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Abstract 
 

Aims: The aim and objective of the study to derive and analyze the stability of the finite difference 
schemes in relation to the irregularity of domain. 
Study Design: First of all, an elliptical domain has been constructed with the governing two dimensional 
(2D) heat equation that is discretized using the Finite Difference Method (FDM). Then the stability 
condition has been defined and the numerical solution by writing MATLAB codes has been obtained with 
the stable values of time domain. 
Place and Duration of Study: The work has been jointly conducted at the MUET, Jamshoro and 
QUEST, Nawabshah Pakistan from January 2019 to December 2019.   
Methodology: The stability condition over an elliptical domain with the non-uniform step size depending 
upon the boundary tracing function is derived by using Von Neumann method. 
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Results: From the results it was revealed that stability region for the small number of mesh points 
remains larger and gets smaller as the number of mesh nodes is increased. Moreover, the ranges for the 
time steps are defined for varied spatial step sizes that help to find the stable solution. 
Conclusion: The corresponding stability range for number of nodes N=10, 20, 30, 40, 50, and 60 was 
found respectively. Within this range the solution remains smooth as time increases. The results of this 
study attempt to provide the stable solution of partial differential equations on irregular domains.  
 

 
Keywords: Modeling and simulation; stability analysis; computational analysis; finite difference method; 

elliptical domain; heat equation. 
 

1 Introduction 
 
The Partial Differential Equations (PDEs) are widely used in many fields of science and engineering and 
considered as the principal sources of providing the mathematical models to govern the physical situations 
[1]. The 2D heat equation is a parabolic partial differential equation which is widely used in many scientific 
and engineering problems for the purpose of simulating the time dependent diffusion of heat or energy in the 
physical domains. For a simple one-dimensional case it is represented mathematically as follows: 
 

,                    (1) 

 
where u is the dependent variable and c is the thermal diffusivity constant. Solution of heat equation is 
computed by variety methods including analytical and numerical methods [2]. But when the heat equation is 
considered for 2-dimensional and 3-dimensional problems then the analytical solution becomes difficult or 
impossible in some cases. Then the numerical methods are best choice to solve the problem in 2D and 3D. 
The errors in the numerical methods are akin to the convergence behavior of the solution algorithm that may 
accumulate abruptly if the proper values of the time steps or mesh spacing are not selected. The 
consequences of such errors lead to the instability in the numerical solution and the situation becomes worst 
when the problem is defined over irregular domain. Without having any prior knowledge, it becomes 
difficult to give the guarantee of convergence. For the convergence of solution by a numerical finite 
difference scheme the consistency and stability are the necessary and sufficient requirements respectively. 
The stability of finite difference numerical schemes can be investigated by a procedure known as Von 
Neumann stability analysis or Fourier method [3]. In the following section some related works have been 
reviewed that discuss the solution of heat equation by different methods and the stability of numerical 
schemes used. 
 
Since this study is concerned with the solution of heat equation over irregular boundaries therefore the 
attempt is made to highlight previous works that have been used for irregular boundaries. In this regard [4] 
and [5] have investigated a finite difference scheme for solving the variable coefficient Poisson and heat 
equations on irregular domains with Dirichlet boundary conditions. They considered non-graded Cartesian 
grids (grids for which the difference in size between two adjacent cells is not fixed) and employed a second 
order implicit discretization in time. A parallel solution approach for 2D heat equation was presented by 
Verena and Peter [6] and they showed that the good numerical approximations can be obtained using finite 
difference method. A systematic and practical overview of the numerical solution of 1D heat equation using 
finite difference method was given by Gerald [7]. The author has used the MATLAB codes to find the 
differences between explicit finite time, centered space (FTCS) and implicit backward time, centered space 
(BTCS) and implicit Crank-Nicolson methods. The semi discretized heat equations over irregular domains 
were solved by Kazufumi et al. [8]. They used second and fourth order grid based finite difference methods 
derived from multivariable Taylor series expansion and included the idea of eigenvalues. Their methods 
offer systematic treatment of the general boundary conditions in two and three dimensions. A new method to 
solve the steady state heat equation in 2D on irregular domains has been proposed by [9]. They applied the 
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method on two different types of meshes viz. irregular and semi irregular and concluded that their method 
can be efficiently used for solving PDEs over irregular domains. A mesh free method was used by [10,11] 
for solving 3D heat equation by explicit scheme and the stability of the scheme was addresses by taking 
irregularity of the points in account. Their results showed the improvement in the accuracy of the solution.  
 
The first relationship between stability and convergence was hinted at by Courant, Friedrichs and Lewy 
(hence known as CFL condition) in the 1920’s [12-14]. Then it was clearly identified Von Neumann in the 
1940 [15]. Later it was brought into organized form by Lax and Richtmyer in the 1950s by stating a 
fundamental theorem Lax Equivalence Theorem [16]. However, in most of the cases Von Neumann stability 
analysis which is based on the Fourier series briefly described by [17] is applied. 
 
In literature, a number of studies can be found where the Von Neumann stability analysis is applied to devise 
or analyze the well posedness of the problems of interest. In this regard [18- 31] have done extensive work 
to either utilize, modify or establish stability conditions akin to Von Neumann stability analysis. A 
comprehensive review of the recent and past technique can be found in [28]. However, the stability analysis 
of heat equation becomes difficult when the domain under consideration has nonlinear boundaries leading to 
irregular mesh spacing.  
 
A significant work has been done to investigate the stability of 1D, 2D and 3D heat equation for different 
finite difference schemes ranging from explicit to implicit methods. However, the stability of heat equation 
can be difficult when it is applied on nonlinear boundaries or domains. This issue provides motivation for 
research in the present state of the art by applying 2D heat equation over nonlinear domain specifically over 
elliptical domain.      
 

2 Methodology  
 
In this study a 2D elliptic domain  with boundary   is considered by using general equation of ellipse. 

Suppose that the domain is made of some thermally conductive material with diffusion coefficient
2c and 

heated in some way by applying the initial and boundary conditions. Mathematically, this problem is 
governed by 2D heat equation as given by Eq. (2) below: 
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where ),,( tyxu  represents the temperature at any point ),( yxP  at specific time .t  As particular case the 

temperature at the boundary of the ellipse is set as 100u  initially at time t =0 the temperature is 0u  
on other than the boundary nodes (as shown in Fig. 1). The governing 2D heat equation (2) is discretized by 
using the explicit forward Euler and centered finite difference schemes for time and space parameters 
respectively [32].  
 

, 

(3) 
 

 

where  and . Equation (3) finds the numerical solution on each interior 

node (i, j) at the time (n+1) th time step based on the solution of previous nth time step. Fig. 2 shows the finite 
difference mesh of the discretized domain with N=50 cells along x-axis and N=50 cells along y-axis. In 
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order to reduce the computational cost the exterior cells are removed and solution be computed only on the 
interior nodes (see Fig. 3). The computational analysis of the mesh elements and mesh nodes for different 
choices of N is given in Table 1. 
 

Table 1. Analysis of the finite difference mesh parameters 
 

S. no N x  Total 
Nodes, 
TN 

Number of 
exterior 
nodes, EN 

Number of 
boundary 
nodes, BN 

Number of 
interior 
nodes, IN 

Number of 
cell, CN 

Number of 
exterior 
cells, EC 

Number of 
interior 
cells, IC 

Number of 
common 
cells, CC 

1 10 0.6000 121 60 22 39 100 40 60 22 
2 20 0.3000 441 220 42 179 400 180 220 42 
3 30 0.2000 961 480 62 419 900 420 480 62 
4 40 0.1500 1681 840 82 759 1600 760 840 82 
5 50 0.1200 2601 1300 102 1199 2500 1200 1300 102 
6 60 0.1000 3721 1860 122 1739 3600 1740 1860 122 

 

 
 

Fig. 1. Schematic of elliptic domain with applied heat equation and boundary conditions 
 
With the aim of finding the stability condition for the heat equation with unequal mesh spacing the Von-

Neumann stability method [28] is redefined by taking the average of 1y  and 2y . Thus, by substituting 
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by taking  common and re-arranging the terms the following Eq. (5) is obtained, 
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, 

(5) 

Now assume that the expression in the square brackets is a function of kth time step and is denoted by G(k) as 

given in Eq. (6) 

 

 

 (6) 

Then expanding exponential Euler formula the Eq. (6) takes the following form, 
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or can be expressesd as follows, 
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On further simplification Eq. (8) takes the following form, 
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Consider if worst case  , then , or 

. 

 

Then by definition of stability mlG ,,1   which yields the stability condition according to the Von-

Neumann stability condition, finally the result is obtained as follows: 
 

,               (11)

 
 

which is the required stability condition for the numerical solution of Eq. (2). 
 

 
 

Fig. 2. Schematic of discretized domain for 50 x 50 mesh 
 

3 Results and Discussion 
 
The numerical solution for the defined problem is computed with the explicit finite difference scheme with 
the stability condition (12) by writing a user defined code on MATLAB. First of all for the six different 

choices of N the different meshes have been generated and the stable ranges of the time increment t  have 
been found.  
 

The following Table 2 shows the variation in the stability range in relation to different step sizes and 
functional increments. The interval of stability range for time step gets much smaller as the number of mesh 

nodes increases. The same behavior of stabile time step in relation to the varied increment 1y along y-axis 

has shown in Fig. 4. A more clear 3D representation of the t  depending upon 1y   and 2y  has 

exhibited by Fig.  3 which reveals that the stability region for variable spatial increments scales down as the 
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number of mesh points are increased. In order to validate the smoothness of temperature diffusion the 
simulation profiles from the numerical solution have been obtained and shown in the Fig. 6 (a) through Fig. 
6 (j). The simulation profiles are taken for t=0 to t=1; and then the solution is interpolated for t=0.1, t=0.2, 
…,t=1.0. From the figures it can be bee seen that the effect of the heat diffuses from boundary to interior 
region as the time increases. If the time is let to further increase the time dependent diffusion will lead to the 
stationary behavior.    
 

 
 

Fig. 3. Simplified mesh of the domain, where extra cells are removed 
 

Table 2. Analysis of the Stable range of the time step 
 

S. No N ∆x min(∆y) max(∆y) mean(∆y) min(∆t) max(∆t) Stable range  of ∆t 
1 10 0.6000 0.04040800 1.20000000 0.62020410 0.00252124 0.14400000 [0.00252124, 0.144] 
2 20 0.3000 0.01002500 0.87177900 0.44090000 0.00015000 0.04023500 [0.00015, 0.040235] 
3 30 0.2000 0.00444930 0.71802100 0.36123500 0.00002978 0.01856000 [2.98E-5, 0.01856] 
4 40 0.1500 0.00250150 0.62449900 0.31350000 0.00000940 0.01063630 [9.40E-6, 0.0106363] 
5 50 0.1200 0.00160000 0.56000000 0.28080000 0.00000385 0.00688300 [3.85E-6, 0.006883] 
6 60 0.1000 0.00111142 0.51207638 0.25659390 0.00000185 0.00481633 [ 1.8542E-06, 0.0048] 

 

 
 

Fig. 4. Relation between functional increment and the time step at different mesh size 
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Fig. 5. The stability region for time step at different mesh size with respect to functional increments 
 

 
 

Fig. 6 (a). Simulation of temperature diffusion 
in the domain at t=0.1 

 

Fig. 6 (b). Simulation of temperature diffusion in 
the domain at t=0.2 

 

 
 

Fig. 6 (c). Simulation of temperature diffusion 
in the domain at t=0.3 

Fig. 6 (d). Simulation of temperature diffusion in 
the domain at t=0.4 
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Fig. 6 (e). Simulation of temperature diffusion 
in the domain at t=0.5 

 
Fig. 6 (f). Simulation of temperature diffusion in 

the domain at t=0.6 

 

 

 
Fig. 6 (g). Simulation of temperature diffusion in 

the domain at t=0.7 

 
Fig. 6 (h). Simulation of temperature 

diffusion in the domain at t=0.8 
 

 

 

Fig. 6 (i). Simulation of temperature diffusion in 
the domain at t=0.9 

 
Fig. 6 (j). Simulation of temperature diffusion 

in the domain at t=1.0 
 

4 Conclusion  
 
In this study the stability analysis of the finite difference solution of 2D heat equation was investigated. The 
main purpose was to find out the stability criteria for the explicit finite difference scheme on irregular 
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domain. Where the domain boundary was constructed by using the equation of ellipse. The problem of 
stability occurs when the mesh size is unequal along the y-axis due to functional increments. Therefore, the 
finite difference scheme was redefined for unequal step size along y-axis, the analogous Von-Neumann 
stability analysis was worked out and the general formula for such problem was obtained. From the results it 
was revealed that stability region for the small number of mesh points remains larger and then stability 
region gets smaller as the number of nodes are increased. The corresponding stability range for N=10, 20, 
30, 40, 50, and 60 was found respectively. Within that range the solution remains smooth as time increases. 
The results of this study attempt to provide the stable and accurate solution of partial differential equations 
on irregular domains. The similar work can be done for other types of PDEs such as hyperbolic, elliptical, 
etc; and the methodology can be extended to 3D.  
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