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ABSTRACT 
In this paper, an efficient computational algorithm for the exponential integral )(zEυ  was established for all 

21 qiqv +=  and biaz += .  The algorithm based on the evaluation of the continued fraction expansion of )(zEυ .  
Numerical applications of the algorithm are also given together with 3D plotes. 
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INTRODUCTION 

Beyond hydrological applications, the ex-
ponential integral involving complex exponen-
tials is very widespread in mathematical physics 
as electromagnetism [1], and is to be found in 
standard texts dealing with functions arising in 
applied mathematics [2, 3, 4]. Also many algo-
rithms have been created for the rapid and ac-
curate calculation [5], novel approximation for 
the exponential integral function [6]. 

Basic Formulations 

In fact, continued fraction expansions are 
generally more efficient tools for evaluating the 
classical functions than the more infinite power 
series. Their convergence is typically faster and 
more extensive than the series. 

The continued fraction expansion of the ex-
ponential integral can be written as [7] 

valid for all  21 qiqv +=  and biaz += . 

     There are several methods available for the 
evaluation of continued fraction. Traditionally, 
the fraction was either computed from the bot-
tom up, or the numerator and denominator of the 
nth convergent were accumulated separately with 
three-term recurrence formulae.  The draw back 
of the first method is, obviously, having to de-

cide far down the fraction to being in order to en-
sure convergence.  The draw back to the second 
method is that the numerator and denominator 
rapidly overflow numerically even though their 
ratio tends to a well defined limit.  Thus, it is 
clear that an algorithm that works from top down 
while avoiding numerical difficulties would be 
ideal from a programming standpoint. 

Gautschi [8] proposed very concise algo-
rithm to evaluate continued fraction from the top 
down and may be summarized as follows.  If the 
continued fraction is written as 
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then initialize the following parameters 

a1 = 1,     b1 = n1/d1,     c1 = n1/d1,

and iterate (k = 1, 2, …) according to 
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In the limit, the c sequence converges to the 
value of the continued fraction. 

Continued fraction method was used in many 
problems in astrophysics [e.g. 9 & 10] as well 
as in the special functions of astrodynamics [e.g. 
11 & 12]. 
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3. Computational developments

3.1 Analytical expressions of the n’s and d’s 
functions 

In order to apply Gautschi’s algorithm, we 
have to set up the first analytical expressions of 
the n’s and d’s functions, which we derived as 
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where ][x  is the integer part of  x less or 
equal to x. 

3.2 Examples 

Applying Gautschi’s algorithm with the 
above values of the n’s and d’s functions for the 
values of z&υ  listed in the first two columns of 
Table (1), we get for )(zEυ  the values listed in 
the third column of the table. 

3.3 3D-Representations 

Figure (1) shows 3D representations of 
)( iyxE +−υ ; ]1,1[5)20(0 −∈∀= xν  and  

]1,1[−∈y . 
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Table (1): Values of  )(zE  for some  and z.

 z )(zE

4  6  0.0002570434  
0  3  0.0165956895 

– 2.2  3.56  0.0146679470 
7 + 2 i  5  0.0004695927 – 0.0007072864 i  
– 2 i  – 4 i 0.1331510002 – 0.1031333760 i 
– 2 i  – 3 – 4 i 2.8384151147 – 0.6200428783 i 

6.4 + 5 i  – 2 – 2.5 i 1.2268717607 + 2.2414666206 i 
6.4  – 1.6 + 4 i 0.0956245999 + 0.7936468285 i 

3.3 3D-Representations
     Figure (1) shows 3D representations of )( iyxE  ; ]1,1[5)20(0  x  and  

]1,1[y .

, , , ,

Figure (1): 3D Plots of )( iyxE  ; ]1,1[&]1,1[5)20(0  yx .
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CONCLUSION 

Generally, the continued fraction expansions 
are more efficient tools for evaluating the classi-
cal functions than the more infinite power series. 
Their convergence is typically faster and more 
extensive than the series. So, in this paper, an 
efficient computational algorithm for the expo-
nential integral )(zEυ  was established for all 

21 qiqv +=  and biaz += .  The algorithm 
(or Gautschi’s algorithm) based on the evalu-
ation of the continued fraction expansion of 

)(zEυ .  Also, the numerical applications of the 
algorithm are given in Table (1); and Figure (1) 
shows 3D representations of )( iyxE +−υ  for 
as an example 5)20(0=ν  for all values of x 

]1,1[−∈∀x  and y ]1,1[−∈∀y . 
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