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ABSTRACT

A one dimensional model of population growth called logistic map can be used as
platform for introducing beginners to the phenomenon of chaos and nonlinear dynamics.
Despite the simplicity of logistic map, it has been used with success for the introduction of
fixed point attractor, periodic and aperiodic responses, sensitivity to initial conditions,
return map and bifurcation diagram. This understanding motivated the present study to
develop two dimensional chaos diagram for a one dimensional logistic map as a way of
introducing the beginners to the theories of fractals and chaos. Simulation of unsteady
solutions, steady solutions and its corresponding Lyapunov exponent characterisation of
logistic map were effected for selection of drive parameters for various grid resolutions,
constant step size and at one grid point a time from 0.3 and 0.5 initial conditions.
Validation were made of graphical results of parameter versus Lyapunov exponent and
the parabola-attractors. The Lyapunov exponent characterisation results were grouped
into three classifications: divergence, periodic and chaotic based on average Lyapunov
value.
There is qualitative agreement of validation results. The total number of grid points with
divergence or periodic or chaotic response increases exponentially with increasing
resolutions. The zoomed parameters counterpart has average 0%, 60% and 40% of
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divergent, periodic and chaotic results respectively across resolutions. The corresponding
chaos diagram exhibited fractal structures by its layers of order within chaos as can be
found in the bifurcation diagrams of nonlinear dynamical systems.

Keywords: Lyapunov exponent; Chaos diagram; Logistic map; fractal structures; Drive
parameters.

1. INTRODUCTION

Logistic map has been widely reported in the literature as a nonlinear difference equation
that has strong manifestation for chaos. The applications of logistic map in engineering and
technology is enormous. The focus of paper [1] is on design  of a chaotic noise generator
governed by a logistic map. The performance evaluation results demonstrate correct
operation of the analog noise generating circuit system. Paper [2] examined practical
applications of chaos theory in microelectronic field using logistic map. It was found in their
study that logistic map modelling is highly promising when genetic algorithm is used for
numerical simulations. Moreover, paper [3] has shown that some nonlinear systems that
have their subdomains on the logistic map are often characterised with unique chaotic
attractors. These chaotic attractors have interesting stabilising characteristics. This indeed is
a good contribution to the literature on the exciting dynamic of logistic model.

Recent research proposes that, the use of Lyapunov exponents for nonlinear dynamics
characterisation have attracted special interests among research scholars. In paper [4],
Lyapunov exponent was employed in the study of chaos of Duffing’s equation that is
perturbed by white noise. The results of the study showed that the stability and chaotic
dynamics of a nonlinear system is strongly influenced by the Lyapunov exponents. Papers
[5-8] have further shown the importance of Lyapunov exponent as a characterisation tool in
nonlinear system dynamics.

Extensive search in the open access literature shows that only few works have utilised
Lyapunov exponent based chaos diagram in their studies. Papers [9-11] which focus on
Lyapunov exponent based chaos diagram have served as satisfactory platform for the
present paper. Paper [9] reported a two-dimensional bifurcation diagram using largest
Lyapunov exponent codified in a continous range of colours for a driven chaotic oscillator
with complex variable. The periodic, quasiperiodic and chaotic behaviours depicted in the
colourful diagram further attests to the fact that chaos based diagram is resourceful for
enhancing results interpretations quality. Lyapunov exponent based chaos diagram was
equally adopted in paper [10] study. The authors satisfactorily developed a Lyapunov
exponent based graph of two-parameters map. In the bistability region of the Lyapunov
exponent based graph, there is a strong manifestation of sensitivity to initial conditions which
is one of the key characteristics of chaos.

In the article posted by paper [11], some efforts have been made at laboratory level on the
utility of Lyapunov exponent based-chaos diagram for Logistic map dynamics study.
Obviously, there is a siginificant research gap in the application of chaos diagram for Logistic
map dynamics characterisation. The present paper which is strongly motivated by the quest
to introduce the beginners to the theories of chaos and nonlinear dynamics focus on the
development of Lyapunov exponent based-chaos diagram in one dimensional logistic map.
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2. METHODOLOGY

Paper [12] provided a discrete model of limited growth (logistic map) relating respectively the
rescaled growth measure at current and previous time ( 1nx  and nx ) as in equation (1) for
value of r between 1 and 4.

The term (1 )nx serves as growth inhibitor because as nx approaches 1, this term
approaches zero.

1 (1 )n n nx rx x   (1)

The motivation for the present study is in part derived from the expansion of equation (1) as
suggested by paper [12] to produce first equation (2) and then equation (3) upon
replacement of the two r’s with separate parameters, a and b.

2
1n n nx rx rx   (2)

2
1n n nx ax bx   (3)

Further motivation for this study come from paper [13]. Therefore, the present study focus on
FORTRAN90 simulation and Lyapunov exponent characterisation of the dynamics of logistic
model using equation (3) for selected grid points from the parameter plane defined by
1 , 4a b  . According to paper [14], an explicit average Lyapunov exponent ( ) is defined

as in equation (4). For the present study, the appropriate ( )nf x is related to 1nx  as in

equation (5). Therefore the rate ( )n
n

df x
dx

require in equation (4) can be obtained by evaluating

the function equation (6) using ( )nf x from equation (5).

2
0

( )1lim log
n N

n

N n n

df x
N dx







  (4)

2
1 ( )n n n nx ax bx f x    (5)

( ) 2n
n

n

df x a bx
dx

  (6)

FORTRAN90 coded programs used for this study was validated in two parts using reported
graphical result of Lyapunov exponent versus control parameter (3 4a  ) by paper [14]
and the parabola attractor by paper [15]. Although there is no significant variation in the
procedures for the estimation of Lyapunov exponent for the old and new methods (equation
1: single parameter driven and equation 3: double parameter driven) however the
parameters selection space for the new method enjoyed exponential increase relative to its
old method counterpart. Thus more experimental points are feasible in the new method
compared to the old method.
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2.1 Simulation Parameters

The numbers of unsteady and steady solutions are 100 and 2000 respectively from two
initial conditions 0.3 and 0.5. The grid resolution is between 11 11 and 201 201 at
constant step of 10. A grid is characterised as diverging when the solution returned is equal
or greater than the set 10-unit tolerance limit. That is; divergent situation implies ≥ 10
after few iteration time steps. Similarly, a grid is marked periodic when the returned average
Lyapunov value is equal or lesser than zero and chaotic when this is greater than zero. In
addition, the returned value of with increasing iteration time step for both periodic and
chaotic are bounded (0 ≤ ≤ 1 ).The chaos diagram in the present study is the scatter
plot of the grid points with average Lyapunov exponent greater than zero.

3. RESULTS AND DISCUSSION

The validation results obtained at 0.3 and 0.5 initial conditions are insignificantly different.
They are qualitatively the same as in respective Figs. 1 and 2 and compare qualitatively well
with the literature reference standard paper [14]. Similarly, Fig. 3 compare qualitatively well
with the parabola-attractor in the nx , 1nx  -plane by paper [15].

With reference to Table 1 , the total grid points obtained for chaotic, periodic and divergent
response increases with increase in the number of grid points per parameter axis (a or b)
and for the two initial conditions studied. The sum total of grids points (chaotic, periodic and
divergent) add up to the square of number of grid points per parameter axis for all
resolutions as expected. Furthermore, the  observed increase in the total grid points per
each response classification follow a power law as in Fig. 3. However, the physical spread of
these points on the parameter plane 1 , 4a b  for the chaotic response is termed chaotic
diagram as provided in Fig. 4. The chaos diagrams are qualitatively the same but qualitative
and quantitative differences are apparent by visual evaluation especially in the parameter
range .1.0 3.5a  . Therefore, it can be concluded that chaos diagram of the logistic map
has noticeable sensitivity to initial conditions.

Fig. 1. Average Lyapunov value versus control parameter (a) for the logistic map at
0.3 initial condition
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Fig. 2. Average Lyapunov value versus control parameter (a) for the logistic map   at
0.5 initial condition

Fig. 3. Trace of the parabola-attractor in the the nx , 1nx  -plane for the logistic map
with 1 , 4a b  at grid resolution of 31 31 starting from 0.3 initial condition

Fig. 4. Total grid points with chaotic response versus grid points per parameter axis
for 0.3 initial condition simulation
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Table 1. Results classification variation details for parameter plane defined by
1 , 4a b 

Grid points
per axis
(a or b)

Response at parameters grid points and total by classification
Initial condition (0.3) Initial condition (0.5)

Chaotic Periodic Divergent Chaotic Periodic Divergent
11 22 96 3 22 83 16
21 63 371 7 63 322 56
31 156 794 11 170 679 112
41 246 1417 18 246 1239 196
51 408 2166 27 408 1887 306
61 552 3134 35 578 2719 424
71 639 4355 47 639 3826 576
81 891 5610 60 892 4913 756
91 1106 7103 72 1135 6214 932
101 1515 8597 89 1515 7530 1156
111 1665 10549 107 1665 9250 1406
121 2183 12335 123 2231 10762 1648
131 2227 14790 144 2227 12998 1936
141 2679 17035 167 2679 14946 2256
151 3024 19590 187 3087 17157 2557
161 3082 22626 213 3078 19927 2916
171 3764 25237 240 3762 22173 3306
181 4558 27939 264 4610 24487 3664
191 4852 31334 295 4836 27549 4096
201 5628 34446 327 5628 30217 4556

Tables 2 and 3 illustrated variation of Lyapunov exponent for different combination of drive
parameters ( , )a b in logistic map. From these tables it can be observed that positive and
negative Lyapunov exponent are respectively indication of chaotic and periodic response of
the logistic map. However for divergent behavior the Lyapunov exponent is not computable.
Figs. 1, 2 and 5 collectively suggested that interesting chaos diagrams existed in the
parameter range 3 , 4a b  for either 0.3 or 0.5 initial condition. These are demonstrated in
the next Figs. 6 to 9. By visual comparison, Figs. 7 and 9 are qualitatively the same and
each manisfested windows for order within chaos as illuminated by the alternate strip layers
of chaotic and periodicity.

Fig. 5. Chaos diagrams of logistic map for parameter range1 , 4a b  at 151 151
resolution
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Table 2. Selected responses details for initial condition of 0.3 at 151 151 resolution

Response by Classification
Parameters/Average Lyapunov value ( )

Chaotic Periodic Divergent
a b  a B  a b 
1.020 3.400 0.029 1.000 1.000 -0.004 1.000 3.340 NC
1.080 3.600 0.111 1.000 1.020 -0.004 1.000 3.360 NC
1.140 3.800 0.189 1.000 1.040 -0.004 1.000 3.380 NC
1.200 4.000 0.263 1.000 1.060 -0.004 1.000 3.400 NC
3.580 1.000 0.154 1.000 1.080 -0.004 1.000 3.420 NC
3.580 1.020 0.153 1.000 1.100 -0.004 1.000 3.440 NC
3.580 1.040 0.154 1.000 1.120 -0.004 1.000 3.460 NC
3.580 1.060 0.153 1.000 1.140 -0.004 1.000 3.480 NC
3.580 1.080 0.158 1.000 1.160 -0.004 1.000 3.500 NC
3.580 1.100 0.158 1.000 1.180 -0.004 1.000 3.520 NC

Note: That NC is the same as not computable.

Table 3. Selected responses details for initial condition of 0.5 at 151 151 resolution

Response by classification
Parameters/Average Lyapunov value ( )

Chaotic Periodic Divergent
a b  a B  a b 
1.020 2.040 0.029 1.000 1.000 -0.004 1.000 2.020 NC
1.040 2.080 0.057 1.000 1.020 -0.004 1.000 2.040 NC
1.060 2.120 0.084 1.000 1.040 -0.004 1.000 2.060 NC
1.080 2.160 0.111 1.000 1.060 -0.004 1.000 2.080 NC
1.100 2.200 0.138 1.000 1.080 -0.004 1.000 2.100 NC
1.120 2.240 0.164 1.000 1.100 -0.004 1.000 2.120 NC
1.140 2.280 0.189 1.000 1.120 -0.004 1.000 2.140 NC
1.220 2.440 0.287 1.000 1.140 -0.004 1.000 2.160 NC
1.240 2.480 0.310 1.000 1.160 -0.004 1.000 2.180 NC
1.260 2.520 0.333 1.000 1.180 -0.004 1.000 2.200 NC

Note: That NC is the same as not computable.

Fig. 6. Chaos diagrams of logistic map for parameter range3 , 4a b  at 201 201
resolution from 0.3 initial condition
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Fig. 7. Chaos diagrams of logistic map for parameter range3.8 4a  and 3 4b 
and at 201 201 resolution from 0.3 initial condition

Fig. 8. Chaos diagrams of logistic map for parameter range3 , 4a b  at 201 201
resolution from 0.5 initial condition

Fig. 9. Chaos diagrams of logistic map for parameter range3.8 4a  and 3 4b 
and at 201 201 resolution from 0.5 initial condition
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Table 4. Percentage variation of responses classification with increasing resolution
for 0.3 initial condition and 3 , 4a b 

Grid points
per axis
(a or b)

Response at parameters grid points and total/percentage  by classification
Total Percentage

Chaotic Periodic Divergent Chaotic Periodic Divergent
11 55 66 0 45.5 54.5 0.0
21 189 252 0 42.9 57.1 0.0
31 384 577 0 40.0 60.0 0.0
41 738 943 0 43.9 56.1 0.0
51 1020 1581 0 39.2 60.8 0.0
61 1552 2169 0 41.7 58.3 0.0
71 1917 3124 0 38.0 62.0 0.0
81 2675 3886 0 40.8 59.2 0.0
91 3297 4984 0 39.8 60.2 0.0
101 4040 6161 0 39.6 60.4 0.0
111 4884 7437 0 39.6 60.4 0.0
121 5984 8657 0 40.9 59.1 0.0
131 6568 10593 0 38.3 61.7 0.0
141 7898 11983 0 39.7 60.3 0.0
151 9087 13714 0 39.9 60.1 0.0
161 10010 15911 0 38.6 61.4 0.0
171 10879 18362 0 37.2 62.8 0.0
181 12748 20013 0 38.9 61.1 0.0
191 14188 22293 0 38.9 61.1 0.0
201 16137 24264 0 39.9 60.1 0.0

Table 5. Percentage variation of responses classification with increasing resolution
for 0.5 initial condition and 3 , 4a b 

Grid points
per axis
(a or b)

Response at parameters grid points and total/percentage  by classification
Total Percentage

Chaotic Periodic Divergent Chaotic Periodic Divergent
11 57 64 0 47.1 52.9 0.0
21 191 250 0 43.3 56.7 0.0
31 374 587 0 38.9 61.1 0.0
41 740 941 0 44.0 56.0 0.0
51 1022 1579 0 39.3 60.7 0.0
61 1529 2192 0 41.1 58.9 0.0
71 1920 3121 0 38.1 61.9 0.0
81 2677 3884 0 40.8 59.2 0.0
91 3260 5021 0 39.4 60.6 0.0
101 4046 6155 0 39.7 60.3 0.0
111 4891 7430 0 39.7 60.3 0.0
121 5933 8708 0 40.5 59.5 0.0
131 6557 10604 0 38.2 61.8 0.0
141 7901 11980 0 39.7 60.3 0.0
151 9025 13776 0 39.6 60.4 0.0
161 10002 15919 0 38.6 61.4 0.0
171 10877 18364 0 37.2 62.8 0.0
181 12656 20105 0 38.6 61.4 0.0
191 14200 22281 0 38.9 61.1 0.0
201 16134 24267 0 39.9 60.1 0.0
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As shown in Tables 4 and 5 , there is complete nonavailability of divergent response across
all studied resolutions and within the parameter range of 3 , 4a b  . The average across
all resolutions of the percentage ratio of chaotic to period responses is approximately 40.0 to
60.0. Thus this parameter plane is periodically dominated as can be seen in Figs. 7 and 9.

4. CONCLUSION

This study has shown that the simple one dimensional logistic map can be utilised to launch
interested beginners to the concept of chaos diagram, a basic concept in nonlinear dynamics
and chaos. Its parameter 3 , 4a b  plane investigated by Lyapunov exponent consist
respectively an average percentage ratio of 40.0 to 60.0 grid points with chaotic and periodic
responses while there is no grid point that exhibited divergence. Interestingly, the chaos
diagram developed exhibited fractal structures by its layers of order within chaos as can be
found in the bifurcation diagrams of nonlinear dynamical systems. One of the potential
applications of the present study is that it can be adapted to simulate the response of an
hypertensive patient ( a nonlinear system) when he/she is to be placed on different dose
combinations of two medically certified hypertensive drugs (labelled a & b). The dose
spectrum for the drugs can be likened to the ranges of parameters a and b (i.e.1 , 4a b  ).
The patient three expected responses namely: Hypertension controlled; Hypertension
indifferent/neutral; and Hypertension worsen can be likened to chaotic, periodic and
divergent reported in the present study.
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