
documentation, problem rediscovery, etc.). Table 15 is denoted as software quality
assurance with quality measure metrics in quality life cycle.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3091

Table 15. Software quality assurance with quality measure metrics in quality life cycle

Category Description Project perspective Software quality factors Software quality measure
metric

Project metrics Describe the project’s
characteristics and
execution

 Resource allocation
Review effectiveness
schedule performance,
cost performance, team
performance

⃘Product estimation model

⃘Project metrics

⃘Software process timetable

metrics
Requirements
gathering

Examine
Requirements

 Completeness Correctness
Testability

⃘Requirement specification.

Product metrics Describe the
characteristics of the
product

Product Operation Correctness Reliability
Efficiency
Integrity Usability

�Productivity metrics
�Execution Efficiency

Product Revision Maintainability Flexibility
Testability

�Software system independence.
�Machine independence.

Product Transition Portability Reusability
Interoperability

�Software system independence.

Process
metrics

Describe the
effectiveness and
quality of the process
that produce the
software product

Requirements Understandability Volatility
Traceability
Model clarity

�Function points metrics
�Requirement specification

Analysis and design Structure Component
Completeness
Interface complexity
Patterns Reliability

�Complexity metrics
�Structural design
�Kafurd’s information flow
�MTBF

Code Complexity Maintainability
Understandability
Reusability
Documentation

�Halstead’ measure
�Cyclometric measure
�Structural programming
�Ejiogu’s metrics
�Error remove effectiveness

Testing Correctness
Test effectiveness

�Test efficiency
�Test process metrics
�Test product metrics
�Error rate

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3092

Implementation

Resource usage
Completion rates
Reliability

�Reliability
�Software corrective
maintenance productivity
�Process quality metrics

Ensure Project
Deployment

Describe the
customer satisfaction
metrics

 Usability, Documentation,
Problem rediscover

�Customer problem metrics
�Failure density metrics
�Productivity metrics
�Effectiveness metrics

Track support
and change
Management

Describe the
maintenance metrics

Changes Correctness
Documentation

�Defect remove
�Backlog management index.
�Fix backlog
�Software maturity index
�Statistical metrics
�Readability metrics

Support Completion rates
Maintainability

Source: this study

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3093

6. CONCLUSION

Software quality metrics focus on quality aspects of product, process, and project. They
group into six categories in accordance with the software life cycle: project metrics,
requirements gathering, product metrics, process metrics, ensure Project deployment
(customer satisfaction metrics), track support and change management (maintenance
metrics). In order to understand the relationship of criteria of software quality factor, we have
discussed software quality model and standard, quality factors and quality criteria, quality
criteria and quality metric. We detail discussed software quality metrics. It includes
Halstead’s software metrics, McCabe’s Cyclomatic complexity metrics, RADC’s
methodology, Albrecht’s function points metric, Ejiogu’s software metrics, Henry and
Kafura’s information metric, project metric, Reliability metrics, Readability metrics, Metrics-
based estimation models, Metrics for software maintenance, In- process quality metrics,
Customer problem metrics, Test product and process metrics, and Method of statistical
analysis. Under the above 15 software quality metrics, we give table of software quality
assurance with quality measure metrics in quality life cycle. It contains software quality
factors and software quality measure metric in each software development phase.

In order to continue to improve its software product, processes, and customer services.
Future research is need to extend and improve the methodology to extend metrics that have
been validated on one project, using our criteria, valid measures of quality on future software
project.

COMPETING INTERESTS

Author declares that there are no competing interests.

REFERENCES

1. Vennila G, Anitha P, Karthik R, Krishnamoorthy P. A study of evaluation information to

determine the software quality assurance, International Journal of Research and
Reviews in Software Engineering. 2011;1(1):1-8.

2. Ma Y, He K, Du D, Liu J, Yan Y. A complexity metrics set for large-scale object-
oriented software system, In proceedings of the Sixth IEEE International Conference
on Computer and Information Technology, Washington, DC, USA. 2006;189-189

3. McCall JA, Richards PK, Walters GF. Factors in software quality, RADC TR-77-369:
1977. (Rome: Rome Air Development Center)

4. Boehm BW, Brow JR, Lipow M, McLeod G, Merritt M. Characteristics of software
quality. North Holland Publishing. Amsterdam, the Netherlands; 1978.

5. Grady, RB. Practical software metrics for project management and process
improvement, Prentice Hall; 1992.

6. Dromey RG. Concerning the Chimera (software quality). IEEE Software. 1996;1:33-
43.

7. Drown DJ, Khoshgoftaar TM, Seiya N. Evaluation any sampling and software quality
model of high assurance systems, IEEE Transaction on systems, Mean and
Cybernetics, Part A: Systems and Human. 2009;39(5):1097-1107.

8. Tomar AB, Thakare VM. A systematic study of software quality models, International
Journal of software engineering & application. 2011;12(4):61-70.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3094

9. Boehm BW, Brown JR, Lipow M. Quantitative evaluation of software quality, In
Proceeding of the 2

nd
 International Conference on Software engineering. 1976;592-

605.
10. Dromey RG. A model for software product quality. IEEE Transaction on Software

Engineering. 1995;21:146-162.
11. Jacobson I, Booch G, Rumbaugh J. The unified software development process,

Addison Wesley; 1999.
12. Krruchtem P. The rational unified process: an introduction, Addison Wesley; 2000.
13. ISO 9001:2005, Quality management system Fundamentals and vocabulary; 2005.
14. ISO 9001:2001, Quality management system Requirements; 2001.
15. ISO /IEC25010: Software engineering– system and software quality requirement and

evaluation (SQuaRE)- system and software quality model; 2011.
16. Esaki K. System quality requirement and evaluation, importance of application of the

ISO/IEC 25000 series, Global Perspectives of Engineering Management.
2013;2(2):52-59.

17. Al-Qutaish RE. Quality models in software engineering literature: An analytical and
comparative study. Journal of American Science. 2010;6(3):166-175.

18. Bowen TP, Gray BW, Jay TT. RADC-TR-85-37, RADS, Griffiss Air Face Base N. Y.;
1985.

19. Shanthi PM, Duraiswamy K. An empirical validation of software quality metric suits on
open source software for fault-proneness prediction in object oriented system,
European journal of Scientific Research. 2011: 5(2):168-181.

20. Halstead, MH. Elements of software Science, New York, North-Holland; 1978.
21. Christensen, K., FIstos, P and Smith, CP. A perspective on the software science, IBM

systems Journal. 1988;29(4):372-387.
22. McCable TJ. A complexity measure, IEEE Transaction on Software Engineering,

1976; SE-2(4):308-320.
23. Arthur, LJ., Measuring programmer productivity and software quality, John Wiley &

Son, New York; 1985.
24. Albrech AJ, Gaffney JE. Software function, source lines of code and development

effort function: a software service validation, IEEE Transaction on Software
Engineering. 1983;SE-9(6):639-648.

25. Kemerer CF, Porter BS. Improving the reliability of function point measurement: an
empirical study, IEEE Transactions on Software Engineering. 1992;18(11):1101-1024.

26. Fjiogu LO. A unified theory of software metrics, Softmetrix, Inc. Chicago, IL. 1988;232-
238.

27. Fjiogu LO. Beyond structured programming, An introduction to the principle of applied
software metrics, structured programming, Springer- verleg, N. Y.; 1990.

28. Henry S, Kafura D. The evaluation of software systems’ structure using qualitative
software metrics, Software- practice and Experience. 1984;14(6):561-573.

29. PMBOK, A guide to the project management Body of Knowledge. Project
Management Institute Standards Committee; 2002.

30. Cavano JP. Software reliability measurement: Prediction, estimation, and assessment,
Journal of Systems and Software. 1984;4:269-275.

31. Walston CE, Felix CPA. Method of programming measurement, and estimation, IBM
Systems Journal. 1977;16: 54-73.

32. Boehm BW. Software Engineering Economics. Englewood Cliffs, NJ, Prentice Hall;
1981.

33. Khatibi V, Jawawi DNA. Software cost estimation methods: a review, Journal of
Emerging Trends in Computing and Information Sciences. 2011;2(1):21-29.

British Journal of Applied Science & Technology, 4(21): 3069-3095, 2014

3095

34. Putnam LH. A general empirical solution to the macro software and software sizing
and estimating problem. IEEE Transaction on Software Engineering. 1978;SE-
4(4):345-361.

35. Kemerer CF. An empirical validation of software code estimation models,
Communications of the ACM. 2008;30(5):416-429.

36. Premal BN, Kale KV. A brief overview of software testing metrics, International Journal
of Computer Science and Engineering. 2011;1(3/1):204-211.

37. Pressman RS. Making Software engineering happen: A Guide for instituting the
technology, Prentice Hall, New Jersey; 1988.

38. Kan SH. Metrics and models in software quality engineering, chapter 4, software
quality metrics overview, Addison-Wesley professional; 2002.

39. Basili VR, Weiss DM. A methodology for collecting valid software engineering data,
IEEE Transactions on Software Engineering. 1984;SE-10:728-738.

40. Daskalantonakis, MK. A practical view of software measurement and implementation
Experience within Motorola. IEEE Transactions on Software Engineering. 1992;SE-18:
998-1010.

41. Kuar A, Suri B, Sharma A. Software testing product metrics – A Survey, In Proceeding
of national Conference in Challenges & Opportunities in Information Technology,
RIMT-JET, Mandi Gobindgarti; 2007.

42. Farooq SU. Quadri SMK, Ahmad N. Software measurements and metrics: role in
effective software testing. Internal Journal of Engineering Science and Technology.
2011; 3(1):671-680.

43. Lei S, smith MR. Evaluation of several non-paramedic bootstrap methods to estimate
Conference Interval for Software Metrics, IEEE Transactions on Software Engineering.
2003;29(1):996-1004.

44. Pandian CR. Software metrics – A guide to planning, Analysis, and Application, CRC
press Company; 2004.

45. Juristo, N. and Moreno, AM. Basic of software Engineering Experimentation, Kluwer
Academic, publisher, Boston; 2003.

46. Dumake R, Lother M, Wille C. Situation and treads in Software Measurement – A
statistical Analysis of the SML Metrics Biolography, Dumke / Abran: Software
Measurement and Estimation, Shaker Publisher. 2002;298-514.

47. Dao M, Huchard M, Libourel T, Leblance H. A new approach to factorization –
introducing metrics. In proceeding of the IEEE Symposium on Software Metrics,
METRICS. 2002;27:236.

48. Fenton N, Krause P, Neil M. Software measurement: Uncertainty and causal
modeling, IEEE Software, July / August. 2002;116-122.

__
© 2014 Chang Lee; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sciencedomain.org/review-history.php?iid=541&id=5&aid=4777

