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Abstract

This study will present a new modified differential operator for solving third-order boundary
value problems into higher-order ordinary differential equation. We found the differential
operator for new three inverse operator which can be applied for solving equations at more than
one type in different conditions. We put a detailed plan for five non-linear examples from a
high-order, we get dynamic and quickly to the exact solution.

Keywords: Boundary value problems; adomain decomposition method; boundary conditions;
higher-order nonlinear ODE.

1 Introduction

This paper studies Boundary Value Problems of the form:

y(n+2) = f(x, y, y′, ..., y(n+1)), n ≥ 1, (1.1)
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with one of the following conditions

y(0) = r0, y
′(0) = r1, ..., y

(n−m)(0) = rn, y
(n+m)(0) = rm, y(n−1)(s) = k, (1.2)

y(a) = b0, y
′(a) = b1, ..., y

(n)(a) = bn, y
(n+m)(0) = d, (1.3)

y(c) = h0, y
′(c) = h1, ..., y

(n+1)(c) = hn. (1.4)

Where f is a differential operator of linear or non-linear of order less than (n+ 2). And m = 0 or
m = 1, a, b0, b1, ..., bn, c, d, h0, h1, ..., hn, r0, r1, ..., rn, rm, s, k, are real finite constant.

The Boundary Value Problems (BVPs) consider chemical reactions, heat transfer, gas dynamics a
nuclear physics as models for example BVPs [1]. There are numerous techniques solutions for BVPs
is considered as a decisive dot in scientific account [2]. For obtaining solutions, a lot trying have
been made by investigators to resolve these models by developing new techniques. According to
my reading, we found only slight studies with regard to numerical solutions of higher-order BVPs
in literature [3-5,6].

The Adomain decomposition method (ADM) [7,8,9], has been studied by many scientists for solving
differential and integral problems in many scientific and physical applications. It resolve the solution
into the series which converges quickly. In this paper, a new modified of the Adomain decomposition
method (MADM) is proposed to find a differential operator as well as its inverse operator in order
to solve BVP. This paper aims to employ the new MADM which can be used for solution of higher-
order boundary value problem under various kinds of different conditions to solve an equation at
more than one condition. The present study analyzing method. A lot of numerical techniques
commentary are illustrate in the following.

2 Analysis of the Method

To study the equation (1.1), we would suggest the new differential operator,

L(.) =
dm

dxm
x−1 d2−m

dx2−m
x3−m d

dx
xm−2 dn−1

dxn−1
(.), (2.1)

now, can be written the equation (1.1) as,

Ly = f(x, y, y′, y′′, ..., y(n+1)), (2.2)

under one of the conditions (1.2), (1.3) and (1.4), for three inverse operators L−1 is given, respectively
as

L−1 =

∫ x

0

∫ x

0

∫ x

0

...

∫ x

0︸ ︷︷ ︸
(n−1)

x2−m

∫ x

b

xm−3

∫ x

0

∫ x

0

...

∫ x

0︸ ︷︷ ︸
(2−m)

x

∫ x

0

∫ x

0

...

∫ x

0︸ ︷︷ ︸
(m)

(.) dxdx...dx.︸ ︷︷ ︸
(n+2)−times

L−1 =

∫ x

a

∫ x

a

∫ x

a

...

∫ x

a︸ ︷︷ ︸
(n−1)

x2−m

∫ x

a

xm−3

∫ x

a

∫ x

0

...

∫ x

0︸ ︷︷ ︸
(2−m)

x

∫ x

0

∫ x

0

...

∫ x

0︸ ︷︷ ︸
(m)

(.) dxdx...dx.︸ ︷︷ ︸
(n+2)−times

L−1 =

∫ x

c

∫ x

c

∫ x

c

...

∫ x

c︸ ︷︷ ︸
(n−1)

x2−m

∫ x

c

xm−3

∫ x

c

∫ x

c

...

∫ x

c︸ ︷︷ ︸
(2−m)

x

∫ x

c

∫ x

c

...

∫ x

c︸ ︷︷ ︸
(m)

(.) dxdx...dx.︸ ︷︷ ︸
(n+2)−times

By applying L−1 on (2.2), we obtain

y(x) = ϕ(x) + L−1f(x, y, y′, ..., y(n+1)), (2.3)

21



Al-Rabahi and Hasan; ARJOM, 16(3): 20-37, 2020; Article no.ARJOM.54751

where ϕ(x) represent the terms arising from using auxiliary conditions. The Adomain decomposition
method represent the solution y(x) and the non-linear function f(x, y, y′, y′′, ..., y(n+1)) by infinite
series

y(x) =

∞∑
n=0

yn(x), (2.4)

and

f(x, y, y′, y′′, ..., y(n+1)) =
∞∑

n=0

An, (2.5)

where the components yn(x) of the solution y(x) will be determined recurrently by algorithm
[10,11,12].

An are the Adomain polynomials, which are obtain formula the following

An =
1

n!

dn

dλn

[
F

( n∑
i=0

λiyi

)]
λ=0

, n = 0, 1, 2, ...,

which gives

A0 = F (y0),
A1 = y1F

′(y0),
A2 = y2F

′(y0) + y2
1
1
2
F ′′(y0),

A3 = y3F
′(y0) + y1y2F

′′(y0) + y3
1

1
3!
F ′′′(y0), (2.6)

...

Substituting eq.(2.4) and eq.(2.5) into eq.(2.3), we get

∞∑
n=0

yn(x) = ϕ(x) + L−1
∞∑

n=0

An, (2.7)

we get the components yn can be specified as

y0 = ϕ(x),

yn+1 = L−1An, n ≥ 0,

which gives

y0 = ϕ(x),
y1 = L−1A0,
y2 = L−1A1,
y3 = L−1A2, (2.8)

...

From (2.6) and (2.8), we find the components yn(x), and hence the series solution of y(x) in (2.7)
can be directly obtained. For numerical aim, the n− term approximate

Ψ(x) =

n−1∑
k=0

yk

can be used to approximate the exact solution. The approach above can be support by testing it
on a variety of several linear and nonlinear BVP.
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3 Application of MADM

In this part, when n=1,2,4, in a differential operator (2.1). We apply the proposed algorithm on
two third order non-linear boundary value problems at m=0& m=1, two fourth order non-linear
boundary value problems at m=0 & m=1 and one sixth order non-linear boundary value problem
at m=0& m=1 and in every one case three boundary conditions.

3.1 Example

The first case, when n=1 and m=0, we give example non-linear equation of third order:

y′′′(x) = y2 − y − x2(x2 − 1), (3.1.1)

under one of the following conditions

y(0) = 1, y′(0) = 0, y(1) = 0,

y(1) = 0, y′(1) = −2, y′(0) = 0,

y(
1

2
) =

3

4
, y′(

1

2
) = −1, y′′(

1

2
) = −2.

The exact solution is y(x) = 1− x2.

Can be written eq. (3.1.1), as

Ly = y2 − y − x2(x2 − 1), (3.1.2)

from an operator (2.1), give

L(.) = x−1 d2

dx2
x3 d

dx
x−2(.),

for three inverse operators under one of the following conditions, respectively

L−1(.) = x2

∫ x

1

x−3

∫ x

0

∫ x

0

x(.) dxdxdx.

L−1(.) = x2

∫ x

1

x−3

∫ x

1

∫ x

0

x(.) dxdxdx.

L−1(.) = x2

∫ x

1
2

x−3

∫ x

1
2

∫ x

1
2

x(.) dxdxdx.

Applying L−1 to both sides of (3.1.2) and using the boundary conditions, we obtain respectively

y(x) = 1− x2 + L−1y2 − L−1y − L−1x2(x2 − 1),

y(x) = 1− x2 + L−1y2 − L−1y − L−1x2(x2 − 1),

y(x) = 1− x2 + L−1y2 − L−1y − L−1x2(x2 − 1),

employing ADM for y2(x), as yield for every one above

∞∑
n=0

yn(x) = 1− x2 − L−1x2(x2 − 1)− L−1yn + L−1
∞∑

n=0

An, n ≥ 0,

the components for yn(x), introduces the recursive relation, respectively

y0 = 1.− 1.0119x2 + 0.0166667x5 − 0.0047619x7,
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y0 = 1.0131− 1.025x2 + 0.0166667x5 − 0.0047619x7,

y0 = 0.997433 + 0.0130208x− 1.01771x2 + 0.0166667x5 − 0.0047619x7,

yn+1 = −L−1yn + L−1An, n ≥ 0,

applying Adomain polynomial An, for the non-linear term y2, when for n=0,1, gives

A0 = y2
0 ,

A1 = 2y0y1,

Then, we can proceed to compute the first few components respectively, as follows

y1 = 0.0119856x2 − 0.0168651x5 + 0.00487596x7 + ...+ 0.0000534612x10,

y2 = −0.0000810072x2 + 0.000199759x5 + ...+ 0.0000547322x10,

y1 = −0.0261226 + 0.128954x− 0.236643x2 + 0.1733x3 + ...+ 5.80154 10−10 x20,

y2 = −0.000201743− 0.0044678x3 + 0.0055138x4 + ...+ 6.99862 10−10 x20,

y1 = −0.00256696 + 0.0130208x− 0.0177083x2 + 0.0166667x5 − 0.0047619x7,

The first terms, the approximate is following, respectively

y(x) = y0 + y1 + y2 = 1.− 1. x2 + 1.34678 10−6 x5 + ...+ 5.35508 10−14 x25,

y(x) = y0 + y1 + y2 = 0.986771 + 0.128954x− 1.26164x2 + ..+ 1.19708 10−10 x20,

y(x) = y0 + y1 = 0.994866 + 0.0260417x− 1.03542x2 + 0.0333333x5 − 0.00952381x7,

Table 3.1. The comparison between exact solution and MADM under three
conditions

x Exact MADN Absolute MADM Absolute MADM Absolute
solution at Error at Error at Error

the first the second the third
condition condition condition

0.1 0.99 0.99 0.00 0.987219 0.002781 0.9871160 0.002884
0.2 0.96 0.96 0.00 0.963443 0.003443 0.9586680 0.001332
0.3 0.91 0.91 0.00 0.916419 0.006419 0.9095700 0.000430
0.4 0.84 0.84 0.00 0.847052 0.007052 0.8399420 0.000058
0.5 0.75 0.75 0.00 0.756144 0.006144 0.7500000 0.000000
0.6 0.64 0.64 0.00 0.644379 0.004379 0.6400066 0.0000066
0.7 0.51 0.51 0.00 0.512316 0.002316 0.5105590 0.000559
0.8 0.36 0.36 0.00 0.360398 0.000398 0.3619580 0.001958
0.9 0.19 0.19 0.00 0.188956 0.001044 0.1947440 0.004744
1.0 0.00 0.00 0.00 -0.001791 0.001791 0.093006 0.093006

We see from Table 3.1, the error less than possible, and the first condition is the exact solution.

We notice in the Fig. 3.1 the convergence between the exact solution and the approximate solutions
under the boundary conditions.
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—— Exact —- MADM —— MADM —— MADM

Fig. 3.1. Comparison between exact solution and MADM under three conditions,

respectively

3.2 Example

In this case and at the same time m=1, below example non-linear of third order:

y′′′(x) = 60x2+x10y−y3, (3.2.1)

under one of the following conditions

y(0) = 0, y′′(0) = 0, y(1) = 1,

y(
1

2
) =

1

32
, y′(

1

2
) =

5

16
, y′′(0) = 0,

y(
1

2
) =

1

32
, y′(

1

2
) =

5

16
, y′′(

1

2
) =

5

2
.

The exact solution is y(x) = x5. Can be written eq. (3.2.1), as

Ly = 60x2 + x10y − y3, (3.2.2)

from an operator (2.1), we get

L(.) =
d

dx
x−1 d

dx
x2 d

dx
x−1(.),

for three inverse operators under one of the following conditions respectively,

L−1(.) = x

∫ x

1

x−2

∫ x

0

x

∫ x

0

(.) dxdxdx.

L−1(.) = x

∫ x

1
2

x−2

∫ x

1
2

x

∫ x

0

(.) dxdxdx.

L−1(.) = x

∫ x

1
2

x−2

∫ x

1
2

x

∫ x

1
2

(.) dxdxdx.

Applying L−1, to both sides of (3.2.2) and using the boundary conditions, give respectively

y(x) = x+ L−160x2 + L−1x10y − L−1y3,
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y(x) =
−1

8
+

5

16
x+ L−160x2 + L−1x10y − L−1y3,

y(x) =
3

16
− 15

16
x+

5

4
x2 + L−160x2 + L−1x10y − L−1y3,

employing ADM for y3(x), as yield for every one above

∞∑
n=0

yn(x) = x+ L−160x2 + L−1x10yn − L−1
∞∑

n=0

An, n ≥ 0,

∞∑
n=0

yn(x) =
−1

8
+

5

16
x+ L−160x2 + L−1x10yn − L−1

∞∑
n=0

An, n ≥ 0,

∞∑
n=0

yn(x) =
3

16
− 15

16
x+

5

4
x2 + L−160x2 + L−1x10yn − L−1

∞∑
n=0

An, n ≥ 0,

the components for yn(x) introduces the recursive relation, respectively

y0 = x5,

y0 = x5,

y0 = x5,

yn+1 = L−1x10yn − L−1An, n ≥ 0,

the first components respectively, as follows

y1 = 0,

y2 = 0,

y1 = 0,

y2 = 0,

y1 = 0,

y2 = 0,

This means that the solution in a series from is following

y(x) = y0 + y1 + y2 =

y(x) = x5.

Plainly, the previous example, we have the exact solution. Thus the good method and its effectiveness.

3.3 Example

The second case, we give example for non-linear of fourth order, at n=2,m=0

y(4) = (y′)2−yy′′−4x2+ex(1+x2−4x), (3.3.1)

under one of the following conditions

y(0) = 1, y′(0) = 1, y′′(0) = 3, y′(
1

2
) = 3.72,

y(1) = 3.72, y′(1) = 4.72, y′′′(1) = 4.72, y′′(0) = 3,

y(
1

2
) = 1.9, y′(

1

2
) = 2.65, y′′(

1

2
) = 3.65, y′′′(

1

2
) = 1.65.

26



Al-Rabahi and Hasan; ARJOM, 16(3): 20-37, 2020; Article no.ARJOM.54751

The exact solution is y(x) = ex + x2. Can be written eq.(3.3.1), gives

Ly = (y′)2−yy′′−4x2+ex(1+x2−4x), (3.3.2)

from an operator (2.1), we get

L(.) = x−1 d2

dx2
x3 d

dx
x−2 d

dx
(.),

for three inverse operators under one of the following conditions, respectively

L−1(.) =

∫ x

0

x2

∫ x

1
2

x−3

∫ x

0

∫ x

0

x(.) dxdxdx,

L−1(.) =

∫ x

1

x2

∫ x

1

x−3

∫ x

1

∫ x

0

x(.) dxdxdx,

L−1(.) =

∫ x

1
2

x2

∫ x

1
2

x−3

∫ x

1
2

∫ x

1
2

x(.) dxdxdx.

Applying L−1, to both sides of (3.3.2) and using the boundary conditions, we give respectively

y(x) = 1 + x+ 1.5x2 + 0.853x3 + L−1eX(1 + x2 − 4x)− L−14x2 + L−1(y′)2 − L−1yy′′,

y(x) = 1.07 + 0.86x+ 1.5x2 + 0.29x3 + L−1eX(1 + x2 − 4x)− L−14x2+

L−1(y′)2 − L−1yy′′,

y(x) = 0.9998 + 1.03x+ 1.0415x2 + 0.273x3 + L−1eX(1 + x2 − 4x)

−L−14x2 + L−1(y′)2 − L−1yy′′,

employing ADM for (y′)2 − yy′′, as yield for all above

∞∑
n=0

yn(x) = 1 + x+ 1.5x2 + 0.853x3 + L−1eX(1 + x2 − 4x)− L−14x2+

L−1
∞∑

n=0

An − L−1yny
′′
n, n ≥ 0,

∞∑
n=0

yn(x) = 1.07 + 0.86x+ 1.5x2 + 0.29x3 + L−1eX(1 + x2 − 4x)− L−14x2+

L−1
∞∑

n=0

An − L−1yny
′′
n, n ≥ 0,

∞∑
n=0

yn(x) = 0.9998 + 1.03x+ 1.415x2 + 0.273x3 + L−1eX(1 + x2 − 4x)− L−14x2

+L−1
∞∑

n=0

An − L−1yny
′′
n, n ≥ 0,

the components for yn(x) introduces the recursive relation, respectively

y0 = 1 + x+ 1.5x2 + 0.853x3 + L−1eX(1 + x2 − 4x)− L−14x2,

y0 = 1.07 + 0.86x+ 1.5x2 + 0.29x3 + L−1eX(1 + x2 − 4x)− L−14x2,

y0 = 0.9998 + 1.03x+ 1.415x2 + 0.273x3 + L−1eX(1 + x2 − 4x)− L−14x2,

yn+1 = L−1An − L−1yny
′′
n, n ≥ 0,
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the first three terms respectively, as follows:

y0 = 1 + x+ 1.5x2 + 0.840303x3 + 0.0416667x4 − 0.025x5 + ...+ 5.85008 10−10 x14,

y1 = 0.166028x3 − 0.210076x4 − 0.0503485x5 − 0.0196187x6 + ...+ 4.25391 10−17 x25,

y2 = −0.000676185x3 + 0.00276714x6 + 0.00136013x7 + ...+ 2.34098 10−35 x50,

y0 = 1.19399 + 0.640618x+ 1.5x2 + 0.387846x3 + ...+ 1.9290110−6x10,

y1 = −0.177877 + 0.292906x− 0.0631219x3 − 0.0986711x4 + ...+ 3.44211 10−17 x25,

y2 = −0.0302707 + 0.0613275x− 0.0558587x3 + 0.0128297x4 + ...+ 4.5765 10−35 x50,

y0 = 0.996293 + 1.05407x+ 1.36146x2 + 0.2996x3 + 0.0416667x4 + ...+ 5.85008 10−10 x14,

y1 = 0.00625454− 0.0440354x+ 0.105108x2 − 0.0790648x3 + ...+ 1.21385 10−20 x28,

y2 = −0.0000184692 + 0.000235623x− 0.00123993x2 + ...+ 1.40914 10−12 x24,

In this method, any assistance can be obvious calculated at any order. If we solve for the first term,
the approximate is following, respectively

y(x) = y0 + y1 + y2 =

y(x) = 1.+ x+ 1.5x2 + 1.00566x3 − 0.168409x4 + ...+ 2.34098 10−35 x50,

y(x) = 0.985838 + 0.994851x+ 1.5x2 + 0.268866x3 + ...+ 4.5765 10−35 x50,

y(x) = 1.00253 + 1.01027x+ 1.46533x2 + 0.223916x3 + ...+ 1.21385 10−20 x28,

Table 3.3. The comparison between exact solution and MADM under three
conditions

x Exact MADN Absolute MADM Absolute MADM Absolute
solution at Error at Error at Error

the first the second the third
condition condition condition

0.0 1.00000 1.00000 0.00000 0.98600 0.01400 1.00250 0.00250
0.1 1.11517 1.11599 0.00082 1.00590 0.10927 1.11843 0.00326
0.2 1.26140 1.26775 0.00635 1.24689 0.01451 1.26500 0.00360
0.3 1.43986 1.46058 0.02072 1.42619 0.01367 1.44361 0.00375
0.4 1.65182 1.69913 0.04731 1.63987 0.01195 1.65568 0.00386
0.5 1.89872 1.98727 0.08855 1.88920 0.00952 1.90267 0.00395
0.6 2.18212 2.32786 0.14574 2.17546 0.00666 2.18618 0.00406
0.7 2.50375 2.72259 0.21884 2.49997 0.00378 2.50793 0.00418
0.8 2.86554 3.171169 0.3056 2.86422 0.00132 2.86998 0.00444
0.9 3.26960 3.67369 0.40409 3.27008 0.00048 3.27484 0.00524
1.0 3.71828 4.22504 0.50676 3.72000 0.00172 3.72579 0.00751

We notice in the Fig. 3.3 the convergence between the exact solution and the approximate solutions
under the boundary conditions. And we have access to the solution exact.
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—— Exact —- MADM —— MADM —— MADM

Fig. 3.3. Comparison between exact solution y(x) = ex + x2, and MADM at three

conditions
∑2

n=0 yn(x), respectively

3.4 Example

In this case and at the same time m=1, we give example non-linear of fourth-order [13]:

y′′′′(x) = e−xy2(x), (3.4.1)

under one of the following conditions

y(0) = 1, y′(0) = 1, y′′′(0) = 1, y′(1) = 2.72,

y(
1

2
) = 1.65, y′(

1

2
) = 1.65, y′′(

1

2
) = 1.65, y′′′(0) = 1.

y(1) = 2.7, y′(1) = 2.7, y′′(1) = 2.7, y′′′(1) = 2.7,

The exact solution is y(x) = ex. Can be written eq.(3.4.1), as

Ly = e−xy2(x), (3.4.2)

from an operator (2.1), when m=1,n=2, we get

L(.) =
d

dx
x−1 d

dx
x2 d

dx
x−1 d

dx
(.),

for three inverse operators under one of the following conditions respectively,

L−1(.) =

∫ x

0

x

∫ x

1

x−2

∫ x

0

x

∫ x

0

(.) dxdxdxdx.

L−1(.) =

∫ x

1
2

x

∫ x

1
2

x−2

∫ x

1
2

x

∫ x

0

(.) dxdxdxdx.

L−1(.) =

∫ x

1

x

∫ x

1

x−2

∫ x

1

x

∫ x

1

(.) dxdxdxdx.

Applying L−1, to both sides of (3.4.2) and using the boundary conditions, we give respectively

y(x) = 1 + x+ 0.61x2 + 0.167x3 + e−xy2(x),

y(x) = 0.997 + 0.95x+ 0.575x2 + 0.167x3 + L−1e−xy2(x),
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y(x) = 0.907 + 1.36x+ 0.453x3 + L−1e−xy2(x),

employing ADM for y2(x), as yield for every one above

∞∑
n=0

yn(x) = 1 + x+ 0.61x2 + 0.167x3 + L−1
∞∑

n=0

e−xAn, n ≥ 0,

∞∑
n=0

yn(x) = 0.997 + 0.95x+ 0.575x2 + 0.167x3 + L−1
∞∑

n=0

e−xAn, n ≥ 0,

∞∑
n=0

yn(x) = 0.907 + 1.36x+ 0.453x3 + L−1
∞∑

n=0

e−xAn, n ≥ 0,

the components for yn(x) introduces the recursive relation, respectively

y0 = 1 + x+ 0.61x2 + 0.167x3,

y0 = 0.997 + 0.95x+ 0.575x2 + 0.167x3,

y0 = 0.907 + 1.36x+ 0.453x3,

yn+1 = L−1e−xAn, n ≥ 0,

the first components respectively, as follows

y1 = −0.110759x2 + 0.0416667x4 + 0.00833333x5 + 0.002x6 + ...+ 6.58308 10−14 x20,

y2 = 0.00164057x2 − 0.000615327x6 + 0.000035099x8 + ...+ 1.36814 10−13 x20,

y1 = −0.00947569 + 0.0499038x− 0.0733157x2 + 0.041417x4 + ...+ 6.60944 10−14 x20,

y2 = 0.000051099− 0.000293793x+ 0.000500661x2 + ...+ 3.97136 10−13 x20,

y1 = 0.0939159− 0.358699x+ 0.497474x2 − 0.280518x3 + ...+ 4.86327 10−13 x20,

y2 = 0.000120243− 0.000944067x+ 0.00321515x2 + ...+ 7.94958 10−10 x20,

Thus, respectively

y(x) = y0 + y1 + y2 =

y(x) = 1 + x+ 0.500882x2 +
x3

6
+ 0.0416667x4 + 0.00833333x5 + 0.00138467x6+

0.000198413x7 + 0.0000174998x8 + 6.81227 10−6 x9 + 1.13245 10−6 x10−
6.49119 10−7 x11 + 7.60813 10−8 x12 + 6.6514 10−9 x13 + ...+ 3.81499 10−27 x37,

y(x) = 0.987575 + 0.99961x+ 0.502185x2 + 0.167x3 + 0.0406298x4+

0.00833908x5 + 0.00138481x6 + 0.000213127x7 + 0.0000161673x8 + 3.84595 10−6 x9+

1.56133 10−6 x10 − 6.48035 10−7 x11 + 5.33129 10−8 x12 + ...+ 3.83793 10−27 x37,

y(x) = 1.00104 + 1.00036x+ 0.50069x2 + 0.166327x3 + 0.0413755x4 + 0.00898998x5+

0.000558478x6 + 0.00100613x7 − 0.000571726x8 + 0.0003373x9 − 0.000141281x10+

0.0000445961x11 − 0.0000101886x12 + 1.61948 10−6 x13 + ...+ 7.66024 10−26 x37,
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Table 3.4. The comparison between exact solution and MADM under three
conditions

x Exact MADN Absolute MADM Absolute MADM Absolute
solution at Error at Error at Error

the first the second the third
condition condition condition

0.0 1.00000 1.00000 0.0000 0.987575 0.012425 1.00104 0.00104
0.1 1.10517 1.10518 0.00001 1.09273 0.01244 1.10625 0.00108
0.2 1.22140 1.22144 0.00004 1.20899 0.01241 1.22253 0.00113
0.3 1.34986 1.34994 0.00008 1.33751 0.01235 1.35105 0.00119
0.4 1.49182 1.49197 0.00015 1.47959 0.01223 1.49309 0.00127
0.5 1.64872 1.64894 0.00022 1.63662 0.01210 1.65006 0.00134
0.6 1.82212 1.82244 0.00032 1.81018 0.01194 1.82353 0.00141
0.7 2.01375 2.01418 0.00043 2.00199 0.01176 2.01525 0.0015
0.8 2.22554 2.22610 0.00056 2.21395 0.01159 2.22711 0.00157
0.9 2.45960 2.46031 0.00071 2.44817 0.01143 2.46125 0.00165
1.0 2.71828 2.71916 0.00088 2.70696 0.01132 2.72000 0.00172

—— Exact —- MADM —— MADM —— MADM

Fig. 3.4. Comparison between exact solution y(x) = ex, and MADM at three

conditions
∑2

n=0 yn(x), respectively

We notice in the figure above the convergence between the exact solution and the approximate
solutions under the boundary conditions. And we have access to the solution exact.

3.5 Example

In the last case, we will give example non-linear of sixth-order [13], at m=0,1,

d6y

dx6
= e−xy2(x), (3.5.1)

under one of the following condition

y(0) = 1, y′(0) = 1, y′′(0) = 1, y′′′(0) = 1, y′′′′(0) = 1, y′′′(1) = e,

y(1) = e, y′(1) = e, y′′(1) = e, y′′′(1) = e, y′′′′(1) = e, y′′′′(0) = 1,

31



Al-Rabahi and Hasan; ARJOM, 16(3): 20-37, 2020; Article no.ARJOM.54751

y(
1

2
) = e

1
2 , y′(

1

2
) = e

1
2 , y′′(

1

2
) = e

1
2 , y′′′(

1

2
) = e

1
2 , y′′′′(

1

2
) = e

1
2 , y′′′′′(

1

2
) = e

1
2 .

The exact solution is y(x) = ex. Can be written eq.(3.5.1)

Ly = e−xy2(x), (3.5.2)

from an operator (2.1), when m=0,n=4, we obtain

L(.) = x−1 d2

dx2
x3 d

dx
x−2 d3

dx3
(.),

for three inverse operators under one of the following conditions, respectively

L−1(.) =

∫ x

0

∫ x

0

∫ x

0

x2

∫ x

1

x−3

∫ x

0

∫ x

0

x(.) dxdxdxdxdxdx,

L−1(.) =

∫ x

1

∫ x

1

∫ x

1

x2

∫ x

1

x−3

∫ x

1

∫ x

0

x(.) dxdxdxdxdxdx,

L−1(.) =

∫ x

1
2

∫ x

1
2

∫ x

1
2

x2

∫ x

1
2

x−3

∫ x

1
2

∫ x

1
2

x(.) dxdxdxdxdxdx.

Applying L−1, to both sides of (3.5.2) and using the boundary condition respectively, gives

y(x) = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 − 1

30
x5 + L−1e−xy2,

y(x) = 1.03 + 0.943x+ 0.545x2 + 0.143x3 + 0.0425x4 + 0.0135x5 + L−1e−xy2,

y(x) = 0.997 + 1.021x+ 0.473x2 + 0.172x3 + 0.0345x4 + 0.0344x5 + L−1e−xy2,

employing ADM for y2, as yield

∞∑
n=0

yn(x) = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 − 1

30
x5+

L−1
∞∑

n=0

e−xAn, n ≥ 0,

∞∑
n=0

yn(x) = 1.03 + 0.943x+ 0.545x2 + 0.143x3 + 0.0425x4 + 0.0135x5+

L−1
∞∑

n=0

e−xAn, n ≥ 0,

∞∑
n=0

yn(x) = 0.997 + 1.021x+ 0.473x2 + 0.172x3 + 0.0345x4 + 0.0344x5+

L−1
∞∑

n=0

e−xAn, n ≥ 0,

the components for yn(x) introduces the recursive relation, respectively

y0 = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 − 1

30
x5,

y0 = 1.03 + 0.943x+ 0.545x2 + 0.143x3 + 0.0425x4 + 0.0135x5,

y0 = 0.997 + 1.021x+ 0.473x2 + 0.172x3 + 0.0345x4 + 0.0344x5,

yn+1 = L−1e−xAn, n ≥ 0,
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applying Adomain polynomial An, for the non-linear term y2, when for n=0,1, gives

A0 = y2
0 ,

A1 = 2y0y1,

the first components respectively, as follows

y1 = −0.0036338x5 + 0.00138889x6 + 0.000198413x7 + ...+ 2.15102 10−12 x20,

y2 = 2.57621 10−7 x5 − 2.18483 10−8 x11 + 4.17535 10−9 x12 + ...+ 8.35363 10−13 x20,

y1 = −0.00508562 + 0.0225422x− 0.036792x2 + 0.0237785x3 + ...+ 8.28423 10−14 x20,

y2 = 2.31144 10−6 − 0.0000113257x+ 0.0000214098x2 + ...+ 1.99707 10−13 x20,

y1 = 0.0000334423− 0.000396757x+ 0.00195246x2 + ...+ 1.48474 10−12 x20,

y2 = 1.61882 10−12 − 3.87397 10−11 x+ 4.24644 10−10 x2 + ...+ 8.16771 10−13 x20,

The solution in a series from is following, respectively

y(x) = y0 + y1 + y2 = 1 + x+ 0.5x2 + 0.1667x3 + 0.04167x4 + ...+ 4.38942 10−36 x47,

y(x) = y0 + y1 + y2 = 1.02492 + 0.965531x+ 0.508229x2 + ...+ 2.9159 10−37 x47,

y(x) = y0 + y1 + y2 = 0.997033 + 1.0206x+ 0.474952x2 + ...+ 4.82443 10−36 x47,

Table 3.5.1.1. The comparison between Exact solution and MADM for under three
conditions

x Exact MADN Absolute MADM Absolute MADM Absolute
solution at Error at Error at Error

the first the second the third
condition condition condition

0.0 1.00000 1.00000 0.00000 1.02492 0.02492 0.99703 0.002967
0.1 1.10517 1.10517 0.00000 1.12672 0.02155 1.10401 0.00116
0.2 1.22140 1.22139 0.00001 1.23976 0.01836 1.22156 0.00016
0.3 1.34986 1.34975 0.00011 1.36518 0.01532 1.35088 0.00102
0.4 1.49182 1.49136 0.00046 1.50429 0.01247 1.49332 0.0015
0.5 1.64872 1.64731 0.00141 1.65850 0.00978 1.65048 0.00176
0.6 1.82212 1.81860 0.00352 1.82937 0.00725 1.82418 0.00206
0.7 2.01375 1.00614 0.00761 2.01865 0.00490 2.01653 0.00278
0.8 2.22554 2.21070 0.01484 2.22825 0.00271 2.22999 0.00445
0.9 2.45960 2.43285 0.02675 2.46025 0.00065 2.46738 0.00778
1.0 2.71828 2.67298 0.04530 2.71700 0.00128 2.73194 0.01366

We will study the same example at m=1, give under one of the following condition

y(0) = 1, y′(0) = 1, y′′(0) = 1, y′′′(0) = 1, y′′′′′(0) = 1, y′′′(1) = e,

y(1) = e, y′(1) = e, y′′(1) = e, y′′′(1) = e, y′′′′(1) = e, y′′′′′(0) = 1,

y(
1

2
) = e

1
2 , y′(

1

2
) = e

1
2 , y′′(

1

2
) = e

1
2 , y′′′(

1

2
) = e

1
2 , y′′′′(

1

2
) = e

1
2 , y′′′′′(

1

2
) = e

1
2 .

The exact solution is y(x) = ex. Can be written eq.(3.5.1)

Ly = e−xy2(x), (3.5.3)
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—— Exact —- MADM —— MADM —— MADM

Fig. 3.5.1.1. Comparison between Exact solution and MADM under three

conditions, respectively

from an operator (2.1), when m=1,n=4, we obtain

L(.) =
d

dx
x−1 d

dx
x2 d

dx
x−1 d3

dx3
(.),

for three inverse operators under one of the following conditions, respectively

L−1(.) =

∫ x

0

∫ x

0

∫ x

0

x

∫ x

1

x−2

∫ x

0

x

∫ x

0

(.) dxdxdxdxdxdx.

L−1(.) =

∫ x

1

∫ x

1

∫ x

1

∫ x

1

x−2

∫ x

1

x

∫ x

0

(.) dxdxdxdxdxdx.

L−1(.) =

∫ x

1
2

∫ x

1
2

∫ x

1
2

x

∫ x

1
2

x−2

∫ x

1
2

x

∫ x

1
2

(.) dxdxdxdxdxdx.

Applying L−1, to both sides of (3.5.3) and using the boundary condition respectively, gives

y(x) = 1 + x+
1

2
x2 +

1

6
x3 + 0.05075x4 +

1

120
x5 + L−1e−xy2,

y(x) = 1.0119 + 0.947x+ 0.596x2 + 0.083x3 + 0.0717x4 + 0.0083x5 + L−1e−xy2,

y(x) = 1.01127 + 0.916x+ 0.755x2 + 0.0172x3 + 0.206x4 + 0.01375x5 + L−1e−xy2,

employing ADM for y2, as yield

∞∑
n=0

yn(x) = 1 + x+
1

2
x2 +

1

6
x3 + 0.05075x4 +

1

120
x5+

L−1
∞∑

n=0

e−xAn, n ≥ 0,

∞∑
n=0

yn(x) = 1.0119 + 0.947x+ 0.596x2 + 0.083x3 + 0.0717x4 + 0.0083x5+

L−1
∞∑

n=0

e−xAn, n ≥ 0,
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∞∑
n=0

yn(x) = 1.01127 + 0.916x+ 0.755x2 + 0.0172x3 + 0.206x4 + 0.01375x5+

L−1
∞∑

n=0

e−xAn, n ≥ 0,

the components for yn(x) introduces the recursive relation, respectively

y0 = 1 + x+
1

2
x2 +

1

6
x3 + 0.05075x4 +

1

120
x5,

y0 = 1.0119 + 0.947x+ 0.596x2 + 0.083x3 + 0.0717x4 + 0.0083x5,

y0 = 1.01127 + 0.916x+ 0.755x2 + 0.0172x3 + 0.206x4 + 0.01375x5,

yn+1 = L−1e−xAn, n ≥ 0,

the first components respectively, as follows

y1 = −0.00909843x4 + 0.00138889x6 + 0.000198413x7 + ...+ 3.27175 10−19 x25,

y2 = 3.35831 10−6 x4 − 1.2035 10−7 x10 + ...+ 1.13674 10−18 x25,

y1 = −0.0111946 + 0.0530443x− 0.0976931x2 + 0.0845656x3 + ...+ 1.46188 10−17 x24,

y2 = 0.0000324587− 0.00016184x+ 0.000321221x2 + ...+ 9.59612 10−17 x25,

y1 = 0.0000346808− 0.000410713x+ 0.0020165x2 + ...+ 8.15701 10−18 x25,

y2 = 1.70115 10−12 − 4.06568 10−11 x+ 4.45143 10−10 x2 + ...+ 4.57668 10−16 x25,

The solution in a series from is following, respectively

y(x) = y0 + y1 + y2 =

y(x) = 1 + x+ 0.5x2 + 0.1667x3 + 0.0416549x4 + 0.00833x5 + ...+ 1.46391 10−18 x25,

y(x) = 1.00074 + 0.999882x+ 0.540128x2 + 0.167252x3 + ...+ 9.59612 10−17 x25,

y(x) = 1.0113 + 0.915589x+ 0.757017x2 + 0.166765x3 + ...+ 4.49511 10−16 x25,

Table 3.5.1.2. The comparison between exact solution and MADM for under
conditions

x Exact MADN Absolute MADM Absolute MADM Absolute
solution at Error at Error at Error

the first the second the third
condition condition condition

0.0 1.00000 1.00000 0.00000 1.00074 0.00074 1.01130 0.01130
0.1 1.10517 1.10517 0.00000 1.1063 0.001130 1.11062 0.00545
0.2 1.22140 1.22140 0.00000 1.22372 0.00232 1.22638 0.00498
0.3 1.34986 1.34986 0.00000 1.35417 0.00431 1.36037 0.01051
0.4 1.49182 1.49182 0.00000 1.49888 0.00706 1.51489 0.02307
0.5 1.64872 1.64872 0.00000 1.65923 0.01051 1.69282 0.04410
0.6 1.82212 1.82212 0.00000 1.83669 0.01457 1.89759 0.75470
0.7 2.01375 2.01375 0.00000 2.03283 0.01908 2.13319 0.11944
0.8 2.22554 2.22554 0.00000 2.24936 0.02382 2.40422 0.17868
0.9 2.45960 2.45960 0.00000 2.48812 0.02852 2.71589 0.25629
1.0 2.71828 2.71827 0.00001 2.75110 0.03282 3.07406 0.35578
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We note the table above for the condition one, we got the exact solution and the another conditions,
we got the approximate solutions for the exact solution. Therefore the method is very good and
effective.

From the Tables 3.5.1.1, 3.5.1.2 and the Figs. 3.5.1.1, 3.5.1.2, we noticed the convergence and we
obtain exact solutions, and thus the method is very useful and active to solve from high-order.

—— Exact —- MADM —— MADM —— MADM

Fig. 3.5.1.2. Comparison between exact solution and MADM under three boundary

conditions, respectively

4 Conclusion

This method is an active, useful and effective to get the approximate solutions. Through tables
and figures are the previous illustrations of third-order boundary value problems into higher-order,
we noticed that we reach the approximate solution and more than the exact solution. We found
it highly efficient and it can be developed to be used to find solutions to develop the differential
operator of the inverse operator by boundary conditions in general.
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