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ABSTRACT 
 

A rice variety Jyothi (PTB 39) is a red kernelled with bold grain, popular in the region of Kerala, 
India used in the study. Plants were grown in pots under three different conditions, natural solar 
UV-B conditions, UV-B excluded condition using UV-B filters and supplemental UV-B using UV-B 
lamps along with ambient solar radiation. During the study period, UV-B radiation was in the range 
of 1.30 to 3.58 Wm

2
 which affected the productivity of the crop under open solar condition. A 

decrease in morphological traits like plant height, number of tillers, flag leaf angle and increase in 
leaf thickness were observed. Physiological parameters, leaf gas exchange parameters and 
biochemical constituents such as chlorophyll content also recorded less value under high UV-B 
condition along with the high content of protective compounds such as flavonoid content, catalase 
and PAL activity. The phenophases of the crop were also delayed by 4-5 days under UV-B 
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radiation exposed conditions. All these negative impacts of UV-B radiation on crop leads to 
restricted filling of grain, lesser harvest index and grain development leading to a decrease in yield 
and yield attributing characters.  
 

 
Keywords: UV-B radiation; rice; morphology; phenology; photosynthesis; Canopy Temperature 

Depression (CTD); flavonoid; yield. 
 

1. INTRODUCTION 
 
The solar radiation reaches to earth's surface is 
mainly divided into two main spectra i.e. 
photosynthetically active radiation (PAR) (400 to 
700 nm) and Ultraviolet radiation (UV) (100 to 
400 nm). UV radiation contains three groups of 
radiation UV-C (100 to 280), UV-B (280 to 320 
nm) and UV-A (320 to 400 nm). Among these, 
the UV-B region is selectively attenuated by the 
stratospheric ozone layer [1]. In contrast, the UV-
A and PAR radiation are affected by light 
scattering. The most biologically damaging 
wavelength UV-C is absorbed almost completely 
by the atmosphere and therefore, not a 
significant factor for biological processes under 
natural conditions [2]. A decrease in 
stratospheric ozone layer due to man-made 
ozone-depleting pollutants, such as halogenated 
hydrocarbon and other chemicals could lead to a 
significant increase in incoming ultraviolet-B (UV-
B) radiation (280-320 nm) and shift in the 
spectral ultraviolet (UV) radiation composition 
reaching the surface of the earth [3-5]. In spite of 
the current global efforts going on to restrict the 
manufacture and use of ozone-depleting 
substances, increase perforation of UV-B 
radiation to the earth’s surface will continue for 
decades [6-8]. 
 
UV-B can influence plant processes either 
through direct damage or via. various regulatory 
effects [9-11]. It has considerable consequences 
including anatomy, morphology, physiology, 
biochemistry, phenology and yield and these 
responses vary markedly within and between 
species [12-14]. The intraspecific variation to 
enhanced or supplemental UV-B radiation in 
terms of morphological parameters has been 
determined in many important crop species, such 
as barley [15,16], maize [17,18], wheat [19,20], 
rice [21,22] cucumber [23], pea [14], Amaranthus 
[24] and soybean [25-27]. The structure of the 
photosynthetic apparatus is the major UV-B 
target among all the plant systems. Impacts on a 
wide number of photosynthetic components have 
been reported such as the decline in chlorophyll 
synthesis, the inactivation of oxygen evolution, 
LHCII, photosystem (PSII) reaction center and 

thylakoid electron flux, would contribute to a 
reduction in photosynthesis and yield [21,28-30]. 
 
About 3 billion population in Asia is mostly 
dependent on rice [31]. Rice is grown in tropical 
regions, where it is known that UV-B radiation is 
highest because the solar angles are higher and 
the stratospheric ozone layer is high latitudes, 
which consists mostly of developing countries. In 
the previous decade, many studies showed that 
the enhanced UV-B radiation causes a 
momentous reduction in the total biomass in 
several rice cultivars, along with a reduction in 
tiller number and photosynthetic capacity of 
plants [32-34]. UV-B radiation also cause 
changes in the ultrastructure of the leaf of rice 
crop, which included an increased thickness of 
the leaf, reduced intracellular spaces and 
destruction of chloroplast [35]. A study showed 
that the yield and yield attributes such as tiller 
number, dry mass, panicle number, grain yield 
and grain size were significantly reduced under 
elevated UV-B radiation [36]. The inference from 
these studies and reviews is that rice and other 
crop plants are sensitive to UV-B radiation. 
Therefore, the present study was conducted to 
understand the effect of UV-B radiation on 
morpho-physiological and yield in rice (Oryza 
sativa L.). 
 

2. MATERIALS AND METHODS  
 

2.1 Plant Materials and Growth 
Conditions 

 
A rice variety Jyothi was grown in pots under 
three different conditions; i) natural solar 
condition (T1) ii) reduced UV-B condition (T2) and 
iii) enhanced UV-B condition (T3) during 
December, 2014 to April, 2015. Plants under 
treatment T2 and T3 were grown under polyhouse 
conditions where polyhouse cladded with a 
polyester filter which excludes spectrum UV-B 
and another compartment of polyhouse covered 
by polyethylene sheet which transmits spectrum 
UV-B respectively. In T3 condition, UV-B 
fluorescent tubes (230 nm to 312 nm; TL-
D18W/52 2G- Made in Holland) were installed to 
enhance UV-B radiation effect. These tubes were 
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fixed on an adjustable frame and the distance 
maintained from plant canopy was 30 cm. The 
lamps were switched on from 10 am to 2 pm 
daily (4 hrs. daily). The UV-B radiation inside and 
outside of polyhouse was measured using the 
UV-B meter (Model-PMA2200 Single-Input 
Radiometer, Solar Light Company, Inc. USA) 
daily throughout the growing period (between 10 
am to 4 pm at 2 hr interval) and expressed as 
Wm-2.  
 

2.2 Growth Data Collection 
 

The growth data was recorded at tillering and 
flowering stage of the crop. The plant height was 
measured from ground level to tip of the longest 
leaf of the plant and expressed in centimeter. 
Leaf thickness was recorded as leaf dry weight 
per unit leaf area and expressed in mg/cm2 at 
both tillering and flowering stages [37]. Flag leaf 
angle was measured near the collar as the angle 
of attachment between the flag leaf blade and 
the main panicle axis using protractor vertically at 
flowering stage of the crop [37] and is measured 
in degrees. Phenophases of plants which are; 
day to heading, days to 50% flowering and days 
to harvestable maturity were recorded after 
transplanting at respective growth phases of the 
crop. 
 

2.3 Leaf Gas Exchange Parameters and 
Canopy Temperature Depression 
(CTD) 

 

To measure leaf gas exchange parameters such 
as photosynthesis rate, stomatal conductance 
and transpiration rate, portable photosynthesis 
system (Model - LI-6400 of ICOR inc. Lincoln, 
Nebraska, USA) was used. Canopy Temperature 
Depression (CTD) was measured using an 
infrared thermometer (Model-6110L 
AGRITHERM IIITM by Everest Interscience INC. 
Tuscon, USA). Leaf gas exchange and CTD 
measurements were taken in the morning from 
09-11 am at tillering and flowering.  
 

2.4 Biochemical Analysis 
 

The chlorophyll pigments were estimated using 
DMSO (Dimethyl sulphoxide) [38]. Flavanoids 
were extracted and quantified with 80% acidified 
methanol (methanol:water: HCl 79:20:1) for 12 
hours in dark [39]. Catalase (EC 1.11.1.6) activity 
was assessed by using the titration method 
against 0.01 M KMnO4 [40]. Phenylalanine 
ammonia lyase (PAL) (EC 4.3.1.24) was 
determined by the method suggested by Bruseke 
[41]. All the biochemical analysis was done at 
tillering and the flowering stage. 

2.5 Yield-related Parameters  
 
Yield-related parameters such as panicle length, 
number of panicles per plant, number of spikelets 
per panicle, filled grain per panicle, spikelet 
sterility, 1000 grain weight and harvest index (HI) 
were measured after harvest of the crop.  
 
3. RESULTS 
 
3.1 UV-B Analysis 
 
The daily observation recorded at 2 hr interval 
from 10 am to 4 pm during the growth period 
(Dec. to April) of crop showed a maximum value 
of UV-B at 12 noon during March (3.581 Wm

-2
) 

and a minimum of 2.822 Wm
-2

 during April in T1 

condition. The lowest value of UV-B radiation 
ranged from 1.304 Wm

-2
 to 1.671 Wm

-2
 at 4 pm 

in all the months observed in open condition. 
Variation in UV-B radiation from 10 am to 4 pm 
was significant in all the months throughout the 
growing period (Table 1). 
 

3.2 Morphological and Phenological 
Characters of the Crop 

 
The mean plant height of the crop was 
significantly higher under T2 condition at the 
tillering stage (54.400 cm) and flowering stage 
(105.286 cm) (Table 2). The lowest plant height 
was recorded (30.667 cm) at the tillering stage 
and flowering stage (78.357 cm) under 
conditions T3 and T1 respectively (Table 2). A 
number of tillers were significantly higher in UV-B 
free condition (T2) at tillering stage (8.871 per 
plant) and lesser in a solar natural condition (T1) 
(7.243 per plant) (Table 2). However, at the 
flowering stage, the number of tillers was non-
significant. There was no significant variation in 
leaf thickness at the tillering stage but at 
flowering stage treatment T1 (5.200 mg/m

2
) 

showed significantly higher value and the 
treatment T2 (4.271mg/cm2) showed the 
minimum value (Table 2). The flag leaf angle was 
significantly wider under UV-B excluded 
condition (T2) than natural solar (T1) and 
supplementary UV-B (T3) conditions by 112% 
and 68% respectively (Table 3). 
 
Natural solar condition (T1) took significantly 
more number of days to accomplish their 
phenophases such as days to heading, days to 
50% flowering and days to harvestable maturity 
than condition T2 and T3 (Table 3). However, 
condition T2 and T3 were not significant (Table 3).  
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Table 1. Data on UV-B radiation has taken at different treatments and different time throughout 
the growing period of the crop 

 

December 10 am 12 noon 2 pm 4 pm 
T1 2.4503 3.2483 2.6822 1.3036 
T2 0 0 0 0 
T3 0.1187 0.1726 0.1301 0.0511 
t-Value 22.246 88.592 15.335 14.115 
January     
T1 2.0994 3.2913 2.7056 1.3331 
T2 0 0 0 0 
T3 0.1319 0.1960 0.1620 0.0693 
t-Value 29.403 25.867 13.989 17.536 
February      
T1 1.9579 3.0207 2.8594 1.44469 
T2 0 0 0 0 
T3 0.1270 0.1872 0.1519 0.0721 
t-Value 16.763 14.920 17.060 20.290 
March     
T1 2.1895 3.5811 3.2416 1.6714 
T2 0 0 0 0 
T3 0.1599 0.2555 0.1842 0.0814 
t-Value 24.027 29.516 28.917 29.007 
April     
T1 1.7421 2.8220 2.5218 1.3407 
T2 0 0 0 0 
T3 0.1749 0.2770 0.2008 0.0863 
t-Value 7.930 9.481 9.288 25.387 

 

Table 2. Mean plant height (cm), number of tillers per plant and leaf thickness (mg/cm2) at 
different UV-B levels. (T1- Natural solar UV-B condition. T2- Reduced UV-B radiations using UV-

B filters (which measures UV-B as zero). T3- 85% ambient radiation including UV-B in 
polyhouse + UV-B supplemented with UV-B lamps) 

 

Tillering stage 
 Plant height (cm) No. of Tillers/ plant Leaf thickness (mg/cm2) 
T1 38.271 7.243 4.971 
T2 54.400 8.871 4.514 
T3 30.657 7.871 4.671 
CD (0.05) 3.667 1.112 NS 

Flowering stage 
 Plant height (cm) No. of Tillers/ plant Leaf thickness (mg/cm2) 
T1 78.357 27.286 5.200 
T2 105.286 25.857 4.271 
T3 100.257 24.143 4.529 
CD (0.05) 13.428 NS 0.740 

 

Table 3. Mean data on flag leaf angle (°), Days to heading, Days to 50% flowering and Days to 
harvestable maturity at different UV-B levels. (T1- Natural solar UV-B condition. T2- Reduced 

UV-B radiations using UV-B filters (which measures UV-B as zero). T3- 85% ambient radiation 
including UV-B in polyhouse + UV-B supplemented with UV-B lamps) 

 

 Flag leaf 
angle (°) 

Days to 
heading 

Days to 50% 
flowering 

Days to harvestable 
maturity 

T1 12.455 69.971 76.971 106.971 
T2 26.427 65.514 72.514 102.514 
T3 15.710 65.229 72.229 102.229 
CD (0.05) 4.656 2.911 2.911 2.911 
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Table 4. Mean photosynthetic rate (μmol CO2 m
-2

s
-1

), Stomatal conductance (mol H2O m
-2

s
-1

), 
Transpiration rate (mmol H2O m-2s-1) and CTD (°C) of rice under different UV-B levels. (T1- 

Natural solar UV-B condition. T2- Reduced UV-B radiations using UV-B filters (which measures 
UV-B as zero). T3- 85% ambient radiation including UV-B in polyhouse + UV-B supplemented 

with UV-B lamps) 
 

Tillering stage 

 PN. Rate 

(μ mol CO2m
-2s-1) 

Stoml. Cond. 

(mol H2O m-2s-1) 

Trasp. Rate 

(mmol H2Om-2s-1) 

CTD 
(°C) 

T1 31.100 0.382 4.304 -1.774 

T2 36.174 0.568 4.760 -3.212 

T3 22.225 0.260 3.562 -1.787 
CD (0.05) 3.921 0.136 0.567 0.428 

Flowering stage 

 PN. Rate 

(μ mol CO2m
-2

s
-1

) 

Stoml. Cond. 

(mol H2O m
-2

s
-1

) 

Trasp. Rate 

(mmol H2Om
-2

s
-1

) 

CTD 
(°C) 

T1 27.600 0.367 4.284 -3.157 

T2 28.923 0.424 4.420 -3.229 

T3 26.571 0.341 3.700 -1.929 

CD (0.05) 1.834 0.057 NS 0.866 
 
Table 5. Mean Chlorophyll “a‟ (mg g

-1
 FW.), Chlorophyll “b‟ (mg g

-1
 FW), Total chlorophyll (mg 

g-1 FW), Flavanoid (A300 g
-1 FW), Catalase (1μ mol of H2O2 per min g-1 FW) and PAL (μmol t-

cinnamic g
-1

 FW) of rice under different UV-B levels. (T1- Natural solar UV-B condition. T2- 
Reduced UV-B radiations using UV-B filters (which measures UV-B as zero). T3- 85% ambient 

radiation including UV-B in polyhouse + UV-B supplemented with UV-B lamps) 
 

Tillering stage 

 Chl ‘a’ Chl ‘b’ Total chl Flavonoid Catalase PAL 

T1 2.729 0.802  3.564 44.268 10.220 1.041 

T2 2.877 0.981 3.824 41.446 7.791 0.621 

T3 2.494 0.931 3.476 43.328 7.893 0.633 

CD (0.05) NS NS NS NS 1.507 0.087 

Flowering stage 

 Chl ‘a’ Chl ‘b’ Total chl Flavonoid Catalase PAL 

T1 1.597 0.731 2.609 57.535 26.558 0.595 

T2 2.085 0.542 2.630 48.218 10.625 0.137 

T3 1.880 0.389 1.981 50.654 13.357 0.412 

CD (0.05) 0.353 0.234 0.318 2.436 2.498 0.119 
 

Table 6. Mean number of panicle per hill, Panicle length(cm), Number of spikelets per panicle, 
Filled grain per panicle and spikelet sterility (%), Grain yield (g), 1000 grain weight (g) and 
Harvest index (%)of rice under different UV-B levels. (T1- Natural solar UV-B condition. T2- 

Reduced UV-B radiations using UV-B filters (which measures UV-B as zero). T3- 85% ambient 
radiation including UV-B in polyhouse + UV-B supplemented with UV-B lamps) 

 

 

 

Panicle 
no/ hill 

Panicle 
length 

(cm) 

No. of 
Spikelets / 
Panicle 

Filled 
grain/ 
Panicle 

Sterile 
grain 
(%)/ 
Panicle 

Grain 
Yield 
(Gm) 

1000 
grain 
weight 
(Gm) 

Harvest 
Index 

T1 17.557 18.359 54.949 17.866 67.208 8.914 22.974 6.831 

T2 15.629 22.147 118.840 98.900 16.956 84.194 25.429 48.607 

T3 15.386 21.230 99.053 78.449 20.980 80.714 24.189 47.654 
CD (0.05) 1.510 0.922 15.631 14.395 5.837 11.361 1.723 4.111 
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3.3 Physiological Characters of the Crop 
 
UV-B excluded condition (T2) recorded 16% 
significantly higher photosynthetic rate than open 
solar condition (T1) and 62% higher value than 
UV-B supplemented condition (T3) at the tillering 
stage (Table 4). Stomatal conductance also 
recorded significantly higher value in T2 condition 
by 49% and 118% under T1 and T3 conditions 
respectively at the tillering stage (Table 4). A 
similar trend was seen at the flowering stage 
where photosynthesis rate and stomatal 
conductance recorded higher values under T2 
condition (28.923 μmol CO2 m

-2
s

-1
 and 0.424 mol 

H2O m-2s-1 respectively) and lower values at T3 
condition (26.571  μmol CO2 m

-2
s

-1
 and 0.341 

mol H2O m-2s-1 respectively) (Table 4). 
 
At tillering stage UV-B free condition (T2) showed 
a significantly higher level of transpiration rate 
(4.760 mmol H2O m

-2
s

-1
). But the lower 

transpiration rate was recorded (3.562 mmol H2O 
m

-2
s

-1
) when the crop was subjected to the 

supplementary UV-B lamp (T3) (Table 4). 
However, at the flowering stage transpiration rate 
was non-significant. Condition T2 recorded 
significantly higher CTD than the rest of the 
conditions at both growing stages i.e. -3.212°C 
and -3.229°C respectively. But at the tillering 
stage, lower CTD was found under T1 condition 
(-1.774 °C) and at the flowering stage under T3 
condition (-1.929 °C) (Table 4). 
 

3.4 Biochemical Characters of the Crop 
 
Chlorophyll pigments were not significantly 
affected due to UV-B radiation at the tillering 
stage. However, at the flowering stage, T2 
condition showed considerably higher chlorophyll 
“a” content by 30.5% and 11% than the rest of 
the two conditions (T1 and T3). Chlorophyll “b” 
content was higher under natural solar condition 
by (T1) 35% and 88% than UV-B excluding 
condition (T2) and UV-B supplementary condition 
(T3) respectively (Table 5). Total chlorophyll 
content found significantly higher under T2 (2.630 
mg g-1 FW) than T3 condition (1.981 mg g-1 FW) 
but there was not much difference noticed when 
compared to T1 condition (2.609 mg g-1 FW) 
(Table 5). Flavonoid content had no such effect 
during the tillering stage but there was highly 
significant variation during the flowering stage, 
where high flavonoid content was recorded in 
condition T1 (57.535 A300 g

-1 FW) followed by T3 
(50.654 A300 g

-1
 FW) and the least value was 

recorded in condition T2 (48.218 A300 g-1 FW) 
(Table 5). 

Enzyme activities of catalase and PAL were 
significantly higher in natural solar condition at 
both growing stages. At the tillering, stage, 
catalase activity was found higher in T1 (10.220 1 
μmol of H2O2 per min g-1 FW) than the rest of the 
conditions by 31% and 29% in T2 and T3 
respectively (Table 5). The same trend was 
observed at flowering where catalase activity 
was higher by 150% and 99% in T2 and T3 
respectively (Table 5). Like catalase activity, PAL 
activity was also higher under T1 condition than 
T2 (68%) and T3 (64%) conditions at tillering 
stage and at flowering stage (334% and 44%) 
respectively (Table 5).  
 

3.5 Yield and Yield-related Parameters 
 

A significantly higher number of panicles were 
recorded under open solar condition (T1) (17.557 
panicles per hill) than the rest of the conditions 
(Table 6). The length of the panicle was recorded 
significantly higher under UV-B excluded 
condition (T2) (22.147 cm) (Table 6). The number 
of panicles recorded was significantly higher in 
T1 condition (17.557 per plant) than the 
remaining conditions (T2- 15.629 per plant and 
T3- 15.386 per plant) (Table 6). The number of 
spikelets per panicle and filled grains per panicle 
were found significantly higher in plants where 
UV-B was excluded (T2) (118.840 per panicle 
and 98.90 per panicle) respectively. However, 
the lowest values were recorded in open natural 
solar condition (T1) (54.949 per panicle and 
17.866 per panicle respectively). The percentage 
of sterile grains was also found higher in natural 
solar condition (69.208% per panicle) and lesser 
in plants which not subjected to UV-B (T2- 
16.956% per panicle) (Table 6). Grain yield was 
very high in a condition where the crop was 
grown in UV-B free condition as compared to 
natural solar and supplementary UV-B condition 
(Table 6). Thousand (1000) grain weight was 
higher along with harvest index under UV-B 
excluded condition (T2), 25.429 gm and 48.607 
respectively than solar open condition (T1) and 
supplementary UV-B condition (Table 6).  
 

4. DISCUSSION  
 

4.1 UV-B Radiation Measurements 
 

The present investigation shows that during the 
study period ambient UV-B radiation was 2.822 
to 3.580 Wm-2 (Table 1), which had a negative 
effect on rice crop growth, physiology and yield. 
A similar effect was reported in other rice 
varieties when they exposed to 4 Wm

-2
 UV-B 

radiation [42]. 
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4.2 Morphological Characters Influenced 
by UV-B Radiation 

 
UV-B radiation induces many morphogenic 
changes, such as inhibition of hypocotyls, stem 
and leaf expansion, reduction in growth along the 
adaxial-abaxial axes [43]. Our result showed that 
ambient UV-B radiation has affected the growth 
and development of rice as indicated by lesser 
plant height and reduced tiller number (Table 1). 
Similarly reduced plant height by 5% and the 
tiller number by 25% was observed in rice at the 
ambient level of UV-B radiation [34]. Many 
studies have indicated that an increase in leaf 
thickness is typically a UV-B induced response 
[43,44]. In Indigofera tinctoria L. seedlings, the 
leaf thickness was observed to increase with 
increasing time of exposure to UV-B radiation 
treatment [45]. The present study also 
corroborated this inference that leaf thickness 
increased under an open solar condition that 
received more UV-B radiation. 
 
In rice, the flag leaf angle has an important effect 
on rice yield. Modification of flag leaf angle has 
been emphasized as a means of obtaining better 
light utilization with more upright leaf permitting 
penetration of solar energy into lower leaves. For 
enhancing grain yield in rice, flag leaf angle must 
be wider and vertical [46]. The observations 
taken at 50% flowering stage showed that the 
flag leaf was very erect under T1 and T3 
conditions as they might have received low 
relative light intensity. However, T2 condition had 
a better horizontal inclination. Both steeper leaf 

angle and increased wider angle i.e. self-shading 
leaf angle might have reduced the potential 
carbon gain by decreasing total light penetration 
which resulted in reduced yield (Fig. 1).  
 

4.3 Phenological Characters Influenced 
by UV-B Radiation 

 
The result of the present study indicates that the 
UV-B radiation alters the phenophases such as 
days to heading, days to 50% flowering and days 
to harvestable maturity and also it prolongs the 
time to achieve the respective growth phases 
under natural solar condition (T1) than UV-B 
excluded condition (T2). The delay might have 
been due to the increased sensitivity of plants to 
UV-B damage which resulted in their reduced 
growth via. lesser photosynthesis rate. At the 
tillering, stage the photosynthesis rate was more 
under the T2 condition when compared to the 
flowering stage (Table 4). This higher 
photosynthetic rate at the vegetative stage could 
be attributed to the difference in photoassimilates 
accumulation to attain sufficient physiological 
maturity for flowering and other phenophases of 
growth. A similar finding such as delay in 
achieving growth phases like flowering was 
reported in crops like bush bean and green gram 
under high UV-B radiation [47,48]. In pea crop, 
the flowering was delayed by 2-5 days when 
exposed to UV-B [14]. Sikuku et al. [49] also 
reported that environmental stresses to plants 
took a longer time for flowering and to mature as 
compared to a crop grown under optimum growth 
conditions. 

 

 
 

Fig. 1. Effect of UV-B radiation on Flag leaf angle (°) and Grain yield (gm/plant) under UV-B 
condition (T1- Natural solar UV-B condition. T2- Reduced UV-B radiations using UV-B filters 

(which measures UV-B as zero). T3- 85% ambient radiation including UV-B in polyhouse + UV-B 
supplemented with UV-B lamps) 
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4.4 Physiological Characters Influenced 
by UV-B Radiation 

 

Photosynthesis is the most important metabolic 
process of plants essential for the production of 
biomass. The gas exchange measurements 
indicated a significant reduction in 
photosynthesis and transpiration rate 
accompanied by a decrease in stomatal 
conductance under open condition (T1) (Table 4). 
This finding is consistent with the result obtained 
in barely [50] and lettuce [51]. Reduction in 
photosynthetic rates mainly due to inactivation of 
PSII, decreased levels of chlorophylls, 
carotenoids and reduced activity of Rubisco. UV-
B radiation also responsible for the down-

regulation of photosynthetic genes, decreased 
thylakoid integrity and altered chloroplast 
ultrastructure [52]. In the present study 
decreased chlorophyll content was observed 
(Fig. 2) and also a decrease in stomatal 
conductance was found in plants exposed to UV-
B radiation. Similar results were observed in 
Matricaria chamomilla [53]. Stomatal closure by 
enhanced UV-B radiation and increased leaf 
diffusive resistance has also been demonstrated 
with the action spectrum peaking below the 
wavelength of 290 nm [54]. In the present study, 
the increased plant growth and dry matter 
accumulation in the UV-B excluded crop (T2) 
might have been primarily due to the result of 
increased photosynthesis. 

 

 
 

 
 

Fig. 2. Effect of UV-B radiation on Photosynthetic rate (µmol CO2 m
-2

s
-1

) and Total chlorophyll 
(mg g-1 FW) under UV-B condition (T1- Natural solar UV-B condition. T2- Reduced UV-B 
radiations using UV-B filters (which measures UV-B as zero). T3- 85% ambient radiation 

including UV-B in polyhouse + UV-B supplemented with UV-B lamps) 
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Fig. 3. Effect of UV-B radiation on Transpiration rate (mmol H2O m
-2

s
-1

) and CTD (°C) under UV-
B condition (T1- Natural solar UV-B condition. T2- Reduced UV-B radiations using UV-B filters 

(which measures UV-B as zero). T3- 85% ambient radiation including UV-B in polyhouse + UV-B 
supplemented with UV-B lamps) 

 
The present investigation also indicates that 
under UV-B excluded condition (T2) there is more 
canopy cooling and high leaf temperature in the 
remaining two conditions. This is related to the 
higher transpiration rate in T2 which in turn leads 
to high CTD whereas, in the remaining two 
conditions UV-B radiation caused less 
transpiration rate there by maintaining higher leaf 

temperature (Fig. 3). On correlating CTD with 
transpiration rate and stomatal conductance, the 
CTD could be used as selection criteria under 
any environmental stress conditions [55]. There 
are reports that suggested an adjustment of 
microclimate like cool canopy during grain filling 
period in wheat plays an important role in stress 
tolerance [56].  
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4.5 Biochemical Characters Influenced by 

UV-B Radiation 
 
The decrease in chlorophyll pigment content was 
evident under exposure of the plants to the UV-B 
radiation, where they received more UV-B 
radiation (Table 5). Similar results have been 
reported in rice [30] and annual desert plants 
[57]. The decrease in chlorophyll content was 
observed under higher UV-B radiation in pea due 
to a reduction in expression of chlorophyll a/b 
binding protein [58]. UV-B radiation also affects 
the chlorophyll pigment, either through            
inhibition of their synthesis or effects on the 
enzymes involved in the biosynthetic                  
pathway and degradation of its precursors [59-
61]. 
  
Flavonoids perform a function as a protective 
pigment in leaves and shoots of the plants by 
attenuating the impinging UV-B radiation and 
their specific location is in the epidermal layer, 
protects cell and cell organelles [62,63]. 
Flavonoids also possess free-radical scavenging 
activity [64]. In this investigation, the flavonoid 
level was found significantly higher in natural 
solar condition (T1) at flowering stage of plants 
and this might be due to the higher UV-B 
radiation received at canopy level under a T1 

condition in March where the crop was at 
flowering stage. The flavonoid concentration 
reduces UV-B penetration and protects the 
photosynthetic apparatus to some extent 
depending on the threshold level of UV-B 

radiation. The present observation is in 
agreement with the findings in rice [65-67]. 
 
UV-B radiation induces oxidative stress in the 
plants by producing reactive oxygen species 
(ROS), which are very harmful to the plants 
[68,69]. To cope with oxidative stress, various 
ROS-scavenging system assist in plant and 
among them, catalase is the most efficient 
antioxidant enzyme which protects plants by 
scavenging free radicals and H2O2. Our present 
study also indicated higher catalase activity when 
plants were subjected to UV-B radiation at 
tillering and flowering stages (Table 5). This 
finding correlated in soybean [70] and rice [71]. 
The enhanced catalase enzyme activity upon 
UV-B radiation indicates that plants had built a 
larger capacity to remove ROS as a tolerance 
mechanism to UV-B stress [72]. In the present 
study, PAL activity decreased from tillering to 
flowering stage (Table 5). Though significantly 
more activity was observed at the initial stage in 
all treatments, maximum PAL activity was 
observed under open condition in both tillering 
and flowering stages. This might be due to the 
reason that UV-B radiation enhanced the PAL 
activity where it produced more phenolic 
compounds and later gets modified through 
phenylpropanoid metabolism to form the 
precursor of secondary metabolites including 
flavonoids [73]. This is also evident from the 
increase in flavonoid content at the flowering 
stage in the present study under UV-B radiation 
treated condition (Fig. 4). Earlier reports also 
indicate a similar trend [74,75]. 
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Fig. 4. Effect of UV-B radiation on Flavanoid (A300 g
-1

 FW) and PAL (μmol t-cinnamic g
-1

 FW) 
under UV-B condition (T1- Natural solar UV-B condition. T2- Reduced UV-B radiations using 

UV-B filters (which measures UV-B as zero). T3- 85% ambient radiation including UV-B in 
polyhouse + UV-B supplemented with UV-B lamps) 

 

 
 

Fig. 5. Effect of UV-B radiation on panicle per hill, Panicle length (cm), Number of spikelets per 
panicle, Filled grain per panicle and spikelet sterility (%) under UV-B condition (T1- Natural 

solar UV-B condition. T2- Reduced UV-B radiations using UV-B filters (which measures UV-B 
as zero). T3- 85% ambient radiation including UV-B in polyhouse + UV-B supplemented with 

UV-B lamps) 
 

4.6 Yield and Yield-related Parameters 
Affected by the UV-B Radiation 

 
In the present study, yield and yield attributes 
were affected by the high UV-B radiation which 
leads to lesser yield in the crop where they were 
subjected to UV-B radiation except that the 

number of panicles per hill was higher where the 
plants were grown under natural solar radiation 
(Table 6). Though the number of panicles was 
higher it did not result in a higher yield in open 
solar condition because the length of panicles, 
number of spikelets per panicle and filled grains 
per panicle were very less with very high spikelet 
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sterility (Table 6) (Fig. 5) compared to the UV-B 
excluded condition. This might have been due to 
more panicle length, higher photosynthetic rate, 
stomatal conductance, and more chlorophyll 
content and low flavonoid content under UV-B 
excluded condition (T2). Similar results were 
reported in wheat [76] and soybean [25]. Under 
open condition UV-B radiation affected the grain 
development by restricting grain filling which 
leads to a lesser number of filled grains per 
panicle and thousand grain weight. Similar 
observations of the spikelet sterility on prolonging 
exposure to UV-B radiation in rice were reported 
[42]. This investigation also suggested that a 
decrease in grain yield may often be 
accompanied by a substantial modification in the 
partitioning of biomass into different components 
of plant organs under UV-B radiation. A similar 
conclusion in wheat had been reported [76,77]. 
The reproductive stage is the most important 
period to achieve higher grain yield but in the 
present study, the grain yield decreased due to 
high UV-B received in open condition (T1) at 
flowering stage, which in turn decreased the 
harvest index.  
 

5. CONCLUSION  
 
The chemical profile of the atmosphere has been 
changed during a few decades due to 
anthropogenic activity, which arose as a serious 
threat to agriculture, reducing the productivity of 
major crops. The depletion of the stratospheric 
ozone layer due to ozone-depleting substances 
results in an increase in UV-B radiation reaching 
the earth’s surface. UV-B radiations have high 
energy and potential for causing reversible or 
irreversible biological damages. In the present 
study, exposure of rice plants to UV-B radiation 
reduced the growth and development of the 
plants by affecting morphological characters 
such as plant height, tiller number, leaf thickness 
and flag leaf angle. UV-B radiation also resulted 
in changes in the phenophases of rice where the 
plants took more time to achieve respective 
phenophases. Physiological and biochemical 
parameters also were highly influenced and all 
these awful changes in rice plants resulted in 
lesser yield under UV-B radiation exposed 
conditions.  
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