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Abstract
Aiming at solving the existing sharp problems by using singular value decomposition 
(SVD) in the fault diagnosis of rolling bearings, such as the determination of the delay 
step k for creating the Hankel matrix and selection of effective singular values, the present 
study proposes a novel adaptive SVD method for fault feature detection based on the 
correlation coefficient by analyzing the principles of the SVD method. This proposed 
method achieves not only the optimal determination of the delay step k by means of the 
absolute value rk of the autocorrelation function sequence of the collected vibration signal, 
but also the adaptive selection of effective singular values using the index ρ corresponding 
to useful component signals including weak fault information to detect weak fault signals 
for rolling bearings, especially weak impulse signals. The effectiveness of this method has 
been verified by contrastive results between the proposed method and traditional SVD, 
even using the wavelet-based method through simulated experiments. Finally, the proposed 
method has been applied to fault diagnosis for a deep-groove ball bearing in which a 
single point fault located on either the inner or outer race of rolling bearings is obtained 
successfully. Therefore, it can be stated that the proposed method is of great practical value 
in engineering applications.

Keywords: SVD, Hankel matrix, impulse signal detection, mechanical fault diagnosis, rolling 
bearings

(Some figures may appear in colour only in the online journal)

1. Introduction

Rolling bearings are one of the most common classes of 
mechanical elements and play an important role in industrial 
applications. They generally operate in tough working envi-
ronments and are easily subject to failures, which may cause 
machinery to break down and decrease machinery service 
performance such as manufacturing quality, operation safety, 
etc [1–3]. Therefore, increasing reliability with respect to pos-
sible faults has attracted considerable interest in mechanical 

fault diagnosis in recent years [4, 5]. Finding adaptively effec-
tive signal-processing techniques to analyze vibration sig-
nals and to detect fault features has become a key problem in 
mechanical fault diagnosis. Meanwhile, it is also a challenge 
to propose and apply effective signal-processing techniques 
for extracting the crucial fault information from the collected 
vibration signals.

Currrently, traditional signal-processing technologies, 
including time-domain and frequency-domain analysis, 
are applied in mechanical fault diagnosis, such as wavelet 
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transform (WT) [6, 7], ensemble empirical mode decom-
position (EEMD) [8], singular value decomposition (SVD) 
[9], etc. The essence of these signal processing techniques 
is restraining or eliminating noise. Among these signal-
processing methods, however, SVD has exhibited a very 
good performance which is widely used to extract the fault 
features of rolling bearings in mechanical equipment, espe-
cially impulse features. Zhao et al [10] pointed out the sim-
ilar mechanism of signal processing between SVD and WT, 
which is analyzed from the basis vector space angle and the 
characteristic of the Hankel matrix. Liu [11] presented a 
method of detecting abrupt information from the vibration 
signal, which uses SVD based on the Hankel matrix created 
by time series to extract early rub-impact faults between 
rotor and stator in rotating machinery. Kang Myeongsu 
et al [12] proposed SVD-based feature extraction method 
for fault classification of an induction motor, whose clas-
sification accuracy using a support vector machine (SVM) 
approach is very high. Subsequently, Brenner et al [13] 
investigated capability of extracting fault features from the 
flight data, and the comparisons between SVD and trans-
formed-SVD detection results have been made. Although 
the above-mentioned literature has confirmed that the SVD 
method is an efficient and reliable tool for automated on-
line analysis and mechanical fault diagnosis, there is very 
little literature to research the effect of different delay step 
k values for detection results and application of SVD in 
impulse signal detection. On the basis of analyzing the 
literature, two major problems restricting the application 
of SVD for impulse signal detection and mechanical fault 
diagnosis are summarized, especially in the field of rotating 
machinery. One is the determination of the delay step k for 
creating the Hankel matrix. A different delay step k can 
produce different reconstructed signals obtained by SVD. 
However, in nearly all of the research that we can see, the 
delay step k is subjectively fixed as a constant, generally 1, 
which not only loses generality but also does not consider 
the influence of different values of the delay step k on the 
reconstructed signal. According to the creation principle 
for the Hankel matrix, one can see that a smaller delay step 
can make the cross-correlation higher between two adja-
cent row vectors of Hankel matrix, causing information 
redundancy, whereas with larger k there is smaller informa-
tion redundancy but many more data points are required 
for creating a Hankel matrix of the same dimension [14]. 
In addition, if the delay step is too small, then its Hankel 
matrix is a kind of ill-posed matrix [15], which can cause 
the reconstructed signal to be inaccurate due to the solution 
being approximate. Thus, it is necessary to research the 
effect of different delay steps for the reconstructed signal 
in order to propose a novel method of determining a proper 
delay step. 

The other problem concerns how to select effective singular 
values to obtain the optimal reconstructed signal and detect 
fault features. Now for this problem, methods such as the dif-
ference spectrum of singular values (DSSV) [9, 16], median 
value of singular values, and mean value of singular values 

can be employed to select effective singular values for getting 
the reconstructed signal. But these indices merely consider the 
magnitudes of singular values in terms of individual or global 
magnitude, and take no consideration of the contribution rate 
of each singular value to the original signal. These selec-
tion methods can cause weak fault features corresponding to 
smaller singular values to be eliminated and removed; con-
versely, strong disturbance information corresponding to 
greater singular values will remain, eventually causing diffi-
culties in detection of fault features from the reconstructed 
signal. Therefore, it is vital for extracting mechanical fault 
features from the reconstructed signal to select suitable sin-
gular values.

In view of the above-mentioned problems which are of 
serious concern, the present study investigates SVD tech-
nology for mechanical fault feature detection and proposes 
an adaptively novel SVD method based on the absolute 
value of the autocorrelation function sequence to determine 
the delay step k for creating a proper Hankel matrix. On the 
basis of a large number of experiments, an effective meas-
urement index rk is proposed; by means of the minimum 
delay step k when ε<rk  (where ε is an experimental value), 
this method can implement an effective determination of 
the optimal delay step k. Then, in order to make good the 
disadvantages of traditional selection methods, a difference 
spectrum algorithm based on a normalized correlation coef-
ficient is proposed in the consideration of the contribution 
rate of every component signal or singular value for the 
original signal because there is a one-to-one relationship 
between component signals and singular values. Simulated 
experiments and engineering applications demonstrate that 
the proposed determination and selection method is effec-
tive in detecting weak impulse signals and fault features of 
rolling bearings.

The remaining part of this paper is organized as follows. 
Section  2 introduces the SVD algorithm and existing prob-
lems, and the signal decomposition principle of Hankel 
matrix-based SVD and the essence of component signals 
obtained by SVD are studied. Then the influence of the delay 
step k for the reconstructed signal and singular values distribu-
tion is illustrated through simulated fault experiments, and a 
form of adaptive determination method for the optimal delay 
step is proposed in section 3. In section 4 the correlation coef-
ficient singular value decomposition (CCSVD) method of 
adaptively selecting effective singular values for getting the 
optimal reconstructed signal is proposed; this method can 
correctly detect impulse features and fault information that 
are submerged in strong ambient noise. In section 5 the fault 
features of the inner and outer races of rolling bearings are 
detected using the proposed CCSVD method. Finally the con-
clusions are given in section 6.

2. Principle analysis of SVD method

For a collected discrete signal = [ ( ) ( ) … ( )]
⎯ →⎯⎯
X x x x N1 , 2 , , , the 

Hankel matrix can be created using this signal as follows:

Meas. Sci. Technol. 26 (2015) 085014
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where < <n N1 , spectifically = − ( − ) ×n N m k1 , and k is a 
constant integer called the delay step which generally is 1; 
then ∈ ×⎯→⎯⎯ ⎯→⎯

A R
m n

.
The definition of singular value decomposition (SVD) [17–19]  

is as follows: for a matrix ∈ ×⎯→⎯⎯ ⎯→⎯
A R

m n
, two orthogonal matrixes 

= [ … ] ∈ ×⎯→⎯⎯ ⎯→ ⎯→ ⎯→ ⎯→⎯
U u u u R, , , m

m m
1 2  and = [ … ] ∈ ×⎯→⎯ ⎯→ ⎯→ ⎯→ ⎯→⎯

V v v v R, , , n
n n

1 2  are 
guaranteed to exist that satisfy the following equation:

= Σ
⎯→⎯⎯ ⎯→⎯⎯ ⎯→⎯ ⎯→⎯
A U V (2)

where σ σ σΣ = [ ( … ) ]
⎯→⎯ ⎯→⎯

Odiag , , , ,q1 2  or its transposition, deter-
mined by <m n or >m n, Σ ∈ ×⎯→⎯ ⎯→⎯

R
m n

, while 
⎯→⎯
O is the zero 

matrix, = ( )q m nmin , , and σ σ σ≥ ≥ ⋯ ≥ > 0q1 2 . These 
σ ( = ⋯ )i q1, 2, ,i  are the singular values of matrix 

⎯→⎯⎯
A .

In order to implement the decomposition of a signal using 
SVD, equation  (2) should be converted into the form of 
column vectors ⎯→ui and ⎯→vi:

⃑σ σ σ= + + ⋯ +
⎯→⎯⎯ ⎯→ ⎯→ ⎯→ ⎯→ ⎯→A u v u v u vT T

q q q
T

1 1 2 2 21 (3)

where ∈ ×⎯→ ⎯→⎯
u Ri

m 1
, ∈ ×⎯→ ⎯→⎯

v Ri
n 1

, = …i q1, 2, , , and = ( )q m nmin , . 
Based on the SVD principle, the vectors ⎯→ui are mutually ortho-
normal and they form an orthonormal basis of m-dimensional 
space; the vectors ⎯→vi are also orthonormal to one another 
and they form the orthonormal basis of n-dimensional  
space [20, 21].

Let σ=
⎯→⎯⎯ ⎯→ ⎯→A u vi i i i

T, then ∈ ×⎯→⎯⎯ ⎯→⎯
A Ri

m n
 also. Supposing that 

⎯→⎯
Pi,1 is 

the first row vector of 
⎯→⎯⎯
Ai, and ⎯⇀ ( − + … )Hi n k n, 1, ,  are k column vec-

tors in the last k columns of matrix 
⎯→⎯⎯
Ai, as shown in figure 1, 

according to the creation principle for the Hankel matrix; if 
⎯→⎯
Pi,1 and all the row vectors of matrix ( − + ⋯ )

⎯ →⎯⎯⎯
Hi n k n, 1, ,  are linked 

together in a given form as exhibited in figure 2, then a SVD 
component signal 

⎯→⎯
Pi  can be obtained, which can be expressed 

as the vector form

= ( … )( − + … ) ( − + … )
−⎯→⎯ ⎯→⎯ ⎯ →⎯⎯⎯ ⎯ →⎯⎯⎯

P P H H, , ,i i i n k n i n k n
m

,1 , 1, ,
1

, 1, ,
1 (4)

where ( = … − )( − + … )
⎯ →⎯⎯⎯
H j m1, 2, , 1i n k n

j
, 1, ,  is the jth row vector of 

matrix ( − + … )
⎯ →⎯⎯⎯
Hi n k n, 1, , , ∈ ×⎯→⎯ ⎯→⎯

P Ri
n

,1
1

, and ∈( − + ⋯ )
( − )×⎯ →⎯⎯⎯ ⎯→⎯

H Ri n k n
m k

, 1, ,
1

:

All the component signals formed by ( = … )
⎯→⎯⎯
A i q1, 2, ,i  

make up one kind of decomposition for the original signal 
⎯ →⎯⎯
X . 

To research what these component signals reflect in nature, 
first we might as well divide the component signal 

⎯→⎯
Pi  into two 

segments, as illustrated in figure 2, in which the initial seg-
ment is 

⎯→⎯
Pi,1, is the first row vector of 

⎯→⎯⎯
Ai, while the terminal 

segment is the sequential connection of −m 1 row vectors of 
matrix ( − + … )

⎯ →⎯⎯⎯
Hi n k n, 1, , , where ( − + … )

⎯ →⎯⎯⎯
Hi n k n, 1, ,  is formed by the last 

k column vectors of 
⎯→⎯⎯
Ai and the connection method is drawn 

by using the dotted line with arrows. It can be seen that if the 
delay step k is equal to 1, the terminal segment of component 

signal 
⎯→⎯
Pi  is the last column vector of matrix ( − + … )

⎯ →⎯⎯⎯
Hi n k n, 1, , , 

highlighting a prevalent problem in which the effect of the 
delay step has been implicitly ignored. However, to exten-
sively research the essence of the component signal, we will 
consider that k is not necessarily equal to 1; in this situation 
the terminal segment is a successive arrangement of the row 
vectors of matrix ( − + … )

⎯ →⎯⎯⎯
Hi n k n, 1, , .

Suppose that the Hankel matrix 
⎯→⎯⎯
A  with delay step k cre-

ated by the original signal is expressed by row vectors 
… ∈ ×⎯ →⎯⎯ ⎯ →⎯⎯ ⎯ →⎯⎯ ⎯ →⎯⎯ ⎯→⎯

X X X X R, , , ,m m
n

1 2
1

. As is known from the creation prin-
ciple for 

⎯→⎯⎯
A , the first vector 

⎯ →⎯⎯
X1 is the initial segment of the orig-

inal signal and its projective coefficient on the basis vector ⎯→vi 
of n-dimensional space can be computed from equation (2) as 
follows:

σ=
⎯ →⎯⎯ ⎯→X v ui i i1 1 (5)

where ui1 is the first element of basis vector ⎯→ui.
⎯→⎯
Pi,1, which is the initial segment of component signal 

⎯→⎯
Pi  and 

also the first row vector of matrix 
⎯→⎯⎯
Ai, can also be calculated 

according to the definition of 
⎯→⎯⎯
Ai as below:

σ=
⎯→⎯ ⎯→P u v .i i i i

T
,1 1 (6)

One can easily see that 
⎯→⎯
Pi,1 is the product of basis vector ⎯→vi 

and projective coefficient of 
⎯ →⎯⎯
X1 on this basis vector, in which 

the projective coefficient σ ui i1 decides the magnitude of 
⎯→⎯
Pi,1, 

and vector ⎯→vi determines the direction of 
⎯→⎯
Pi,1. While 

⎯ →⎯⎯
X1 is the 

initial segment of the original signal, so obviously 
⎯→⎯
Pi,1 is actu-

ally the projection of the initial segment of the original signal 
on the vector ⎯→vi, which is the ith basis vector of n-dimensional 
space, and this relationship is illustrated in figure 3(a).

Similarly, supposing that the Hankel matrix 
⎯→⎯⎯
A  created 

by the original signal is described by the column vectors 
… ∈ ×⎯→⎯ ⎯→⎯ ⎯→⎯ ⎯→⎯

Y Y Y Y R, , , ,n n
m

1 2
1, as is known from the construction prin-

ciple of 
⎯→⎯⎯
A , these column vectors …− +

⎯→⎯ ⎯→⎯
Y Y, ,n k n1  are the terminal 

segment of the original signal, which is not a simple transpo-
sition of these column vectors …− +

⎯→⎯ ⎯→⎯
Y Y, ,n k n1  but the sequential 

connection of row vectors of the arranged matrix by them and 
projective coefficients of column vectors …− +

⎯→⎯ ⎯→⎯
Y Y, ,n k n1  on the 

basis vector ⎯→ui of m-dimensional space can also be computed 
from equation (2):

⎧
⎨
⎪

⎩
⎪

σ

σ

=
⋮
=

− + ( − + )
⎯→⎯ ⎯→

⎯→⎯ ⎯→

Y u v

Y u v

n k
T

i i i n k

n
T

i i in

1 1

 (7)

where vin is the nth element of basis vector ⎯→vi.
The vectors …− +

⎯→⎯ ⎯→⎯
L L, ,i n k

T
i n
T

, 1 , , which constitute the terminal 
segment of component signal 

⎯→⎯
Pi  and also the last k column 

vectors of matrix 
⎯→⎯⎯
Ai, can be computed according to the defini-

tion of 
⎯→⎯⎯
Ai as follows:

=

( ) ( ) … ( )
( × + ) ( × + ) … ( × + )

⋮ ⋮ ⋮ ⋮
(( − ) × + ) (( − ) × + ) … (( − ) × + ) ×

⎯→⎯⎯

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

A

x x x n
x k x k x k n

x m k x m k x m k n

1 2
1 1 1 2 1

1 1 1 2 1
m n

 

(1)
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⎧

⎨
⎪⎪

⎩
⎪⎪

σ

σ

=
⋮

=

− + ( − + )
⎯→⎯ ⎯→

⎯→⎯ ⎯→

L v u

L v u .

i n k
T

i i n k i
T

i n
T

i in i
T

, 1 1

,

 (8)

It can also be seen that …− +
⎯→⎯ ⎯→⎯
L L, ,i n k

T
i n
T

, 1 ,  are the products 
of basis vectors ⎯→ui and projective coefficients of …− +

⎯→⎯ ⎯→⎯
Y Y, ,n k n1  

on these basis vectors respectively, with the projective coef-
ficients σ σ…( − + ) v, ,i vi n k i in1  determining the magnitudes of 

…− +
⎯→⎯ ⎯→⎯
L L, ,i n k

T
i n
T

, 1 , , while the vectors ⎯→ui determine the directions 

of …− +
⎯→⎯ ⎯→⎯
L L, ,i n k

T
i n
T

, 1 , . …− +
⎯→⎯ ⎯→⎯
Y Y, ,n k n1  are the terminal segment of 

original signal, so …− +
⎯→⎯ ⎯→⎯
L L, ,i n k

T
i n
T

, 1 ,  are actually the projections 
of the terminal segment of the original signal on the vector 
⎯→ui, which is the ith basis vector of m-dimensional space, and 
this relationship is illustrated in figure 3(b). So from the above 
analysis we can see that under different delay step values the 
nature of singular value decomposition based Hankel matrix 
is in fact to decompose the signal into m-dimensional and 
n-dimensional spaces.

In order to further analyze the characteristics of this kind 
of decomposition, assuming 

⎯→⎯⎯
Ai is described by row vectors 

… ∈ ×⎯→⎯ ⎯→⎯ ⎯→⎯
P P R, ,i i m

n
,1 ,

1
, while 

⎯→⎯⎯
A  is expressed by row vectors 

… ∈ ×⎯ →⎯⎯ ⎯ →⎯⎯ ⎯ →⎯⎯ ⎯ →⎯⎯ ⎯→⎯
X X X X R, , , ,m m

n
1 2

1
. According to equation (3), it is clear 

that each row vector of 
⎯→⎯⎯
A  equals the sum of corresponding 

row vectors in all ( = … )
⎯→⎯⎯
A i q1, 2, ,i , therefore we can obtain

= + + ⋯ +
⎯ →⎯⎯ ⎯→⎯ ⎯→⎯ ⎯→⎯
X P P P .q1 1,1 2,1 ,1 (9)

The matrix ( − + … )
⎯ →⎯⎯⎯
Hi n k n, 1, ,  lies within 

⎯→⎯⎯
Ai, where 

∈( − + … )
( − )×⎯ →⎯⎯⎯ ⎯→⎯

H Ri n k n
m k

, 1, ,
1

. Supposing that the corresponding 
column vector in 

⎯→⎯⎯
A  is 

⎯→
In, where ∈ ( − )×⎯→ ⎯→⎯

I Rn
m k1

, we can also see 
that 

⎯→
In equals the sum of the corresponding column vectors 

( − + … )
⎯ →⎯⎯⎯
Hi n k n, 1, ,  in all ( = … )

⎯→⎯⎯
A i q1, 2, ,i . Obviously, their trans-

position can also meet this relationship, i.e.

= + + ⋯ +( − + … ) ( − + … ) ( − + … )
⎯→ ⎯ →⎯⎯⎯ ⎯ →⎯⎯⎯ ⎯ →⎯⎯⎯
I H H H .n

T
n k n

T
n k n

T
q n k n
T

1, 1, , 2, 1, , , 1, ,
 (10)

Based on the creation principle for the Hankel matrix, 
the original signal 

⎯ →⎯⎯
X  can be described as the vector form 

= ( ( ))
⎯ →⎯⎯ ⎯ →⎯⎯ ⎯→
X X I, sub n

T
1 , where the operator ‘sub’ sequentially 

takes the column vectors of matrix 
⎯→
I n

T
, so the compo-

nent signal 
⎯→⎯
Pi  can also be described as the vector form 

= ( ( ))( − + … )
⎯→⎯ ⎯→⎯ ⎯ →⎯⎯⎯
P P H, subi i n k n

T
,1 1, , . Then the sum of all these com-

ponent signals is

+ + ⋯ + = ( + + ⋯ + ( ))
⎯→⎯ ⎯→⎯ ⎯→⎯ ⎯→⎯ ⎯→⎯ ⎯→⎯ ⎯→
P P P P P P I, sub .q q n

T
1 2 1,1 2,1 ,1 (11)

Based on equations (9) and (10), the right side of the above 
formula can be written as ( ( ))

⎯ →⎯⎯ ⎯→
X I, sub n

T
1 , so

+ + ⋯ + =
⎯→⎯ ⎯→⎯ ⎯→⎯ ⎯ →⎯⎯
P P P X .q1 2 (12)

Under different delay steps k, from equation (12) it can be 
seen that when the Hankel matrix is used, the component sig-
nals obtained by SVD can form a simple linear superposition 
for the original signal. This conclusion extends the range of 
the studies in [22–24], in which the delay step k is equal to 1. 
The advantage of this linear superposition is that the isolation 
of one component signal from original signal corresponds to 
simply subtracting this component from the original signal, 
and this subtraction computation will make the isolated com-
ponent signal keep its phase the same as in the original signal; 
thus, there is no phase shift in the isolated component signal. 
Equation  (12) is also the reconstruction formula for Hankel 
matrix-based SVD, and it is important that several effective 
component signals [25–27] can be simply added together to 
extract the feature information of the original signal.

3. Determination method of delay step k

To solve the above-mentioned problem, an effective method is 
proposed to create the proper Hankel matrix. For a collected 
discrete vibration signal = [ ( ) ( ) … ( )]

⎯ →⎯⎯
X x x x N1 , 2 , , , the auto-

correlation function sequence is calculated using equation (13):

Figure 2. The initial and terminal segments of component signal 
⎯→⎯
Pi .

Figure 1. The principle for forming the component signal 
⎯→⎯
Pi  when the Hankel matrix is used.
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Here, we consider positive and negative correlations, so 
the absolute value of the autocorrelation function sequence 
is identified as index rk, which can reflect the cross-correla-
tion between two adjacent row vectors of Hankel matrix. The 
greater the value of rk, the greater the correlation between two 
adjacent row vectors of the Hankel matrix. Through a number 
of experiments of different impulse signals and signal-to-noise 
ratios (SNRs), impulse signal amplitudes generated by one 
impulse fault are different, and the SNR in the simulated fault 
signal is different. We find that the delay step k is satisfactory 
when the index rk is initially less than 0.1, which is an experi-
mental value. The value weakens the correlation between two 
adjacent row vectors to reduce information redundancy and 
eliminate the problem of an ill-posed matrix [15]. Likewise, 
suitable data length for creating the Hankel matrix is required. 
In addition, the SNR is also relatively higher. This is also a 
compromise between information redundancy and data length 
required.

In order to verify the performance of proposed determina-
tion method, an impulse signal in [28] is employed to simulate 
bearing fault impulse, shown in figure 4(a). Gaussian white 
noise with SNR  −9.6461 dB is added into the periodic impulse 
signal to obtain the simulated fault signal of rolling bearings, 
which can be shown in figure 4(b) where the sampling fre-
quency is 20 000 Hz. The periodic impulse signal submerged 
in the surrounding noise can effectively simulate the tough 
operating environment of mechanical equipments. Thus, it 
has practical significance that the simulated fault signal can 

be employed to research the effect of delay step k for detecting 
fault features by using SVD method.

To research the effect of different delay steps for detec-
tion capability, we consider situations in which k is 1, 2, and 3 
respectively. Assuming that the simulated fault signal is long 
enough, a Hankel matrix with m = 1700 rows and n = 20 col-
umns [10] is created using this simulated fault signal; 20 sin-
gular values can be obtained by the SVD method, as shown in 
figure 5. One can easily see that the first two singular values are 
relatively larger than any others, and there is a very large leap 
between the second and third singular value no matter what k 
is. This tells us that the characteristics of the impulse signal 
can be hidden in the first two singular values. With the gradual 
increase of k, however, the first two singular values start to 
rise slowly, and any other values may also descend slowly, 
with the gap between them becoming smaller and making the 
curve smoother. These changes can eliminate false peaks and 

Figure 3. The essence of component signal 
⎯→⎯
Pi : (a) essence of the initial segment of 

⎯→⎯
Pi ; (b) essence of the terminal segment of 

⎯→⎯
Pi .

(a) (b)

Figure 4. The bearing fault signal: (a) simulated impulse signal; (b) simulated fault signal.

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.5

0

0.5

A
/m

s-2

t/s
0 0.05 0.1 0.15 0.2 0.25 0.3

-1

-0.5

0

0.5

1

A
/m

s-2

t/s

(a) (b)

Figure 5. Singular values of simulated fault signals for different k.
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make true peaks higher in the DSSV. Traditionally speaking, 
the larger singular values can contain much more useful fault 
features, which should be effective ones [16] corresponding to 
the component signals having more fault information and less 
noise. Thus the above phenomena indicate that the effective 
singular values will be enhanced and the ineffective ones will 
be weakened with the increase of k. According to the DSSV, 
the first two singular values should be selected to reconstruct 
the original signal; the reconstructed signals with different 
delay steps are exhibited in figure 6. It is clear that the impulse 
signal can be extracted effectively and correctly in three fig-
ures, whose periods of 0.025 s can meet the given period in 
figure 4(a). Likewise, the surrounding noise is eliminated to a 
large extent, and by comparing the three figures one can easily 
see that the detection result at k = 3 has higher amplitude than 
the one at k = 1 and less noise than the one at k = 2. Relatively 
speaking, the detection performance at k = 3 is more satisfac-
tory. In addition, the SNR between the three reconstructed sig-
nals and the simulated fault signal and data length required can 
be calculated respectively, as shown in table 1. With the increase 
of k, we can see that, first, the SNR may start to rise rapidly and 
then decline gradually, and second, the data length required for 
creating the Hankel matrix should be + ( − ) ×n m k1 , in which 
the larger k can cause a longer data length required for creating 
a Hankel matrix of the same dimension. Figure 6 and table 1 
tell us that the optimal delay step should be 3 rather than 1 in 
terms of the best compromise.

Summarizing and analyzing the above three cases, first, we 
can clearly see that the energy of the original signal will be 
mainly concentrated in the first few component signals, which 
correspond to the first few largest singular values. Therefore, 
the first few component signals reflect the main skeleton of 
the original signal and achieve a similar effect to that of the 
approximation signal in wavelet transform. Meanwhile, detail 
features with low energy in the original signal will be iso-
lated to the other component signals, which correspond to 
much smaller singular values. Second, there is no phase shift 
in component signals due to different delay steps k. In other 
words, the component signals obtained by the matrix-based 
SVD method have no phase shift no matter what k is. Finally, 
the processing and denoising effects of the reconstructed 
signal for different k are different.

The index rk of the simulated fault signal is calculated using 
equation (13), as shown in figure 7. With the increase of k, we 
can see that the index rk initially declines rapidly, then fluctu-
ates slowly as the wave peaks appear. It is obvious that the 

minimum of k is 3 under the condition <r 0.1k , in other words, 
in which k is the x-axis value of the first left-hand point (under 
black dotted line). The value of k obtained by using the pro-
posed determination method can meet the analysis results sim-
ulated above, in which the SNR between reconstructed signal 
and simulated fault signal is more satisfactory and the data 
length required is suitable. In essence, however, the determi-
nation method not only weakens the correlation between two 
adjacent row vectors of the Hankel matrix to reduce informa-
tion redundancy and to eliminate the problem of an ill-posed 
matrix, but also allows a reasonable data length for creating 
the Hankel matrix. It is also an effective compromise between 
information redundancy and required data length.

4. Selection method of effective singular values

Up to now, no fixed selection method of effective singular 
values to reconstruct the original signal has been found. The 
existing methods such as DSSV, median value of singular 
values, and mean value of singular values merely consider the 
magnitude of singular values in terms of individual or global 
magnitude, and take no consideration of the contribution rate 
of each singular value for the original signal. The performance 

Figure 6. Reconstructed signal obtained by SVD for different k.
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Table 1. Data length required and SNR for different k.

k (delay step)
N (data length  
required)

SNR (signal-to-noise 
ratio)

1 1719   −  5.2873
2 3418   −  4.0538
3 5117   −  1.7861
4 6876   −  2.1672

Figure 7. Index rk of the simulated fault signal.
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of these traditional selection methods can be determined by 
the magnitude of individual or global singular values and gaps 
between each other, revealing two shortcomings: first, the loss 
of important fault features or significant noise remaining in 
the reconstructed signal. If the SNR is very low, then singular 
values corresponding to noise will be enlarged, causing a 
higher threshold. Thus the important features included in rela-
tively small singular values will be lost [27]. If the SNR is rel-
atively high, then the mean and median values of the singular 
values can be lessened to make the threshold lower. Therefore, 
much more noise may remain in the reconstructed signal, for 
example the median value method and mean value method 
of singular values; and second, there is the false peak value 
problem. Sometimes when dealing with signals with strong 
trend [18], such as aircraft engine health signals, one may 
hardly choose the right singular values by using the DSSV 
method due to the strong trend resulting in the false peak. To 
solve the above-mentioned problems, the CCSVD method is 
proposed in this section to select the effective singular values 
for obtaining the reconstructed signal. Assume that the orig-
inal signal X is decomposed by SVD, and we can obtain a 
series of component signals …P P, , q1 , and calculate autocor-
relation functions …R R R R, , , ,X P P Pq1 2  using equation  (14) as 
follows:

∑( )= ( ) ( + )
=

−

R m
N

x i x i m
1

.
i

N

1

1

 (14)

Then these correlation coefficients ρ may be computed 
among the autocorrelation function RX and …R R R, , ,P P Pq1 2 , 
and be normalized using equation (15):

∑

∑ ∑
ρ( ) =

( ) ( )

( ) ( )

=

−

=

−

=

−
j

R i R i

R i R i

i

N

P X

i

N

P
i

N

X

1

2 1

1

2 1
2

1

2 1
2

j

j

 (15)

where N is the length of the original signal, and 
ρ( ) = …j j q, 1, 2, ,  is the normalized correlation coefficient of 
jth component signal. Likewise, the difference spectrum of the 
normalized correlation coefficient is defined as

ρ ρ( ) = ( ( ) − ( + ))ρD j j jabs 1 (16)

where = … −j q1, 2, , 1. The principle of selecting effec-
tive singular values for obtaining the reconstructed signal by 
using the index ρD  is: if the maximum peak of ρD  happens 
at j = k, then the first k singular values should be selected to 
reconstruct the original signal. But if the maximum peak of 

ρD  happens at j = 1, then the first two singular values should 
be selected.

In order to test and verify the proposed selection method, 
the simulated fault signal in section 3 is employed figure 8 
with SNR of  −10 dB. One can see that the fault impulse fea-
tures are completely submerged in the surrounding noise. 
The index rk of the simulated fault signal can be calculated 

Figure 8. The simulated fault signal.
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using the determination method proposed in section 3. We can 
obtain an optimal delay step k = 3 when rk is initially less than 
0.1, so the Hankel matrix can be created with n = 20 columns 
and m = 1700 rows based on k = 3. Then we can obtain the first 
4 component signals, shown in figure 9. It is found that the 
periodic impulse features are exhibited in the component sig-
nals m1 and m2, but cannot be seen in other component signals. 
In other words the Hankel matrix with k = 3 can concentrate 
a majority of fault energy in the first two component signals.

Additionally, the values of ρ and ρD  can also be computed 
according to equations (15) and (16), as shown in figure 10(b). 
It is obvious that the ρ( )1  and ρ( )2  are larger than any others, 
and the difference spectrum ( )ρD i  can appear the highest spec-
trum peak at i = 2. According to the proposed CCSVD method, 
the first two singular values should be selected to obtain the 
reconstructed signal, which is exhibited in figure 11(c). Here 
we can see obviously periodic impulse features, and the sur-
rounding noise has been weakened significantly. Compared 
with figures 8 and 11(c), we can also see that the impulse fault 
signal has been detected correctly by the CCSVD method, 
and there is also no phase shift in detection result. Although 
a small fraction of noise remains in the reconstructed signal 

(detection result), it is not very important for us to examine 
and extract the periodic impulse features. To make a compar-
ison with the traditional SVD methods, figure 10(a) exhibits 
the singular values curve of the simulated fault signal, the 
median value and the mean lines for them, and the DSSV. 
The curve of singular values in figure 10(a) and the curve of 
the normalized correlation coefficient ρ can be compared, 
and it can be seen that the first two greatest singular values 
in figure  10(a) correspond to the first two greater ρ values, 
while the different singular values with amplitudes close to 
each other in figure  10(a) reflect different magnitudes of ρ 
in figure 10(b). This tells us that different singular values of 
the same magnitudes have different contribution rates for the 
original signal. Thus, it is not correct when selecting effective 
singular values to consider merely the magnitudes of singular 
values. According to the selection principles of the median 
and mean value methods, we should choose these singular 
values above their lines to reconstruct the original signal, 
in which are first nine and first five singular values respec-
tively. The reconstructed signals based on the median value 
and mean value methods can be obtained by SVD, shown in 
figures  11(a) and (b) respectively. Simultaneously, we can 

Figure 10. The selection indices: (a) the traditional selection methods; (b) proposed selection method.
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Figure 11. Comparison of five detection results: (a) median value method; (b) mean value method; (c) DSSV method and the proposed 
method; (d) wavelet-based method.
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observe that the maximum peaks in the DSSV curve and of 
ρD  both occur at i = 2. According to the selection principles 

of the DSSV and CCSVD methods, we should choose first 
two singular values to reconstruct the original signal, and the 
reconstructed signals are shown in figure 11(c). To make a suf-
ficient comparison, the detection result using a wavelet-based 
method is shown in figure 11(d), using the threshold function 
‘rigrsure’, 3-layer decomposition, and wavelet base db3. By 
comparing the five detection results, it can be found that the 
detection result of the medianm value method in figure 11(a) 
has too much noise to observe the impulse features, while the 
mean value method in figure  11(b) can extract the impulse 
features but they are very weak. The wavelet-based method 
in figure  11(d) eliminates the excessive noise which causes 
the loss and damage of the impulse faults, and it is disadvan-
tagous for us to observe the periodic impulse faults. However, 
the performances of CCSVD and DSSV methods are same 
and their detection results also relatively more satisfactory in 
all detection results. Thus, the above detection results prove 
that the proposed CCSVD method can properly select effec-
tive singular values to obtain the reconstructed signal, which 
only retains much fault information but also weakens the 

surrounding noise effectively. Of its nature, the proposed 
CCSVD method can select effective singular values based not 
on magnitudes of singular values themselves but on their con-
tribution rates for the original signal, which can overcome the 
two above-mentioned shortcomings.

Through the above comparisons, one can see that the 
detection results of CCSVD and DSSV are the same for the 
impulse signal combined with Gaussian noise. To further 
prove the performance of the CCSVD method, suppose that 
there is a strong trend in the simulated fault signal [18], such 
as in an aircraft engine health signal. The strong trend can 
reflect and simulate the gradual increasing trend of a mechan-
ical fault with time; therefore, a strong time (t) trend can be 
added into the fault signal simulated above. Using the deter-
mination method in section 3, we obtain the delay step as 2 
and a Hankel matrix with 1700 rows and 20 columns can be 
created when k = 2. Then, the first 4 component signals can 
be obtained by SVD, which are exhibited in figure 12. It is 
clear that component signal m1 merely contains the prevailing 
trend of the fault signal, while the impulse fault information 
is hidden in m2 and m3. This tells us that the energy of the 
strong trend can be mainly concentrated in the first component 

Figure 12. The component signals m m m m, , ,1 2 3 4 when k = 2.
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Figure 13. Two cases: (a) singular values and DSSV; (b) the contribution rate ρ and its difference spectrum ρD .
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signal, making the first singular value greater. Therefore, the 
strong trend can make the gap greater between the first two 
singular values as shown in figure  13(a), which can cause 
the appearance of false peaks in the DSSV. According to the 
selection principle of DSSV, if the maximum peak happens 
at i = 1, then we should choose the first two singular values 
to reconstruct the original signal; the reconstructed signal is 
shown in figure 14(a). Meanwhile, the detection result sub-
tracted the component signal m1 which includes the strong 
trend exhibited in figure  14(b). According to the selection 
principle of CCSVD, from figure 13(b) one can see that the 
maximum peak of ρD  happens at i = 3 and the false peak from 
the DSSV method can be eliminated and avoided. Thus, we 
should choose the first three singular values to get the recon-
structed signal, as shown in figure 14(c) and the reconstructed 

signal with the strong trend m1 subtracted can be exhibited in 
figure 14(d). By comparing the detection results, it is clear that 
the proposed method can correctly locate the peak and select 
effective singular values to reconstruct the original signal. In 
addition, the proposed method has overcome the shortcoming 
of the false peak from the DSSV method.

Through two experimental results for impulse signal 
without and with strong trend, the detection results have 
proved fully that the proposed method and DSSV have same 
performance in the processing of a signal without strong 
trend, better than any other traditional methods. Likewise, 
compared with the wavelet-based method, it is found that the 
SVD method has better impulse signal detection capability . 
Finally, a comparison has been made in impulse signal detec-
tion with strong trend, and the experimental results have 

Figure 14. The detection results: (a) DSSV method; (b) strong trend subtracted using DSSV (a); (c) proposed CCSVD method; (d) strong 
trend subtracted using proposed method.
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Figure 15. Fault signal of inner race: (a) time-domain waveform; (b) frequency spectrum; (c) envelope spectrum.
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testified that the proposed method can overcome the effect 
and disturbance of a false peak and correctly select effective 
singular values to get the optimal reconstructed signal.

5. Engineering applications

To verify the proposed diagnostic method, the test platform 
consists of a 2 hp motor, a torque transducer/encoder, a dyna-
mometer, and control electronics. The test bearings which are 
6205-2RS JEM SKF, deep-groove ball bearings, support the 
motor shaft. Single point faults were introduced to the test 
bearings using electrodischarge machining with fault diame-
ters of 7 mm in both the inner and outer races. Vibration signal 

was collected using accelerometers, which were attached to 
the housing with magnetic bases. Digital data were collected 
at 12 000 samples per second. We consider the instability in 
the beginning of the data, so data points between 1000 and 
7000 of the fault signals from the inner and outer races are 
selected to analyze for extracting the fault features, shown in 
figures 15 and 16, where figures 15(a) and 16(a) are the fault 
signal time-domain waveforms of the inner and outer race 
respectively, figures 15(b) and 16(b) their frequency spectra, 
and figures 15(c) and 16(c) their envelope spectra. According 
to fault characteristic frequency theory for rolling bearings, 
one can determine that the fault frequencies of the inner and 
outer race on the rolling bearing are 157.94 Hz and 104.56 Hz 
respectively, but it is very difficult to see the fault frequency 

Figure 16. Fault signal of outer race: (a) time-domain waveform; (b) frequency spectrum; (c) envelope spectrum.
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Figure 17. Component signals …m m m, , ,1 2 5 of inner race by SVD where k = 1.
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from figures 15 and 16. The fault information is completely 
submerged in the strong surrounding noise.

In order to detect the fault information, however, the pro-
posed method in this paper is employed to process the fault 
signal of inner race and outer race of rolling bearings. The 
autocorrelation function sequence rk can be calculated by 

using equation (13), where the minimum of delay step k are 
1 (inner race) and 2 (outer race) respectively under the condi-
tion <r 0.1k . Then, the Hankel matrix with n = 20 columns 
and m = 4000 rows is created by using equation (1) and the 
first five component signals …m m m, , ,1 2 5 can be obtained by 
SVD, as shown in figures 17 and 18. In figure 17, we can see 

Figure 18. Component signals …m m m, , ,1 2 5 of the outer race by SVD where k = 2.
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Figure 19. Normalized correlation coefficients and its difference spectrum for the inner race.
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the strong impulse features in component signals m m,1 2, m3, 
and m4, and the component signal m5 has the modulated infor-
mation to some extent. In figure  18, the component signals 
m1 and m2 have the strong impulse features, and the compo-
nent signal m3 has a little modulated information. However, 
in the component signals m4 and m5 there are also the weak 
impulse features, but the surrounding noise is also very strong, 
and relatively speaking the impulse features are very weak. 
Finally, the normalized correlation coefficients and difference 
spectra of the inner and outer race can be obtained according 
to equation (15) and (16) respectively, as shown in figures 19 

and 20, and it is clear that the highest peak of ( )ρD i  happens 
at i = 5 and i = 3 respectively. Based on the proposed CCSVD 
method we should respectively select the first 5 and 3 sin-
gular values (inner race and outer race) to reconstruct the fault 
signal, as shown in figures 21 and 22, in which figures 21(a) 
and 22(a) show the time-domain waveforms of reconstructed 
inner and outer race fault signal, figures 21(b) and 22(b) their 
frequency spectra, and figures 21(c) and 22(c) their envelope 
spectra. One can see the weak impulse features for the inner 
race from figure 21(a), where the surrounding noise has been 
weakened effectively. At the same time, from its frequency 

Figure 21. Reconstructed fault signal of the inner race: (a) time-domain waveform; (b) frequency spectrum; (c) envelope spectrum.
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Figure 22. Reconstructed fault signal of the outer race: (a) time-domain waveform; (b) frequency spectrum; (c) envelope spectrum.
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spectrum in figure 21(b), we can observe that the frequency 
energy is concentrated in the frequency band between 2400 Hz 
and 4000 Hz. However, the frequency band of the noise is 
uniformly distributed in the white frequency band; in other 
words, the larger part of the noise is eliminated by the pro-
posed CCSVD method. Finally the fault frequency is found to 
be 158.2 Hz (theoretical value is 157.94 Hz) from figure 21(c) 
and its amplitude is about 0.1, while the frequencies of noise 
and disturbance signal are concentrated in between 0 Hz and 
1500 Hz, and their amplitudes are lower than 0.05. Compared 
with figures 15 and 21, we can see that the fault features are 
detected accurately and the surrounding noise is weakened 
effectively. Likewise, from the detection results of the outer 
race we can also see that the frequencies in figure 22(b) are 
concentrated in the frequency band between 3000 Hz and 
4000 Hz and the frequencies in the other frequency bands are 
very weak. Comparing the envelope spectra in figures 16(c) 
and 22(c), it is clear that fault frequency of the outer race is 
108.4 Hz (theoretical value is 104.56 Hz) and its amplitude 
is about 0.22. Additionally, it can be seen clearly that the 
double frequency is 213.9 Hz (theoretical value is 209.12 Hz). 
Therefore, the proposed method in this study has a better pro-
cessing capability for weak impulse signal and a specific prac-
tical value in engineering applications.

6. Conclusions

The signal decomposition principle of Hankel matrix-based 
SVD and the essence of component signals obtained by this 
method are studied. Meanwhile the mechanism of SVD method 
is analyzed from the basis vector space angle and characteris-
tics of the Hankel matrix. By theoretical analysis and signal 
processing examples, the following conclusions can be drawn:

 1. A signal can be decomposed into the linear sum of com-
ponent signals by Hankel matrix-based SVD no matter 
what k is, and these component signals physically reflect 
the projections of original signal on the orthonormal 
bases of m-dimensional and n-dimensional spaces.

 2. The energy of the original signal will be mainly concen-
trated on the first several component signals for the structure 
characteristics of the Hankel matrix in itself, which can be 
corresponding to the first several singular values.

 3. With the change of delay step k the SNR is different 
between the reconstructed signal and the original signal, 
but there is no phase shift in all component signals. A 
Hankel matrix with n columns and m rows is created, in 
which n and m are fixed, and the data length required is 

+ ( − ) ×n m k1  which grows with increasing k. Thus the 
proposed determination method is an effective compro-
mise between SNR, information redundancy, and data 
length required.

 4. The CCSVD method is proposed in section 4. This pro-
posed method can eliminate the false peak in processing 
an impulse signal with strong trend and enhance the 
SNR in the reconstructed signal. Finally, it is applied to 
make fault diagnosis of rolling bearings. The experiments 
verify this proposed method is effective and accurate.
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