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This paper uses the lattice gas model to incorporate spatial and stochastic elements in a prey-predator 
dynamic system. In this system, the habitat is partitioned in two adjacent patches, one of them being a 
prey reserve. The habitat is populated by two competing prey and a common predator. In the reserve, 
prey harvesting is prohibited. In the other patch, harvesting of one of the prey is allowed at a constant 
quota rate. The evolution of the system is investigated using local species interactions. The effect of 
different levels of constant quota harvesting are investigated using the lattice gas approach, first by the 
mean field approximation method and then by simulation. The system attains a stable equilibrium 
below a threshold constant harvest value on condition that the survival rate of the non-harvested prey 
exceeds that of the harvested prey. Furthermore, the predator biomass conversion rate for the non-
harvested prey should be more than that for the harvested prey. If the aforementioned conditions are 
not met, the population of the harvested prey outside the reserve declines to extinction in finite time. 
This paper concludes that the maximum constant harvest level for stable species populations can be 
significantly increased by introducing harvesting for the non harvested prey. 
 
Key words: Prey, predator, constant quota harvest, lattice gas model. 

 
 
INTRODUCTION 
 
Prey-predator dynamics have been extensively 
investigated over the years using various approaches. 
The lattice gas model is one of the stochastic approaches 
that take into account localization of species individuals 
and their interactions. This is an individual based model, 
in which stochastic rules representing processes like 
death, giving birth and motion, are formulated at the level 
of the individual organism. Models of ecosystems using 
this approach are specially suited for numerical 
computations. 

The lattice gas model was used by Satulovsky and 
Tome (1993) to investigate prey-predator dynamics. Their 
model investigates a system containing one prey and one 
predator   with   no    harvesting.    It   exhibits   oscillatory  
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behaviour of population densities of the prey and 
predator populations in both local and global levels. 

Qu et al. (2008) investigates the statistical stabilities of 
different harvesting strategies using a stochastic cellular 
automata based prey-predator model. The study uses a 
habitat with one prey and one predator species. It 
concludes that for a constant quota harvest, the system is 
unstable. Chen et al. (2006) investigates, among other 
things, the effect of constant harvesting on a prey-
predator model using the lattice gas model. The study 
imposes limits of population densities below which 
specified harvest rates should not be performed. It claims 
that constant effort harvesting leads to statistical more 
stable behaviours than constant quota harvesting. The 
study also confirms that space plays a significant role in 
stability properties of the predation and harvesting 
system, which indicates the importance of using spatially 
explicit models in conservation ecology. 
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The aforementioned studies assume one prey species 
and one predator species in the models. This paper 
introduces a second competing prey which is not 
harvested. The aim is to investigate the effect of the 
existence of non-harvested prey on the prey-predator 
dynamics. This scenario better reflects the situation in 
real life, where not all prey are harvested. Only preys that 
have economic interest are usually harvested. 

The model used in this paper is based on the one 
discussed by Rodrigues and Tome (2007) who used a 
lattice gas model to study the effect of mobility of the prey 
and predator. A second competing and non harvested 
prey is introduced in the system. We also introduce a 
prey reserve. Harvesting is done at a constant quota rate. 
Species interactions are localized and probabilistic. 
Analysis is done by the mean field approximation method 
and by simulation. 
 
 
FORMULATION OF MATHEMATICAL MODEL 
 
Model description 
 
A lattice gas model is identified by several components: 
the lattice is a large finite set of discrete points called 
sites. The sites represent both species individuals and 
their location. Each site has a state, represented by a 
number, from a finite set of states. There also is a 
neighbourhood of a site, which is a rule that identifies the 
location of sites that influence that particular site. Finally, 
there are transition rules. These are functions of states of 
sites in a neighbourhood of a particular site that 
determine how the state of the site evolves. 

In this paper, the lattice consists of a vector X of N 
elements called sites. These sites are arranged in a two 
dimensional grid. Each site has a value called state from 
the set I={0, 1, 2, 3}. The vector X evolves in discrete 
time steps, such that the value Xt represents the value of 
X=(X1,….,XN) at time t. The time evolution of vector X is 
governed by a set of rules which are both Markovian and 
local.  

The habitat is partitioned into two patches, patch 1 and 
patch 2, separated by a porous boundary, which allows 
unimpeded migrations of individuals between them. 
There are three types of species: prey 1, prey 2 and the 
predator. In patch 1 prey harvesting is prohibited. In 
patch 2, harvesting is allowed, but only on prey 1. Prey 2 
is never harvested. The state of a site is, respectively 0, 
1, 2 and 3 depending on whether a site is empty, 
occupied by prey 1, occupied by prey 2 or occupied by 
predator. An “empty'” site should be regarded as 
containing a resource that is the diet of the prey species. 

This paper uses the Moore neighbourhood with unit 
radius (Tyler, 2010). The neighbourhood of a particular 
site is hence defined as the eight squares at distance of 
one unit from the site. The next state of the central site is 
a function of the states of the sites in  its  neighbourhood.  

 
 
 
 
Initially, the species are assumed to be randomly 
distributed in the habitat. The time evolution of X is 
determined by a set of rules that represent birth, death, 
predation and harvesting of species.  
 
 
Model parameters and assumptions 
 
In this paper, N denotes the size of the lattice. The 
intrinsic growth rates of prey 1 and prey 2 are denoted by 
r and s respectively. The predator death rate is denoted 
by k. The per capita predation rates on prey 1 and prey 2, 
respectively are β13 and β23. The constant harvesting rate 
is represented by v. The predator mass conversion rates 
for prey 1 and prey 2 are ϕ13 and ϕ23, respectively. The 
proportion of habitat under reserve is denoted by α and 
mi denotes the prey i migration rate. All parameters are 
non negative real numbers. 

In the formulation of the model, we make several 
assumptions. We assume that the habitat is ecologically 
homogeneous. The two patches are connected by a 
porous boundary. We also assume that there is both 
intraspecific and interspecific competition in the prey 
populations. Both prey consume the same type of 
resources in the habitat and at the same rate per 
individual. The predator has no prey preference. Species 
interactions are local. Prey birth takes place only when 
the local carrying capacity is not full. In the absence of 
predation, growth rates in the prey populations are 
logistic. We ignore age structure and time lag in order to 
simplify the model. 
 
 
The master equation 
 
We now construct the master equation that will describe 
the probabilities involved in formulation of the model. 
There are two kinds of transitions. The first one is due to 
the reaction, where interactions between individual 
species result in changes in total species numbers. 
These interactions include prey birth, predation, 
spontaneous death of predators and harvesting. The 
second type is due to migration, where an individual of 
the prey population migrates to an adjacent empty site. At 
each time step, a transition will be a reaction with a 
specified probability; otherwise, it will be a migration. Let 
the probability for a stochastically evolving system to be 
in state θ at time t be P(θ, t). When the transition rates 
Wθ→Φ (t) from state θ to state Φ are known, a master 
equation in effect balances the transitions into and out of 
each state so that: 
 ����	; ���� = 
 [�→�������; �� − ��→������; ��]����  

 
where Wθ→Φ (t) is the conditional transitional rate from 
state Φ to state θ defined by the expression: 



 
 
 
 �→� = �	, ������:→���� + �1 − ���� !�:→���� 
 
with c being the probability of reaction, �→� =�	, ������:→���� + �1 − ���� !�:→���� denoting the condi- 
tional probability associated with the migration process 
and �→� = �	, ������:→���� + �1 − ���� !�:→���� 
denoting the conditional probability associated with the 
reaction process (Rodrigues and Tome, 2007).  
 
 
The reaction process 
 
For the reaction process, the evolution of vector X is 
done as follows. At each time step a site i is selected at 
random from the lattice and updated according to the 
following set of rules: 
 
(1) If the state of site i is 0, it implies that it is empty, and 
there is a possibility of a prey individual who occupies an 
adjacent site to give birth and deposit the offspring on the 
empty site, denotes the transitional probability that a site 
will be in state 1 (representing occupation by an 
individual of prey a) Given that it was in state 0 (empty) in 
the previous time step is denoted by w#$%&'�1|0� =rδ�X,, 0� -. ∑ δ0X1, 121 . This transitional probability per site 
is given by: 
  w#$%&'�1|0� = rδ�X,, 0� 1Z 
 δ0X1, 121 , 
 
for prey 1 birth, where the summation is over the 
neighbourhood of site i, r is the intrinsic birth rate of prey 
1, Z is the neighbourhood size, which in our paper equals 
8. The function δ denotes here the Kronecker delta.  

The corresponding expression relating to prey 2 births 
is: 
 �������2|0� = 56�7 , 0� 18 
 6079 , 229 . 
 
(b) Predation and predator birth: the process of predation 
can result either in the emptying of a site containing a 
prey, or by replacing the prey on the site with a predator. 
If the state of site ; is 1, implying it is currently occupied 
by an individual of prey 1. In the next time step, it will be 
emptied due to predation with transitional probability per 
site of: 
 	�������0|1� = �<-= − >-=�6�7 , 1� 18 
 6079 , 329 ,	 
 
where �������0|1� represents the transitional probability 
that a site that was previously in state 1, is now in state 0. 
The site ; will become occupied by  predator  at  the  next  
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time step with transitional probability per site of: 
 �������3|1� = >-=6�7 , 1� 18 	
6079, 329 , 
 
where w#$%&'�3|1� represents the transitional probability 
that a site that was previously in state 1 is now in state 3. 
Similar transitional probabilities per site will apply if state 
of site i is 2, as follows:  
 ������ 	�0|2� = �	<A= − >A=�6�7 , 2� 18 
6079 , 32,9 	
�������3|2� = 	>A=6�7 , 2� 18 	
6�7B, 3�9 . 
 
(c) Death of predator: when the state of a site ; is 3, this 
reactive process involves spontaneous death of predator 
with probability: 
  �������0|3� = C6079 , 32, 
 
where C is predator's death rate. 
  
(d) Harvesting of prey 1 in patch 1: if site(;) has state 1 
and resides in the harvestable patch 1, it will have state 0 
due to harvesting in the next time step with probability per 
patch 1 site given by: 
 �������ℎEFGH5���1|0� = 6�7 , 1�6�7 , �E��ℎ	1� GI- 

 
where I- is the number of sites in patch 1 with state 1 
and G is the constant quota harvest rate. 
 
 
The migration process 
 
Now, we consider the prey migration process. The 
process involves two adjacent sites. In this paper, it is 
represented by a random movement, where a prey 
individual moves from the site it occupies to an adjacent 
empty site.  
 
(1) Migration of prey out to an empty site: if the selected 
site i has state 1, its state is exchanged with that of a 
neighbouring site of state 0. The transitional probability �J KK�01|10� represents an exchange between two cells, 
the first one being occupied by prey 1, and the second 
one being empty. After the time step, the first cell will be 
empty, and the second will be occupied. The transitional 
probability related to this process is given by: 
 �J KK�01|10� = 	L-6�7 , 1� 18 
 6079 , 029  

 
The summation being over the neighbourhood of site ;, 
and L- being the prey 1 migration rate. Similarly, 
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 �J KK�02|20� = 	LA6�7 , 2� 18 
6079 , 029  

 
(2) Migration of prey into an empty site: if the selected 
site ; is empty (with state 0), its state is exchanged with 
that of a neighbouring site of either state 1 or state 2. The 
transitional probability �J KK�10|01� represents an 
exchange between two cells, the first one being empty, 
and the second one being occupied by prey 1. After the 
time step, the first cell will be occupied, and the second 
one will be empty. The transitional probabilities related to 
this process are given by: 
 �J KK�10|01� = 	L-6�7 , 0� 18 
 6079 , 129  

 
Similarly,  
 �J KK�20|02� = 	LA6�7 , 0� 18 
6079 , 229  

 
 
The mean field analysis 
 
The evolution of this model depends on the initial 
distribution of species on the lattice, the size of the lattice 
and the values of parameters and rates used. The 
evolution being probabilistic, we can investigate the 
behavior of the model by carrying out a large number of 
time series simulations.  

However, when the number of species individuals and 
the lattice size is large, one can use simplifying 
assumptions in an approach called the mean field 
approximation method. In this method, we assume that 
all the individual organisms in the habitat are independent 
and any organism can interact with another irrespective 
of position. We also assume that we cannot distinguish 
objects that are in the same states. Using these 
assumptions, the rates of change of state numbers will be 
functions of the total number of sites with various states 
in the lattice, and for a finite lattice, we will subsequently 
be able to operate with what is called the occupation 
vector M which is the vector of proportions of objects in 
each state.  

The justification for using the mean field approximation 
method is based on the so-called mean field 
convergence result. This theorem states that as N tends 
to infinity, the mean field method provides the 
approximate limiting distribution of the objects in the 
lattice in form of proportions (Bobbio et al., 2006).  

The requirements are: for all local states ;, B and the 
occupation vector N, and as O → ∞, � ,9P �M� converges 
uniformly in M to some � ,9�M� which is a continuous 
function of M. If this requirement is satisfied, the 
occupancy   vector    converges    almost    surely    to    a  

 
 
 
 
deterministic limit. This means that for each local state ;	the fraction QMR P��� of objects with state ; at time � is 
known with probability one, as	� → ∞. For large N we can 
now approximate the stochastic process for the 
occupancy vector by a deterministic process (Bobbio et 
al., 2006). 

The mean field approximation method is an 
approximate method. It gives us an insight on the 
behaviour of a dynamic system with spatial interactions at 
a relatively low cost. It requires the creation of an 
occupancy vector M, a vector showing the proportions of 
the number of states in the entire lattice. 

Let S� =	 �T, I, U, �� be the number of sites with states 
0, 1, 2 and 3 in the lattice of size N. We note that the 
number of empty sites T will be given by T	 = 	O	 −	�I + U + ��. The variable I is partitioned into I- and IA, 
where I	 = 	I- +	IA. I- represents the number of prey 1 
in patch 1. IA represents the number of prey 1 in patch 2, 
where no harvesting is done. Similar partitions are done 
for T, U and �. 

The occupancy vector is given by: 
 N = 1O S� = 1O �T, I, U, �� = �H, V, W, X� 
 where	�H, V, W, X� = [\P , ]P , P̂ , _P`. 

The corresponding occupancies representing states of 
sites in patch 1, namelyT-, I-, U-, �-, are �H-, V-, W- , X-�. 
 
 
Formation of equation system 
 
We now form ordinary differential equations of the 
temporal evolution rates of the occupancy matrix. The 
interactions are between sites over the entire lattice, and 
not just the neighbouring sites. 

As an illustration, let us consider the formation of the 
expression for 

JaJb	, where c is the time variable. The 

temporal rate of change of V is due to prey growth, 
predation and harvest. The rate of change due to prey 
growth in the lattice is determined using the prey 1 
occupancy V, empty sites occupancy H and the intrinsic 
growth rate F. By mass action, we obtain the first term in 
the rate of change, namely FVH. The rate of change of V 
due to predation is a result of mass action of occupancies 
representing prey 1 and the predator multiplied by the 
predation rate; hence, we add the second term -	<-=VX . 
The negative sign shows that this predation effect tends 
to reduce the population of x. The third term ℎ represents 
constant harvesting rate. 

This paper investigates both reaction and migration 
effects on occupancy rates. The probability of reaction to 
take place at a time step is given by �. Migration within 
the habitat has no effect on total prey populations. 
Hence, the temporal evolution rate of the proportion of 
prey 1 in the habitat is given by the differential equation: 



 
 
 
 JaJb = �[FVH − <-=VX − ℎ	]																																																														(1) 

 
Replacing H by 1 − V − W − X, Equation 1 becomes: 
 dVdc = �[FV�1 − V − W − X� − <-=VX − ℎ	]	
 
Using a similar argument, we form other equations in the 
differential system as follows:  
 JeJb = �[FW�1 − V − W − X� −	<A=WX                                   (2) 

 JfJb = �[>-=VX + >A=WX − C	X]                                           (3) 

 JagJb = �[FVH- − <-=V-X] − ℎ + N-�1 − ��h[	H-�V	 − V-� −V-�H − H-�h]                                                                      (4) 
 JegJb = �[5WH- − <A=W-X] + NA	�1 − ��h[	H-�W − W-� −W-�H − H-�h]                                                                      (5) 
 JfgJb = �[>-=VX- + >A=WX- − CX-]                                       (6) 

 
Equation 5 includes the term Mi	�i − j�k	li0m	– mi2 −mi�l − li�o	which represents the migration effect on prey 
occupancy rates. Migration affects prey population in 
patch 1 only if it is between sites from different patches. 
So, we regard mass action between empty sites in one 
patch and prey-occupied sites in the other patch, 
multiplied by migration rate Mi. A similar argument is 
used for Equation 6. 

We carry out rescaling to reduce the number of 
parameters in the system of Equations 1 to 6 as follows: 
 � = �c, L- = N- 1 − �� , LA = NA 1 − ��  

 
The result is the following system: 
 

            (7) 
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We note that H, V, W, X, H-, V-	Epd	X- represent the 
proportion of lattice occupied by the relevant species. 
This means:  
 V, W, X, H	 ≥ 	0	, V	 + 	W	 + 	X	 + H	 = 	1, V- ≤ 	V, W- ≤ 	W, X-≤ 	X, H- ≤ 	H, V- +	W- +	X- + H- = 	s ≤ 1 
 
The sizes of the occupancies in patch 2 can be found by 
using the differences, that is, 
  V- + VA = 	V ⇒ dVAd� = dVd� − dV-d� 	 
 
and similarly for variables W and X. 
 
 
MODEL ANALYSIS 
 
The system of Equations 7 is analyzed for equilibrium 
points. The following equilibrium points are identified.  
 
 
Case 1: Prey 2 vanishes at equilibrium (u∗ = w� 
 
By setting the derivatives equal to zero, we solve the 
equation system (Equation 7) and get: 
 V∗ = x		y	gz , X∗ = -�{|gz h[	F [1 − xygz` − }	ygzx	 h` , V-∗ =a∗�~�	fg∗���{	�g��}�g�-�f∗�{�a∗{	|gz	f∗, (8) 

 
For positive V-∗, X-∗ , the harvest quota rate must obey the 
condition: 
 ℎ ≤ 	F xygz 	[1 − xygz` , ℎ < x		y	gz �s	 − 	X-∗��F + L-�               (9) 

 
To determine the stability of the equilibrium points, we 
solve for eigenvalues of corresponding Jacobian matrix: 

 

 
 
One of the eigenvalues was computed as: 
 �= = −FV∗ − <-=X∗ − �1 − X∗� 
 
which is always negative. We get another 
eigenvalue	�� = 0. The zero eigenvalue implies the 
equilibrium is not a point, but a curve in space which is a 
function of X-∗. Removing the corresponding row and 
column for this eigenvalue, we remain with the submatrix: 
 �A = �F�1 − 2V∗ − X∗� − <-=X∗ −V∗�F + <-=�>-=X∗ 0 � 
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This sub-matrix has a positive determinant, �H�	 =	>-=V∗X∗�F +	<-=� and the trace given by �FE�H =F�1 − 2V∗ − X∗� −	<-=X∗. According to Routh-Hurwitz 
criteria, for both eigenvalues to have negative real parts 
in a 2 × 	2 matrix, the trace must be negative implying:  
 F�1 − 2V∗ − X∗� −	<-=X∗ < 0 
 
Substituting the value of X∗ from Equation 8, the following 
is obtained:  
 ℎ < F h[ x	ygz h`A

                                                                  (10) 

 
The results of this analysis can be summed up in the 
following lemma. 
 
 
Lemma 1 
 
(1) The feasible harvest rate h for a stable positive long 
term prey population outside reserve obeys the following 
conditions:   
  h ≤ 	 κ

φ-= 	�α − z-∗	�0r + 	µ-	2,	
h ≤ r κ	

φ-= 	 h�1 − κ	
φ-= h� ,	

h < F � κ

φ-=�
A
 

 
(2) The prey occupancy in entire habitat at equilibrium is 
given by: 
 x∗ = κ	

φ-=. 
 
(3) The prey occupancy at equilibrium in harvestable 
patch is given by: 	x-∗ = x∗�α	–	z-∗�0r + µ-2 − h

µ-�1 − z∗	� + rx∗ + β-=z∗ 
where	z∗ = 1r + β-= 	�r h�1 − κ	

φ-=�h − 	φ-=	h
κ

� .	
 
Figure 1 shows the results of simulating the system in 
MATLAB using parameter values as shown in Table 1. 
Figure 1 shows that the total prey population stabilizes at 
the same value, 
 V∗ = C>-= = 0.625 

 
for   varying   constant  harvest  rates  below  a  threshold  

 
 
 
 
given by Equations 11, namely, 
  ℎ� = F C>-= 	�1 − C>-=	� = 0.094		
 
This value is defined as the prey threshold harvest rate. It 
is noted that below this threshold harvest rate, the prey 
population in harvestable patch stabilizes at different 
values for varying harvest levels. When the harvest rate 
exceeds the threshold, the prey population in harvestable 
patch decreases until it eventually vanishes. The 
equilibrium values of V-∗ and X-∗ decrease with increasing 
harvesting levels provided the levels are below the 
harvesting level for stability. 
 
 
Case 2: Predator vanishes at equilibrium ��∗ = 	w	� 
 
Solving the equation system (Equation 7) with the 
derivatives set at 0, and X = 0 we get V∗ + W∗ = 1, ℎ = 0. 
In this case prey 1 and prey 2 together fill the entire 
habitat and there is no equilibrium point for positive 
harvest rates.  
 
 
Case 3: The coexistence scenario: Q	m ≠ w, u ≠ w, � ≠wR. 
 
We      now      consider      the     system       of       Equa- 
tions 9 after substituting the values  H∗ = 1 − V∗ − W∗ − X∗, and H-∗ = s − V-∗ − W-∗ − X-∗. The 
equations thus obtained are: 
 FV∗�1 − V∗ − W∗ − X∗� − <-=	V∗X∗ − ℎ = 0                      (11) 
 5W∗�1 − V∗ − W∗ − X∗� − <A=	W∗X∗ = 0                            (12) 
 >-=V∗X∗ 	+ >A=W∗X∗ − C	X∗ = 0                                      (13) 
 V∗�s − V-∗ − W-∗ − X-∗	� − <-=	V-∗	X∗ − ℎ + L-	[V∗0s	– W-∗ −X-∗	2 − V-∗	�	1 − W∗ − X∗�] = 0                                          (14) 
 5W∗�s − V-∗ − W-∗ − X-∗	� − <A=	W-∗	X∗ + LA	kW∗0s	– V-∗ − X-∗	2 −W-∗	�1 − V∗ − X∗�o = 0 (15) 
 >-=	V∗X-∗ + >A=	W∗X-∗ − C	X-∗ = 0                                      (16) 
 
From Equation 13 one gets: 
 W∗ 	 = 	 �C − >-=V∗	�/>A=                                                 (17) 
 
This  condition  put  in  Equation  16   makes   X-∗   a   free  
variable; hence, can be regarded as a parameter. This 
leaves us with a system of five equations (Equation 11 to 
16). The first three equations are devoid of V-∗, W-∗ andX-∗; 
hence, can be addressed in isolation.  

From Equations 17 and 18, we get: 
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Figure 1. Effect of harvesting on prey 1 population, in the case of a one prey, one predator system using 
parameter values in Table 1. 

 
 
 

Table 1. Parameter values used for the simulation in Figure 2. 
 

Parameter Value Source α 0.5 Variable (0 < α < 1� r 0.4 Behrensmeyer and Hill (2008) s 0.33 Behrensmeyer and Hill (2008) μ 0.1 Base value κ 1/16 www.jungledomain.org h 0.01 - 011 Base value β-=, βA= 0.8 Fey and Green (2006) 
φ-= 0.100 Fey and Green (2006) 

φA= 0.125 Fey and Green (2006) 
 
 
 X∗ 	= �}a∗�|�z	��|gz	��                                                         (18) 
 

Note the condition for positive X∗ is: 
 |�z� > |gz�                                                                         (19) 

The ratios 
|gz� 	Epd	 |�z�  are called survival rates of prey 1 

and prey 2, respectively. Hence, a condition for a positive X∗ at equilibrium is for the survival rate of prey 2 to 
exceed that of prey 1.  

Solving for x^* from Equations 11,  12  and  13,  we  get 

Time 
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Table 2. Conditions for real positive values of x∗ 
 

Condition for A Condition for B Condition for h Positive roots 

If A > 0 Then B > 0 h < BA�βA=r − β-=s�4A	φA=�s + βA=� x∗ =	[B ±  BA − 4AC` /2A 

If A = 0 Then B > 0 - C/B 

If A < 0 Then B > 0 - 
x∗ =	[B −  BA − 4AC` /2A 

 
 
 
the quadratic equation with form: 
 ¢�V∗�A − £�V∗� + ¤ = 0	,  
 
where: 
 ¢ = >A= 	− >-=, £ = >A= − C, ¤ = >A=ℎ�5 + <A=	�<A=	F − <-=	5 		
 
with solution: 
 V∗ = ¥	± ¥���¦§A¦                                                              (20) 

 
Clearly Equation 19 implies ¤ > 0. 

Table 2 gives a summary of conditions for Equation 20 
to have real positive solutions for V∗. 

The corresponding equilibrium points for W∗ and X∗ can 
be found by Equations 17 and 18, respectively. To 
determine the corresponding equilibrium values for V-∗, W-∗ 
as a function of X-∗, we solve the linear simultaneous 
Equations 14 and 15 rearranged as follows: 
 V-∗	�1 + <-=X∗ + L-[1 − W∗ − X∗]� + W-∗�1 + L-V∗�= �1 + L-V∗��s − X-∗� − ℎ		V-∗	�1 + LAW∗� + W-∗	�1 + <A=	X∗ + LA[1 − V∗ − X∗]�= �1 + LAW∗��s − X-∗�		
 
Using Cramer`s rule this solves to: 
 V-∗ = [��1 + L-V∗��s − X-∗� − ℎ��1 + <A=	X∗ + LA[1 − V∗ −X∗]	�	                                                                            (21) 
 V-∗ = [0�1 + L-V∗��s − X-∗� − ℎ2�1 + <A=	X∗ + LA[1 − V∗ −X∗]� − 	�1 + L-V∗��1 + LAW∗��s	 − X-∗�]/�H�                  (22) 
 
where the determinant Det is given by Equation 23. 
 �H� = �1 − V∗ − W∗ − X∗�0L- + LA + L-LA�1 −	X∗�2+ �X∗�A<-=<A=		+X∗k<-=01 + L-�1 − X∗ − W∗�201 + LA�1 − V∗ − X∗�2o   (23)                       
 
This value, being the sum of positive only terms for 
feasible values of the  variables,  is  always  positive.  For 

the value of V-∗ in Equation 21 to be positive, its 
numerator should also be positive, that is:  
 0�1 + L-V∗��s − X-∗� − ℎ2�1 + <A=X∗ + LA[1 − V∗ − X∗]�− �1 + L-V∗��1 + LAW∗��s − X-∗� > 0		
 
Making h the subject of the aforementioned equation, the 
following expression is obtained: 
 ℎ < �1 + L-V∗��s − X-∗��	<A=X∗ + LA[1 − V∗ − W∗ − X∗]��1 + <A=X∗ + LA[1 − V∗ − X∗]� 	
 
This is an involving expression as h is an element in the 
expression for V∗, W∗ and X∗. 

Similarly, for a positive W-∗ in Equation 22, its numerator 
needs to be positive too, that is:  
 

 �1 + <-=	X∗ + L-[1 − W∗ − X∗]��1 + LA	W∗��s − X-∗� −�1 + LAW∗�0�1 + L-V∗��s − X-∗� − ℎ2 > 0  
  
On making h the subject, the expression becomes: 
 ℎ > −�s − X-∗��	<-=X∗ + L-[1 − V∗ − W∗ − X∗]� 
 
As the right hand side of the aforementioned expression 
is always negative, the expression is true for feasible 
positive harvest rates. 
 
 
Local stability of the coexistence equilibrium point 
 
Now, we investigate the local stability of the equilibrium 
points. We do this by determining the eigenvalues of the 
Jacobian matrix of the equation system (Equation 8). A 
stationary point is stable if all eigenvalues are negative. 
The Jacobian of the system evaluated at equilibrium 
becomes: 
 

� =
¨
©©©
ª«-.a	 «-.e «-.f 0 0 0«A.a «A.e «A.f 0 0 0«=.a «=.e 0 0 0 0«�.a «�.e «�.f «�.ag «�.eg «�.fg«¬.a «¬.e «¬.f «¬.ag «¬.eg «¬.fg«.a «.e «.f «.ag «.eg 0 ®

¯̄̄
°

 



 
 
 
 

The eigenvalues of the matrix J are the combination of 
the eigenvalues of:  
 

�A = ±«-.a «-.e «-.f«A.a «A.e «A.f«=.a «=.e 0 ² 	and	J= = ±«�.ag «�.eg «�.fg«¬.ag «¬.eg «¬.fg«.ag «.eg 0 ²	
 
calculated at the equilibrium point. 

Expanding �A and using Equations 11 and 12, we get: 
 

�A = · ℎV∗ − FV∗ −FV∗ −V∗�F + <-=�−5W∗ −5W∗ −W∗�5 + <A=�>-=X∗ >A=X∗	 0 ¸	
 
The characteristic equation of �A matrix is calculated as: 
 �= + ��A + T� + « = 0	
 
where 
 � = FV∗ + 5W∗ − ℎV∗, T = >-=V∗X∗�F + <-=� + >A=W∗X∗�5 + <A=� − ℎV∗ 5W∗,	
« = V∗W∗X∗�F<A= − 5<-=��>A= 	− >-=� − >A= ℎV∗ W∗X∗�5 + <A=�	
 
Note that « < 0 if: 
 ¢ = �>A= − >-=� ≤ 0 (24) 
 
Substituting 

}a∗ = F�1 − V∗ − W∗ − X∗� − <-=	X as denoted in 
Equation 11, we obtain: 
 
 � = FV∗ + 5W∗ + <-=X∗ − F�1 − V∗ − W∗ − X∗�,  T = >-=	V∗X∗�F + <-=� + >A=	W∗X∗�5 + <A=� + 5<-=W∗X∗− F5W∗�1 − V∗ − W∗ − X∗�, « = V∗W∗X∗�F<A= − 5<-=��>A= − >-=� − >A=W∗X∗�5 + <A=��<-=X∗− F�1 − V∗ − W∗ − X∗��	
 
By      Routh-Hurwitz        criteria        applied        in       a 3 × 3 matrix, stability is assured if 
 � > 0, T > 0, « > 0, and	�T − « > 0. We note that in our 
characteristic equation � > 0, T > 0, « > 0 for sufficiently 
small values of �1 − V∗ − W∗ − X∗�. This implies �, T, « 
tend to positivity as the habitat occupancy approaches its 
carrying capacity.  

We also note that ¢ = �	>A= − >-=� ≤ 	0 makes «	 < 0 
as per Equation 24, and hence, is a condition for 
instability of equilibrium point. Considering �T − «, one 
gets: 

 �T − « =	¹FV∗ + 5W∗ − ℎV∗º ¹>-=V∗X∗�F + <-=�+ >A=W∗X∗�5 + <A=� − ℎV∗ 5W∗º 
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 		− »V∗W∗X∗�F<A= − 5<-=��>A= − >-=�

− >A= ℎV∗ 	W∗X∗�5 + <A=��		
	= >-=FA�V∗�AX∗ + >A=5A�W∗�AX∗+ X∗�>-=FV∗ + >A=5W∗��<-=V∗ + <A=W∗�		+�>A= + >-=�F5V∗W∗X∗ + ℎA�V∗�A 5W∗		+	<-=X∗�F5V∗W∗ + >-=FV∗X∗ + 5A�W∗�A + <-=>-=V∗�		−F�1 − V∗ − W∗ − X∗��F5V∗W∗ + >-=	FV∗X∗ + 5A�W∗�A+ <-=>-=	V∗�		
  
This implies that the value of �T	 − « > 0 for sufficiently 
small �1 − V∗ − W∗ − X∗�. 

Let us now consider �=. Its characteristic equation can 
be written in the form of: 
 �= + ¼�A + ½�	 + S = 0 
 
where: 
 ¼ = 	FV∗ + 	5W∗ + X∗�<-= + <A=� +	L-�	1 − W∗ − X∗�+ LA�1 − V∗ − X∗�	½ = >-=�F + L-�V∗X-∗ + >A=�5 + LA�W∗X-∗+ �F + L-��5 + LA�V∗W∗			+[FV∗ + <-=X∗ + L-�1 − W∗ − X∗�][5W∗ + <A=X∗+ LA�1 − V∗ − X∗�]	
 S =	>-=�F + L-=�V∗X-∗	[<A=X∗ + LA=�1 − V∗ − W∗ − X∗�]			+>A=�5 + LA=�W∗X-∗[<-=	X∗ + L-=�	1 − V∗ − W∗ − X∗�	]  
 
According to the Routh-Hurwitz criterion applied on a 3 × 3 matrix, for all the eigenvalues of �= to have negative 
real parts, the condition ¼ > 0, ½ > 0, S > 0 must be 
obeyed. In the aforementioned expressions for ¼, ½ and S, this condition is obeyed. A further condition for such 
eigenvalues is ¼½ − S > 0. 
 ¼½ − S = [FV∗ + <-=X∗ + L-�	1 − W∗ − X∗�]A[5W∗ + <A=X∗+ LA�1 − V∗ − X∗�]		+[FV∗ + <-=X∗ + L-�	1 − W∗ − X∗�][5W∗ + <A=X∗ 	+ LA�1 − V∗ − X∗�]A		+[FV∗ + <-=X∗ + L-�	1 − W∗ − X∗� + 5∗W∗ + <A=X+ LA�1 − V∗ − X∗�]		�F + L-��5 + LA�V∗W∗		+>-=�F + L-�V∗X-∗	[FV∗ + <-=	X∗ + L-�	1 − W∗ − X∗� − W∗�5+ LA�]		+>A=�5 + LA�W∗X-∗	[5W∗ + <A=X∗ + LA�1 − V∗ − X∗�− V∗�F + L-�]	
 
If this condition of ¼½ − S > 0	is also obeyed, then we 
have all eigenvalues of �= negative. Most of the terms of 
the expansion for ¼½ − S are positive, so, unless there 
are very significant differences between growth rates s 
and r, or when migration rates L- and LA are high, we 
have ¼½ − S > 0. 



144          Afr. J. Math. Comput. Sci. Res. 
 
 
 

 
 
Figure 2. The effect of harvesting in a two prey, one predator dynamic system 
assuming parameter values depicted in Table 1. 

 
 
 

We summarize our results in the following lemma. 
 
 
Lemma 2  
 
For a stable positive real valued equilibrium, the 
conditions are: 
 
(1)  ℎ < �-{�ga∗	��~�fg∗��|�z	f∗{��	[-�a∗�e∗�f∗]�-{	|�zf∗{	��[-�a∗�f∗] 	 
 
This expression ensures positivity of x-∗ . It is a involving 
expression, because h occurs also in the expressions for x∗, y∗ and z∗. However, for insignificant migration rates it 
simplifies to, 
 ℎ < �s	 − X-∗�<A=X∗1 + <A=X∗  

 
(2) For a positive z∗, the equation states that: 
 <A=5 > <-=F 	 	
(3) For a real x∗, 	0 < ℎ ≤ �>A= − C	�A�<A=F − <-=5�4>A=�5 + <A=��>A= − >-=� 

(4) ¢ = >A= −	>-= > 0, that is, the biomass conversion 
rate of prey 2 must exceed that  
of prey 1.  
 
(5) For stability, the value of �1 − x∗ − y∗ − z∗� must be 
sufficiently small. This implies that stability is enhanced 
as the total species population approaches the carrying 
capacity of the habitat.   

Figure 2 depicts the simulation on MATLAB using 
parameter values as per Table 1. From Figure 2, one can 
see that below a threshold value which is a function of 
parameter values, prey 1 eventually attains a stable 
equilibrium both in the habitat and in the patches. Above 
the threshold, prey 1 population outside reserve 
eventually vanishes. However, this threshold value is 
considerably lower than the one in the case of only one 
harvestable prey (Case 1). 

This shows that the presence of the non harvested prey 
has reduced the constant harvest threshold for stability 
by a considerable factor. 
 
 
Lattice gas model simulation 
 
In the lattice gas model, in contrast to the mean field 
approximation method, species interactions are local: 
individuals interact only with other individuals within their 
neighbourhood. Migration at the boundary between 
patches affects prey occupancy values. The model 
operates within feasible variable values, ensuring they 
are always  positive  and  do  not   exceed   the   carrying  
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Figure 3. Time run for species populations in harvestable patch for a 
sustainable harvest rate, ℎ� = 0.004. 

 
 
 
capacity of the lattice or corresponding patch.  

The model is implemented using a MATLAB program. 
The model was executed repeatedly using differing initial 
values and harvest rates and run for several time steps. 
Parameter values used are per Table 1. 
 
 
SIMULATION RESULTS 
 
Species coexistence scenario 
 
In the scenario where all three species have positive 
values, it was possible to maintain a constant harvest 
level of at least 30 time steps under some parameter 
conditions. A similar conclusion was obtained using the 
mean field approximation method. The maximum 
sustainable harvest level for the parameter values used 
was very low, about ℎ� = 0.004. Figure 3 depicts the 
situation. 

At higher harvest levels, or outside the parameter 
conditions, the non harvested prey rapidly replaced the 
harvested prey, and the harvested prey vanished in finite 
time. This is as shown in Figure 4. 
 
 
Effect of migration rate 
 
Figure 5 shows the time series prey 1 occupancy in patch 
1 with similar initial conditions but differing migration rates 
of 0.100 and 0.500. The graph shows that a five-fold 
increase in migration rate has a small effect on the prey 1 
population size.  

Effect of migration rate 
 
Figure 5 shows the time series prey 1 occupancy in patch 
1 with similar initial conditions but differing migration rates 
of 0.100 and 0.500. The graph shows that a five-fold 
increase in migration rate has a small effect on the prey 1 
population size.  
 
 
Harvesting of both prey 
 
This paper assumed that one prey is not being harvested. 
If we consider a situation where both prey are harvested, 
that is, when we do not have a non-harvested prey, 
equilibrium is attained for a much larger maximum 
harvest rate. In this particular parameter set in the 
simulation depicted in Figure 6 with both prey harvested 
at the same rate, the maximum harvest rate is about 
0.045, about ten times that obtained on an identical 
parameter set, when only one of the prey was harvested 
and under less stringent parameter conditions. Figure 6 
shows a typical time series run for constant harvest rate 
of 0.040 and 0.045.  
 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
In this paper a lattice gas mathematical model of a two 
competing prey, one predator dynamic system with 
reserve and a constant quota harvesting rate on one of 
the prey outside the reserve has been developed. The 
model    has   been   analyzed   using   the    mean    field  
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Figure 4. Harvest rate leading to extinction of prey 1 in harvestable patch, ℎ� = 0.025.  

 
 
 

 
 
Figure 5. Effect of different migration rates on prey 1 occupancy in 
harvestable patch.  

 
 
 
approximation method and by simulation. 

It has been demonstrated that, given two competing 
prey and a predator, a constant harvest rate can lead to a 
stable prey occupancy, if a set of conditions pertaining to 
species parameters was maintained. These conditions 
include the harvested prey to have a higher survival rate 
than the non harvested prey,  and  the  predator  biomass 

conversion rate for non harvested prey to exceed that of 
the harvested one. The equilibrium also requires that the 
total prey population approach the carrying capacity of 
the habitat.  

The stable prey occupancy is attained when the 
harvest rate is below a threshold value, which happens to 
be a low harvest rate. When the harvest rate exceeds this  
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Figure 6. Constant harvest for both prey allows a higher threshold harvest value. 
Time run for harvest rates of harvest rates 0.040 and 0.045.  

 
 
 
threshold, the rate of harvesting of the prey prevents the 
harvested prey to attain positive growth rates. This 
causes the harvested prey population to fall to extinction 
in finite time, to be replaced by the non harvested prey. 

It should be noted that Qu et al. (2008) found out that 
for constant harvest rates, the system is unstable. In our 
model, however, in which we include a non harvested 
competing prey species, we attain stability albeit at low 
harvest rates.  

We have shown that there was no equilibrium for any 
positive constant harvest rate in the absence of the 
predator. When predator was absent, the harvestable 
prey eventually was driven to extinction, being replaced 
by the non harvested prey. This showed that predation 
had a stabilizing effect on the system.  

The paper shows that the threshold harvest value 
obtained in the case of a single prey and one predator is 
considerably higher to that obtained when there are two 
competing prey.  

There is a need for regular wild animal population 
census that will help in specifying species growth and 
interaction parameters, and will assist in determining 
ecologically sound harvesting quotas. Harvesting quotas, 
thus, set must be strictly enforced, because harvesting 
above these quota levels might lead to extinction of some 
animal species.  
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