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Abstract

The finite deformation of a compressible internally pressurized spherical synthetic ruber-like
material governed by Levinson and Burgess strain energy function is analysed. The analysis
led to a second order nonlinear ordinary differential equation for the determination of stresses
and displacements. Analytic solution is found impossible for now, hence, the solution is sought
numerically using shooting method on mathematica and collocation method. The result of
the two schemes were statistically compared using t-test to determine which method is better.
Results obtained from the t-test is 1.0692 for the calculated value is less than the table value
of 1.725 and since the p-value is greater than 0.05, this shows that the two methods has no
significant difference. We conclude the two methods are similar.
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1 Introduction

The theory of materials subjected to large deformations often nonlinear and nonlinear materials have
been found to be more realistic in practical terms, especially in engineering field and construction
firms. The nature of mathematical models in theory of elasticity make the derived equations very
tough if not impossible to obtain analytical or closed form solution to the problem. In the modeling
of any hyper-elastic material, the major focus is on selecting the proper constitutive relation.
Rubber is not just about the original natural rubber but also referred to any material that has
same mechanical properties and they are in other words said to be rubber-like materials.

In our work, we concentrated on synthetic rubber which is made from petroleum and it is grouped as
an artificial rubber. The synthetic rubber can be deformed without being damaged and the original
shape is preserved after being stretched. This type of rubber is man-made and has much importance
over natural rubber due to its superiority in performance. It is used often than natural rubber in
most industrialized nations especially in producing car tires, medical equipment, machinery belts
and moulded parts. Synthetic rubbers are said to be elastomers. Our choice of material is based on
the fact that a lot has been achieved on natural rubbers but not much has been achieved in synthetic
rubber materials due to the difficult nature of its model equations.For a rubber-like material,
compressibility is an important physical property constantly needed in practical applications and
in calculations that relates to mechanical properties. This is because rubber-like materials exhibit
a highly nonlinear behaviour and can be applied to rubber and many other polymeric materials
which are considered to be isotropic and hyper-elastic material. We are most concerned about the
deformations of Levinson-Burgess proposed strain energy function which is said to be compressed.
The literature review gives us a huge insight of work done in this area of elasticity. The strain
energy function, W, as proposed by Levison & Burgess is given as:

W="LE2 00 =3) + (1= f)(J2—3) +2(1 - 2f)(J3 — 1) + 2f + (Js — 1)? (1.1)
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where J; =11 = )\12 +)\22 +)\32, Jo = % = ﬁ + ﬁ + ﬁ and J3 = I3 = A1 A2)3
11, I> and I3 are the principal invariants of the Cauchy-Green stress tensor while A1,A2,\3 are the
eigenvalues.

f and v are the material constants and poisson ratio respectively while po is the ground state shear
modulus.

According to Levinson & Burgess, they showed in an experimental result that for highly compressible
polyurethane foam rubber, f = 0 and v = 0.25 will reduce equation(1.1) to Blatz-Ko generalized
strain energy function.

If f =0 and v = 0.5, equation(1) reduces to the Neo-Hookean strain energy function.Similarly,
Mooney-Rivlin material for incompressible material is obtained as I3 = 1 when f = 1 and
v = 0.5. In compressible tests and constitutive models for the slight compressibilty of elastic
rubber-like materials, Horgan and Murphy [1] used the Mooney-Rivlin material for volumetric
test which involves compression in the axial direction of lubricated cylindrical specimens within a
rigid annulus. Their analysis is based on behavioral observation of slightly compressible rubbers
undergoing volumetric testing.

1.1 Literature Review

The failure of spherical bodies undergoing internal pressure has been on the increase.Research works
are on the increase of how best to determine the different behaviour of such materials. This research
work is set to determine the behaviour of such bodies governed by the strain energy functions
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proposed by Levinson-Burgess under internal pressure. This is mainly because this model governs
bodies composed of synthetic rubber.This work is limited to isotropic hyper-elastic compressible
synthetic material of a Levinson and Burgess strain energy function. However, the frame work can
accommodate other strain energy functions and the resulting model equations may be solved by
same method.According to Kao et al [2], Most of the starting point for modeling of various kinds of
elastomers is the strain energy function. Khajehasaeid et al [3] developed a strain energy function
for isotropic rubbers which satisfies all properties of hyperelastic model. The model contains a
deformation mode-independent properties and the work by Hoss [4] on a new constitutive model for
rubber-like materials reviews the different strain energy functions for several constitutive models
focusing on incompressible elsatomers. They proposed a new family of hyperelastic models and the
strain energy functions retains both terms of the stiffening and that representing the characteristic
oscillation in the stress versus strain curve undergoing small strains. This was also similar to the
paper by Pence and Gou [5] who considered three different compressible versions of the conventional
incompressible neo-Hookean material model. The three versions critically x-rayed the differences
with respect to each othe by use of neo-Hookean strain energy function. Their aim is to exhibit these
differences. The research by Kanner and Horgan [6] on extension and torsion of strain-stiffening
discussed about the effect on the response of soild circular cylinders in the combined deformation
of torsion layered on axial extension. The result of axial force required to maintain pure torsion is
compressive for the models considered.

Moreira et al [7] compared two types of deformation using experimental and theoritical methods.
Result showed that simple shear cannot be considered as pure shear combined with a rotation when
undergoing large deformation. It is a fact that rubber-like materials undergo large deformation and
nonlinear upon loading as they return to the initial configuration after the removal of load. Hossain
and Steinman [8] used phenomenological and micromechanical motivated network models for nearly
incompressible hyperelastic polymeric materials in their paper. They used finite element framework
for the solution of boundary value problem as derived in their work.

Ali et al [9] reviewed different classical continuum mechanics models for incompressible and isotropic
materials dependent on strain energy potential which compares to neo-Hookean, Yeoh, Mooney-
Rivlin and Ogden models in predicting uniaxial deformation. Horgan [10] also reviewed some of
the numerous developments, extensions and widespread application resulting from not just this
paper but papers in rubber elasticity and even biomechanics of soft biomaterials. The study by
Jongmin and Dirk [11] specifically outlined the experiments carried out at different strain rates
on continuous loading and unloading to characterize the deformation behaviour of polyurea under
compressive loading. They developed a new model which predicts the response under monotonic
loading given wide range of strain rates and the result agreed well with the experimental result. Blatz
and Ko [12] in their work proposed a strain energy function which they called ”Standard” strain
energy function but Levinson and Burgess discovered that there were certain limitations. First, in
the limit of incompressibility, they standard strain energy function cannot represent Mooney-Rivlin
or Neo-Hookean material and secondly, It is not a capable strain energy function for an isotropic
material. Based on these facts, Levison and Burgess introduced the simplest rational polynomial
strain energy function as shown in equation(1.1). Hence, the experimental value shows that for
a synthetic rubber-like material, f = 1 and v = 0.46, we obtain the strain energy function for a
compressible material. At this point, equation(1.1) reduces to;

W:% 11—27\/73+%13+§ (1.2)

Sang et al [13] worked on rubber tubes under pressure undergoing large deformation and present a
specific nonlinear elastic behaviour. They established a connection between internal pressure and
the internal volume ratio.
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Horgan & Murphy [14, 15, 16] did similar work to that of Levinson & Burgess on Compression
tests and constitutive models for the slight compressibilty of elastic rubber-like material. They
investigated the role played by classical simple shear in nonlinear elasticity. They also determined
the hydrostatic pressure for the particular case of neo-Hookean material and different stress distribu-
tions are compared and contrasted.

Fosdick et al [10] studied about toroidal twist-like biurcations for an isotropic Levinson-Burgess
compressible elastic tube subjected to pure circular shear. They applied a novel effective method
based on magnus expansion to analyze the bifurcation problem thereby evaluating the critical load.
Chung et al [17] in their study obtained the initiation of a localized shear bifurcation. They also
obtained a maximum pressure which is relative to the bifurcation. Observation shows that when
the ratio of the outer undeformed radius to the inner radius is larger than the critical value, the
shear bifurcation occurs before the maximum pressure, while the reverse is true when this ratio
is smaller than the critical value. This study specifically considered the strain energy function
of Blatz-Ko material. Closed form analytic solutions were obtained for both the cylindrical and
spherical deformations.

The work by Levinson and Burgess compared other strain energy functions with their proposed
strain energy function by using the poisson ratio and material constant to determine whether the
different behaviours are due to compressiblity or a certain choice of compressible material. They
compared three constitutive relations due to Blatz, Blatz-Ko and their work to predict different
behaviour. We therefore, decided to extend their work considering an internally pressurized spherical
rubber-like material deformation. We obtained the appropriate second order nonlinear boundary
value problem where we solved for the displacements and stresses of the proposed material of
Levinson and Burgess. The problem was solved using two different method just to validate the
authenticity by using t-test to test for significant differences. This work can easily be applied to
solve the problem of Car tyre where the stresses and displacements can be considered when the tyre
undergoes inflation.

2 Materials and Methods
2.1 Spherical Polar Coordinates

Chung et al [17] Considering the spherical deformation of a hollow sphere where the deformation
takes the point with the spherical polar coordinates (R, ©, ®) in the undeformed region to the point
(r,0, ¢) in the deformed region.

r=r(R) a<R<b (2.1)
=0 0<O<n7 (2.2)
p=2 0<Pd<2r (2.3)
dr
R 0 (2.4)

(2.5)

r(R) is to be determined and F = diag(d, &, +)
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Hollow Sphere

Fig. 1. Hollow Sphere

2.2 Development of Field Equation
2.2.1 Principal stretches (Eigenvalues)

__ dr _ _r
M =gp, A==

2.2.2 Cauchy Green Right Tensor

dr \2
o [ oo 0
00 (57
2.2.3 Cauchy stresses
Ai s
Oii = m%v fori=1,2,3
o1 =0 = 52 [QT—’;/R2 + %2/7“2 — 27]

r! R
Org = Ogr = 00p = O¢g = Orp = O¢r =0

2 257" 2
022=G33=099=0¢¢=%°[*+f27“ *27]

2.3 Equilibrium Equations in Spherical Coordinates System

Mohammed & Rahman(2014) in their work on a simplified method for deriving equilibrium equations
in solid continuous systems applied what they termed direct method to obtain the equation of
equilibrium:

I 1 909, 1 Oopr 1 _
CFEE A+ LG8+ g oy T (200 — 000 — Tp + gorcotO) + fr =0

do,. 19 1 0o 1 _
gre + r gse + 7 sin 6 ajf + ;(30T9+(0-99 _U¢¢)C0t0)+f9 =0

do,. 1 0o 1 Oo 1
ﬁr(p + T Bgd} + 7 sin 6 8z¢ + ;(30-7"‘75 + (099 — 009 COte) + f¢ =0

Recall the Cauchy first law of continuum mechanics where there is no body force;
dive =0

where f, fo and fs represent the body forces which are all zero. We are to consider the spherical
coordinates taking into cognizance the fact that we are dealing with symmetric deformations. We

42



Egbuhuzor and Erumaka; ARJOM, 16(3): 38-49, 2020; Article no. ARJOM.55152

transform the equilibrium equation, by applying the cauchy stresses o,r, 049 , 0p¢ and or9 = oor =
00y = 0g0 = Or¢ = 0¢r = 0 into the equilibrium equation;

dO'TT ’
2
7dR + ‘,,7: |:0'rr - 090] = 07
/ __ dr
where 7' = 7%

We then solve the derivative to obtain the model equation for the spherical deformation of a synthetic
rubber as;

Orp = [%RQ 4 2702 27]

R
! p2 2
d(p(=5 + B 97) P TR /2 2
2 dRRz + HQ% [rT}; + 2517%; _o7_ (% + 251;; _ 27)] =0,
I pR2 r,.2
M[d(zrr.QR + QR,; - 27) + (47‘/21:\’, _ 4):| — 0
dR 3 T - Y%
2r'' R—2rr' —4(r')%R r''r? r'2r R—50r'r? r'2
%[ il ()?R | 25 R+5(}:{3 R—50 +(4T3R7%)] -0

2rr’’ R*4-2rr’ R —47'2 R*4.25¢" v R4+ 507" 2r* R—50r" r®+4r'2R*— 4,2 R3 0
3 R3 -

Note that p # 0 Therefore, the above equation becomes;
' (2rR* + 25r°R) 4+ 50r"%r* R + ' (2rR3 — 50r°) — 4r*R%® = 0,

2
(2R* + 257“4R)% +50r*R(45)% + (4R* — 50r*) & — 2rR® = 0

2.4 Boundary Value Model Equation of Spherically Symmetric
Deformation

d*r - -
(2R* + 25r4R)d—R2 +50r° R(45)2 + (4R* — 50r*) 42 — 2rR® =0
Applying the conditions of a hollow sphere on the radial stress, we obtain the boundary conditions
as;

’ =
o1 = O = B2 [2%1-22 + 255002 o7

T
a2r2 (a) (270 —20)
1o (2at+25r1(a))
276272 (b)
261 4-25r1(b)

(Orr)R=a = —p = 1'(a) =

(Urr)R:b =0 = T/(b) =

3 Solutions for Spherical Symmetric Deformation

We now proceed to investigate the displacements and stresses of the compressible rubber-like
material undergoing internal pressure. First, we consider the derived equation of spherically
symmetric deformations which we solved numerically by the help of Mathematica(ode45 solver) and
collocation method. The boundary value problem is a second-order nonlinear ordinary differential
equations which at this moment has no analytical solution even after applying several techniques.
The load applied is the same at every height and the load considered here is the pressure which is
applied at a constant rate at the inner surface. This applied load generates stresses and displacements
between inner and outer surface.
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Now we solve the boundary value problem given as;

2
(2R? + 257«43)% +50r° R(42)? + (4R* — 50r*) &= — 2rR® =0

Applying the conditions of a hollow sphere on the radial stress, we obtain the boundary conditions
as;

2y
o1 =op =1 [2T R 25T 28 2 — 27]

7"2
27 —2
(Or)Rma = —p = '(a) = LI (BCTr0=20)
27b2r2(b
(0r)rms =0 = 7'(b) = 3550

3.1 Shooting Method

step 1: set h = b_T“

K=1

TK = b a

step 2: while (K < M), do steps 3-10

step 3: set w10 =«

w2,0 = TK

Ur=0

U> =1 Step 4: For i = 1,...,N do steps 5 and 6(The Runge-Kutta method for systems is applied in
step 5 and step 6)

step 5: set x = a + (i-1)h

step 6: set k‘1’1 = hwg,i_u

k12 =hf(z,wii—1 +w2-1);

k22 = hf(x + %71111,1'71 + %k1,17w2,i71 + %k1,2)§
k31 = h(wai—1 + k2,2);

k3o =hf(x + %, wi,i—1 + %k2,17w2,i71 + %k2,2);
ka1 = h(wsz,i—1 + k32);

kao = hf(x+ h,wii—1 + k3,1, w2,i—1 + k3,2);
_ (wyi—1+(k1,14+2k21+2k3 1+2kq.1)) .
6 7

W1i,5 =
kll,l = hUQ;

k2 = h[fy(z, wl im1,W2i—2)u1 + fly(x,w1,i—1,w2—1)usl;
ktay = hluz + 5 1kn 2);

ka2 = hlfy(z + ’;,wl i1, w2,i—2)(u1 + %k/1,1) + fry(z+ %,wl,i—l,w2,i—l)(u2 + %k/l,Q)];

]C/g,l = h[UQ + 5 k/g 2]

kt3 2 = h[fy(z + Z,wl i1, W2i—2)(u1 + 35 k/2 1)+ fly (l‘—|— 5 Wi,i—1, W2,i— 1) (ug +3 Lk, 2)];

kla1 = hluz + kf3,2];

kta2 = hlfy(x + hywi i1, w2,i—2)(u1 + k/3,1) + fly(z + h, w1i—1, wa2i—1)(u2 + k/3,2)];

u1 = u1 + é[k/l,l +2kl21 + ki3 + klaa);

U2 = u2 + é[kh,z + 2kla,0 + 2k!3 0 + kila o)

step 8: for i = 0,1,...,N,

set ¢ = a+ih

output (z, w1, wa,;)

step 9: Procedure is complete

stop

step 10 : setTk = Tk — (wlTNB) Newton’s method is applied to compute Tk. Where Tk is the
slope of the straight line through (a,a) and (b,f).

This is the steps taken internally in mathematica to solve the problem using shooting method.
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3.2 The Collocation Method

Exponentially fitted baxkward differentiation scheme for general second order differential equations
derived via collocation method, with frequency w = 1,h = (b;va); where (a,b) is the interval of
integration, N is number of subintervals and a = xo} | T1 e mN] =b.

Yo+i = m(ﬁ—%hwﬁﬂ-e%wﬁ—6hwh2w2fi—2f1+¢+4€hwf1+¢—262hwf1+¢+h2w2f1+¢+
thwh2w2fl+i+f2+i72€hwf2+i+e2hwf2+ifehwh2w2f2+i *w2yi+2ehww2yi *e2hww2yi+2w2y1+¢*
4ehww2yl+i + 2€2hw’w2y1+i),

ypi = m(—tﬂ)ﬂ] + 6ehwfi —6fi — 5€hwh2w2fi + 22hwh2w2fi + 12f144 — 126hwf1+i +

12hwf1+,' + 5h2w2f1+i] + €2hw h2w2f1+i — 6f2+~; =+ Gehwf2+i — thf2+i — 2h2w2f2+i — ehwh2w2f2+¢ +
6w?y; — 126hww2yi + Gezhwayi — 6wy + 126hww2y1+,~ — 6€2hww2y1+i),

YP1+i = m (sz — 66hwfi +66hwhwfi — 46hwh2w2fi + 62hwh2’u)2fi —12fi+i+12ehw fi4; —
126hwhwf1+i + 4h2w2f1+i + 262hwh2’w2f1+i + 6 fori — 66hwf2+i + 6€hwh’wf2+i — h2w?

fori — 26" B2w? fay i — 6wy + 126" w?y; — 6e2hww?y; + 6wyi4s — 126" w?y1 s + 62" w3y1 ),
Ypati = m(—a Fi46e™ f; =62 haw f;4+-Te" h2w? fi+2e2" h2w? f;4+12f14i—12e™Y f14+

122" hw fi4: — Th?w? fiys — 112" h*w? fi; — 6 fati + 6E™ foy; — 6> hw for; — 2h*w? fors +
11e h2w? fo s + 6w3y; — 12" w?y; + 62wy — 6w3y14i + 12e™w?y1 1 — 62" wiyi 4,

Graphical representation of the solution at N =20

Plot[Evaluate[r[R] /. sols], (R, 0.2, 1}, AxesLabel -» {"R", "T(R)"}]

04 06 0.8 1

Fig. 2. Spherically symmetric deformation for N = 20

45



Egbuhuzor and Erumaka; ARJOM, 16(3): 38-49, 2020; Article no. ARJOM.55152

—4— ODES

0036 g

0.020 o

—t Derived

0.025F 5

dudl [

Fig. 3. Spherically symmetric deformation Vs. Collocation for N = 20

Table 1. Table for spherical shooting method Vs. Collocation method for N= 20

R r(R)(shooting method) r(R)( Collocation method)

0.2 0.015013 0.015012
0.24 0.017463 0.017461
0.28 0.019335 0.019333
0.32 0.020844 0.020842
0.36 0.022167 0.022165
0.4 0.023392 0.023390
0.44 0.024548 0.024546
0.48 0.025649 0.025647
0.52 0.026703 0.026700
0.56 0.027715 0.027713
0.6 0.028691 0.028688
0.64 0.029635 0.029632
0.68 0.030548 0.030545
0.72 0.031435 0.031432
0.76 0.032298 0.032294
0.8 0.033138 0.033134
0.84 0.033957 0.033953
0.88 0.034756 0.0347523
0.92 0.035537 0.035534
0.96 0.036302 0.036299
1. 0.037051 0.0370476

4 Conclusions

We considered a material that has Levinson-Burgess strain energy function. This is used because
most strain energy functions are offshoot of this particular strain energy function. Several methods
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of analytical approach to solve the resulting boundary value problem was sort but no solution was
obtained at the moment. fortunately, a lot of softwares has been developed to handle such highly
nonlinear second order ordinary differential equations with specific values of parameters. We were
able to determine the maximum stress to be o(r(1)) = —0.00035 and the displacements of the
resultant second order nonlinear ordinary differential equation with its mixed boundary condition
for the spherical symmetric deformations. The deformation of radially inflated tyre was solved
numerically at maximum pressures by the help of Mathematica (ode45 solver) algorithm which
used shooting method internally and we compared result the with our derived results where we
applied collocation method to solve for spherical problem.

Results show that the spherical symmetric deformation attains its maximum pressure at p = 0.5
and when the material is inflated beyond that, the rubber rounds out and the top of the material
will quickly wear out. There will be traction reduction which is responsible for the material to
burst . From the table and graphical simulations, the result for shooting method as implemented
internally by Mathematica agrees with the result from the derived collocation method for the same
boundary value problems. This problem can be useful in determining the stresses and displacements
of tyres undergoing internal pressure by way of inflation. In order to determine the authencity of
the methods, we employed t-test and we discovered that p-value has no significant difference, this
means that the method are the same.

To further expand on this work, we can apply similar solution to the cylindrical deformation to
obtain result using the two methods mentioned above.
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APPENDIX

The SPERICAL PROBLEM

anf,2; bel;pul.46; puld.5; (elnitial

ooefl s Jr[R] + 25r[R]' Ry coefl s S0r[R] r'[R)"R; coef3a (4R'-50r(R]"); eoefds2eR]R’;

L LOe Oil. Bom.e

) e’y

r[a]jaj( Mu-1p R
T

bl 2 e—| e | - i
2+ 25rfa

A
Eqns {ooefl ' '[R] + oafd + ooaf3r' [R) - coafdm 0} ; (+The n

bo [r*[a] oo bel, £'[b] == bod]; (aBou
The *Shooting” method aigonthm

gols e Map(First [NDSodva] (B, bal, ¢, B, Mathed < [*shooting®, "startingInitialconditions® + [e[0.2]) =1, £'[0.2] a 1}3]] &,
i11;

Table of Solutons at different mesh points

Tabla[{R, Evaluata[r[R] /. sols]}, {R, 0.2, 1, 1.04}] /7 TablaFors
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