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Abstract
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1 Introduction

It is well known that, the ω denotes the family of all real (or complex)-valued sequences. ω is a
linear space and each linear subspace of ω (with the included addition and scalar multiplication)
is called a sequence space such as the spaces c, c0 and ℓ∞, where c, c0 and ℓ∞ denote the set of
all convergent sequences in fields R or C, the set of all null sequences and the set of all bounded
sequences, respectively. It is clear that the sets c, c0 and ℓ∞ are the subspaces of the ω. Thus, c,
c0 and ℓ∞ equipped with a vector space structure, from a sequence space. By bs and cs, we define
the spaces of all bounded and convergent series, respectively.

A coordinate space (or K−space) is a vector space of numerical sequences, where addition and
scalar multiplication are defined pointwise. That is, a sequence space X with a linear topology
is called a K-space provided each of the maps pi : X → C defined by pi(x) = xi is continuous
for all i ∈ N. A K−space is called an FK−space provided X is a complete linear metric space.
An FK−space whose topology is normable is called a BK− space. If a normed sequence space X
contains a sequence (bn) with the property that for every x ∈ X there is unique sequence of scalars
(αn) such that

lim
n→∞

∥x− (α0b0 + α1b1 + ...+ αnbn)∥ = 0

then (bn) is called Schauder basis for X. The series
∑

αkbk which has the sum x is then called the
expansion of x with respect to (bn), and written as x =

∑
αkbk. An FK−space X is said to have

AK property, if ϕ ⊂ X and {ek} is a basis for X, where ek is a sequence whose only non-zero term
is a 1 in kth place for each k ∈ N and ϕ = span{ek}, the set of all finitely non-zero sequences.

Let A = (ank) be an infinite matrix of complex numbers ank and x = (xk) ∈ ω, where k, n ∈ N.
Then the sequence Ax is called as the A−transform of x defined by the usual matrix product.
Hence, we transform the sequence x into the sequence Ax = {(Ax)n} where

(Ax)n =
∑
k

ankxk (1.1)

for each n ∈ N, provided the series on the right hand side of (1.1) converges for each n ∈ N. Let
X and Y be two sequence spaces. If Ax exists and is in Y for every sequence x = (xk) ∈ X, then
we say that A defines a matrix mapping from X into Y , and we denote it by writing A : X → Y
if and only if the series on the right hand side of (1.1) converges for each n ∈ N and every x ∈ X,
and we have Ax = {(Ax)n}n∈N ∈ Y for all x ∈ X. A sequence x is said to be A-summable to l if
Ax converges to l which is called the A-limit of x. Let X be a sequence space and A be an infinite
matrix. The sequence space

XA = {x = (xk) ∈ ω : Ax ∈ X} (1.2)

is called the domain of A in X which is a sequence space.

We write U for the set of all sequences u = (uk) such that uk ̸= 0 for all k ∈ N. For u ∈ U , let
1/u = (1/uk). Let u,w ∈ U . Now, we define the generalized weighted mean or factorable matrix
G(u,w) = (gnk) by

gnk =

{
unwk , (0 ≤ k ≤ n)
0 , (k > n)

for all k, n ∈ N; where un depends only on n and wk only on k.

By F , we will denote the collection of all finite subsets on N. For simplicity in notation, here and
in what follows, the summation without limits runs from 1 to ∞. Also we use the convention that
any term with negative subscript is equal to zero.
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2 New Integrated and Differentiated Spaces

In this section, we will give new spaces defined by a weighted mean.

The concepts of integrated and differentiated sequence spaces was firstly used by Goes and Goes
[1] as ∫

X = {x = (xk) ∈ ω : (kxk) ∈ X}

d(X) =
{
x = (xk) ∈ ω : (k−1xk) ∈ X

}
.

Malkowsky and Savaş [2] have defined the sequence space Z = (u, v;X), which consists of all
sequences whose G(u, v)− transforms are in X ∈ {ℓ∞, c, c0, ℓp}, where u,w ∈ U . Paranormed
sequence spaces derived by weighted mean are studied in Altay and Başar [3]. Altay and Başar
[4] constructed the new paranormed sequence spaces ℓ(u, v; p). Şimsek et al. [5] have introduced
a modular structure of the sequence spaces defined by Altay and Başar [4] and studied Kadec-
Klee and uniform Opial properties of this sequence space on Köthe sequence spaces. In Polat et
al. [6], using the generalized weighted mean, new difference sequence spaces are defined. Kirişci
[7] have defined the almost sequence spaces with generalized weighted mean and in Kirişci [8],
studied some properties of new almost sequence spaces derived by generalized weighted mean.
Structural properties of the bv space are studied by Cesaro mean, generalized weighted mean and
Riesz mean, in Kirişci [9]. Following the Goes and Goes [1], Kirişci [10] have studied the integrated
and differentiated sequence spaces and defined the Riesz type integrated and differentiated sequence
spaces, in Kirişci [11].

We define the new matrices Γ = (γnk) and Σ = (σnk) by

γnk =


kun (wk − wk+1) , (k < n)

nunwn , (n = k)
0 , (k > n)

(2.1)

σnk =


1
k
un (wk − wk+1) , (k < n)

unwn
n

, (n = k)
0 , (k > n)

(2.2)

for all k, n ∈ N.

Let u,w ∈ U . The new integrated spaces defined by∫
bv(u,w) =

{
x = (xk) ∈ ω :

n∑
k=1

unwk∆(kxk) < ∞

}

and the new differentiated spaces defined by

d(bv(u,w)) =

{
x = (xk) ∈ ω :

n∑
k=1

unwk∆(k−1xk) < ∞

}
.

Consider the notation (1.2) and the matrices (2.1), (2.2). From here, we can re-define the spaces∫
bv(u,w) and d(bv(u,w)) by

(ℓ1)Γ =

∫
bv(u,w) (2.3)

and

(ℓ1)Σ = d(bv(u,w)). (2.4)
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Let x = (xk) ∈
∫
bv(u,w). The Γ−transform of a sequence x = (xk) is defined by

yn =

n−1∑
k=1

kun(wk − wk+1)xk + nunwnxn (2.5)

where Γ is defined by (2.1). Let x = (xk) ∈ d(bv(u,w)). The Σ−transform of a sequence x = (xk)
is defined by

yn =

n−1∑
k=1

1

k
un(wk − wk+1)xk +

1

n
unwnxn (2.6)

where Σ is defined by (2.2).

Theorem 2.1. The integrated and differentiated sequence spaces derived by weighted mean are
norm isomorphic to the absolute summable sequence space.

Proof. We must show that a linear bijection between the integrated sequence space derived by
weighted mean and the absolute summable sequence space exists. Consider the transformation fΓ
defined, with the notation (2.5), from

∫
bv(u,w) to ℓ1 by x 7→ y = fΓx. The linearity of fΓ is clear.

Also, it is trivial that x = θ whenever fΓx = θ and therefore, fΓ is injective.

Let y ∈ ℓ1 and define the sequence x = (xk) by

xk =

k−1∑
j=1

1

k

1

uj

(
1

wj
− 1

wj+1

)
yj +

yk
k.ukwk

.

Then

∥x∥∫ bv(u,w) =
∑
k

∣∣∣∣∣
k−1∑
j=1

juk (wj − wj+1)xj + nunwnxn

∣∣∣∣∣ =∑
k

|yk| = ∥y∥ℓ1 < ∞.

Then, we have that x ∈
∫
bv(u,w). So, fΓ is surjective and norm preserving. Hence fΓ is a linear

bijection. It shown us that the space
∫
bv(u,w) is norm isomorphic to ℓ1.

As similar, using the notation (2.6), we can define the transformation f∑ from d(bv(u,w)) and ℓ1
by x 7→ y = f∑x. If we choose the sequence x = (xk) by

xk =

k−1∑
j=1

k
1

uj

(
1

wj
− 1

wj+1

)
yj +

k.yk
ukwk

while y ∈ ℓ1, then we obtain the space d(bv(u,w)) is norm isomorphic to ℓ1 with the norm
∥x∥d(bv(u,w)).

Since
∫
bv(u,w) = [ℓ1]Γ and d(bv(u,w)) = [ℓ1]Σ holds, ℓ1 is a BK−space with the norm ∥x∥ℓ1

and the matrices Γand Σ are triangle matrix, then Theorem 4.3.2 of Wilansky [12] gives the fact
that the integrated and differentiated sequence spaces derived by weighted mean are BK−space.
Therefore, there is no need for detailed proof of the following theorem.

Theorem 2.2. The spaces
∫
bv(u,w) and d(bv(u,w)) are BK−space with the norms ∥x∥∫ bv(u,w) =

∥x∥ℓ1(Γ) and ∥x∥d(bv(u,w)) = ∥x∥ℓ1(Σ), respectively.

Because of the isomorphisms fΓ and f∑, defined in the proof of Theorem 2.1, are onto the inverse

image of the basis {e(k)}k∈N of the space ℓ1 is the basis of the spaces
∫
bv(u,w) and d(bv(u,w)).

Therefore, we can give following theorems for Schauder basis of new sequence spaces :
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Theorem 2.3. Define a sequence s(k) = {s(k)n }n∈N of elements of the space
∫
bv(u,w) for every

fixed k ∈ N by

s(k)n =


1
n

(
1

ukwk
− 1

ukuk+1

)
, (1 < k < n)

1
nunwn

, (n = k)

0 , (k > n)

Therefore, the sequence {s(k)}k∈N is a basis for the space
∫
bv(u,w) and any x ∈

∫
bv(u,w) has a

unique representation of the form

x =
∑
k

(Γx)ks
(k) (2.7)

Proof. Let e(k) be a sequence whose only non-zero term is a 1 in kth place for each k ∈ N. We know
that

Γs(k)(q) = e(k) ∈ ℓ1 (2.8)

for all k ∈ N. Then, we have {s(k)(q)} ⊂
∫
bv(u,w).

We take x ∈
∫
bv(u,w). Then, we put,

x[m] =

m∑
k=1

(Γx)k(q)s
(k)(q), (2.9)

for every positive integer m. Then, we have

Γx[m] =

m∑
k=1

(Γx)k(q)Γs
(k)(q) =

m∑
k=1

(Γx)k(q)e
(k)

and (
Γ(x− x[m])

)
i
=

{
0 , (1 ≤ i < m)

(Γx)i , (i > m)

by applying Γ to (2.9) with (2.8), for i,m ∈ N. For ε > 0, there exists an integer m0 such that[
∞∑

i=m

|(Γx)i|

]
< ε/2

for all m ≥ m0. Hence,
∥x− x[m]∥∫ bv(u,w) =

for all m ≥ m0. Therefore, x ∈
∫
bv(u,w) is represented as in (2.7), as we desired.

Theorem 2.4. Define a sequence t(k) = {t(k)n }n∈N of elements of the space d(bv(u,w)) for every
fixed k ∈ N by

t(k)n =


n
(

1
ukwk

− 1
ukuk+1

)
, (1 < k < n)

n
unwn

, (n = k)

0 , (k > n)

Therefore, the sequence {t(k)}k∈N is a basis for the space d(bv(u,w)) and any x ∈ d(bv(u,w)) has a
unique representation of the form

x =
∑
k

(Σx)kt
(k).

Remark 2.1. It is well known that every Banach space X with a Schauder basis is separable.

From Theorem 2.3, Theorem 2.4 and Remark, we can give following corollary:

Corollary 2.5. The spaces
∫
bv(u,w) and d(bv(u,w)) are separable.
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3 Dual Spaces

If X,Y ⊂ ω and z any sequence, we can write z−1 ∗X = {x = (xk) ∈ ω : xz ∈ X} and M(X,Y ) =∩
x∈X x−1 ∗ Y . If we choose Y = cs, bs, then we obtain the β−, γ−duals of X, respectively as

Xβ = M(X, cs) = {z = (zk) ∈ ω : zx = (zkxk) ∈ cs for all x ∈ X}

Xγ = M(X, bs) = {z = (zk) ∈ ω : zx = (zkxk) ∈ bs for all x ∈ X}.
Let A = (ank) be an infinite matrix. Now we give some conditions:

sup
k,n∈N

|ank| < ∞ (3.1)

lim
n→∞

ank = αk for each k ∈ N (3.2)

sup
k∈N

∑
n

|ank| < ∞, (3.3)

sup
k,m∈N

∣∣∣∣∣
m∑

n=0

ank

∣∣∣∣∣ < ∞, (3.4)∑
n

ank convergent for each k ∈ N (3.5)∑
n

ank = 0 for each k ∈ N (3.6)

Lemma 3.1. For the characterization of the class (X : Y ) with X = {ℓ1} and Y = {ℓ∞, c, ℓ1}, we
can give the necessary and sufficient conditions from Table 1, where

Table 1

1. (3.1) 2. (3.1), (3.2) 3. (3.3) 4. (3.4) 5. (3.4), (3.5) 6. (3.4), (3.6)

To → ℓ∞ c ℓ1 bs cs c0s

From ↓
ℓ1 1. 2. 3. 4. 5. 6.

4 Matrix Transformations

We shall write for brevity that

ank =

n∑
k=1

∣∣∣∣∣∣ 1k ank

ukwk
+

(
1

ukwk
− 1

ukwk+1

) n∑
j=k+1

1

j
anj

∣∣∣∣∣∣ ,
ãnk =

n∑
k=1

∣∣∣∣∣∣k.ank

ukwk
+

(
1

ukwk
− 1

ukwk+1

) n∑
j=k+1

j.anj

∣∣∣∣∣∣ ,
bnk =

n−1∑
j=1

j.un(wj − wj+1)ajk + n.unwnank,

b̃nk =

n−1∑
j=1

1

j
.un(wj − wj+1)ajk +

1

n
.unwnank

for all k, n ∈ N.
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Theorem 4.1. Suppose that the entries of the infinite matrices A = (ank) and B = (bnk) are
connected with the relation

ank =

∞∑
j=k

j.(wk − wk+1)ujbnj or bnk = ank (4.1)

for all k, n ∈ N and Y be any given sequence space. Then A ∈ (
∫
bv(u,w) : Y ) if and only if

{ank}k∈N ∈ {
∫
bv(u,w)}β for all n ∈ N and B ∈ (ℓ1 : Y ).

Proof. Let Y be any given sequence. Suppose that (4.1) holds between the infinite matrices A =
(ank) and B = (bnk), and take into account that the spaces

∫
bv(u,w) and ℓ1 are linearly isomorphic.

Let A ∈ (
∫
bv(u,w) : Y ) and take any y = (yk) ∈ ℓ1. Then BΓ exists and {ank}k∈N ∈ {

∫
bv(u,w)}β

which yields that (4.1) is necessary and {bnk}k∈N ∈ ℓβ1 for each n ∈ N. Hence, By exists for each
y ∈ ℓ1 and thus by letting m → ∞ in the equality

m∑
k=1

ankxk =

m∑
k=1

∣∣∣∣∣∣ 1k ankyk
ukwk

+

(
1

ukwk
− 1

ukwk+1

)
yk

m∑
j=k+1

1

j
anj

∣∣∣∣∣∣ for all m,n ∈ N

we obtain that Ax = By which leads us to the consequence B ∈ (ℓ1 : Y ).

Conversely, let {ank}k∈N ∈ {
∫
bv(u,w)}β for each n ∈ N and B ∈ (ℓ1 : Y ), and take any x = (xk) ∈∫

bv(u,w). Then, Ax exists. Therefore, we obtain from the equality

m∑
k=1

bnkyk =

m∑
k=1

ankxk for all m,n ∈ N

as m → ∞ the result that By = Ax and this shows that A ∈ (
∫
bv(u,w) : Y ). This completes the

proof.

Theorem 4.2. Suppose that the entries of the infinite matrices A = (ank) and C = (cnk) are
connected with the relation cnk = bnk for all k, n ∈ N and Y be any given sequence space. Then,
A ∈ (Y :

∫
bv(u,w)) if and only if C ∈ (Y : ℓ1).

Proof. Let z = (zk) ∈ Y and consider the following equality:

m∑
k=1

cnkzk =

n∑
j=1

j.un(wj − wj+1)

(
m∑

k=1

ajkzk

)
(4.2)

for all m,n ∈ N. Equation (4.2) yields as m → ∞ the result that (Cz)n = {Γ(Az)}n. Therefore,
one can immediately observe from this that Az ∈

∫
bv(u,w) whenever z ∈ Y if and only if Cz ∈ ℓ1

whenever z ∈ Y .

Theorem 4.3. Suppose that the entries of the infinite matrices A = (ank) and D = (dnk) are
connected with the relation

ank =

∞∑
j=k

1

j
.(wk − wk+1)ujdnj or dnk = ãnk

for all k, n ∈ N and Y be any given sequence space. Then A ∈ (d(bv(u,w)) : Y ) if and only if
{ank}k∈N ∈ {d(bv(u,w))}β for all n ∈ N and D ∈ (ℓ1 : Y ).
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Theorem 4.4. Suppose that the entries of the infinite matrices A = (ank) and E = (enk) are

connected with the relation enk = b̃nk for all k, n ∈ N and Y be any given sequence space. Then,
A ∈ (Y : d(bv(u,w))) if and only if E ∈ (Y : ℓ1).

5 Examples

Example 5.1. The Euler sequence space er∞ is defined by

er∞ = {x ∈ ω : sup
n∈N

|
n∑

k=0

(
n

k

)
(1− r)n−krkxk| < ∞}([13]).

We consider the infinite matrix A = (ank) and define the matrix F = (fnk) by

fnk =

n∑
j=0

(
n

j

)
(1− r)n−jrjajk (k, n ∈ N).

If we want to get necessary and sufficient conditions for the class (
∫
bv(u,w) : er∞) in Theorem 4.1,

then, we replace the entries of the matrix A by those of the matrix F .

Example 5.2. Let Tn =
∑n

k=0 tk and A = (ank) be an infinite matrix. We define the matrix
H = (hnk) by

hnk =
1

Tn

n∑
j=0

tjajk (k, n ∈ N).

Then, the necessary and sufficient conditions in order for A belongs to the class (
∫
bv(u,w) : rt∞)

are obtained from in Theorem 4.1 by replacing the entries of the matrix A by those of the matrix
H; where rt∞ is the space of all sequences whose Rt−transforms is in the space ℓ∞ [14].

Example 5.3. In the space rt∞, if we take t = e, then, this space become to the Cesàro sequence
space of non-absolute type X∞ [15]. As a special case, Example 5.2 includes the characterization of
class (

∫
bv(u,w) : rt∞).

Similar to above examples, we can give necessary and sufficient conditions for the class (d(bv(u,w)) :
Y ) in Theorem 4.3, where Y ∈ {er∞, rt∞, X∞}.

If we take the spaces ℓ∞, c, c0, bs, cs and c0s instead of X in Theorem 4.3, or Y in Theorem 4.1
we can write the following examples. Firstly, we give some conditions and following lemmas:

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

ank

∣∣∣∣∣ < ∞, (5.1)

lim
k

ank = 0 for each n ∈ N, (5.2)

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

(ank − an,k+1)

∣∣∣∣∣ < ∞, (5.3)

sup
N,K∈F

∣∣∣∣∣∑
n∈N

∑
k∈K

(ank − an,k−1)

∣∣∣∣∣ < ∞ (5.4)

Lemma 5.4. Consider that the X ∈ {ℓ∞, c, c0, bs, cs, c0s} and Y ∈ {ℓ1}. The necessary and
sufficient conditions for A ∈ (X : Y ) can be read the following, from Table 2:

8
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Table 2

7. (5.1) 8. (5.2), (5.3) 9. (5.4) 10. (5.3)

From → ℓ∞ c c0 bs cs, c0s

To ↓
ℓ1 7. 7. 7. 8. 9. 10.

Example 5.5. We choose X ∈ {
∫
bv(u,w)} and Y ∈ {ℓ∞, c, c0}. The necessary and sufficient

conditions for A ∈ (X : Y ) can be taken from the Table 3:

1a. (3.1) holds with ank instead of ank.

2a. (3.1) and (3.2) hold with ank instead of ank.

3a. (3.1) and (3.2) hold with αk = 0 as ank instead of ank.

4a. (3.4) holds with ank instead of ank

5a. (3.4), (3.5) hold with ank instead of ank.

6a. (3.4), (3.6) hold with ank instead of ank.

Table 3

To → ℓ∞ c c0 bs cs c0s

From ↓∫
bv(u,w) 1a. 2a. 3a. 4a. 5a. 6a.

Example 5.6. We choose X ∈ {d(bv(u,w))} and Y ∈ {ℓ∞, c, c0, bs, cs, c0s}. The necessary and
sufficient conditions for A ∈ (X : Y ) can be taken from the Table 4:

1b. (3.1) holds with ãnk instead of ank.

2b. (3.1) and (3.2) hold with ãnk instead of ank.

3b. (3.1) and (3.2) hold with αk = 0 as ãnk instead of ank.

4b. (3.4) holds with ãnk instead of ank

5b. (3.4), (3.5) hold with ãnk instead of ank.

6b. (3.4), (3.6) hold with ãnk instead of ank.

Table 4

To → ℓ∞ c c0 bs cs c0s

From ↓
d(bv(u,w)) 1b. 2b. 3b. 4b. 5b. 6b.

Using the Lemma 5.4, we can give the Table 5 for X ∈ {ℓ∞, c, c0, bs, cs, c0s} and Y ∈ {
∫
bv(u,w)}

and Table 6 for X ∈ {ℓ∞, c, c0, bs, cs, c0s} and Y ∈ {d(bv(u,w))} as follows:

7a. (5.1) hold with bnk instead of ank.

8a. (5.2) and (5.3) hold with bnk instead of ank.

9a. (5.4) holds with bnk instead of ank.

10a. (5.3) holds with bnk instead of ank.

7b. (5.1) hold with b̃nk instead of ank.

9
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8b. (5.2) and (5.3) hold with b̃nk instead of ank.

9b. (5.4) holds with b̃nk instead of ank.

10b. (5.3) holds with b̃nk instead of ank.

Table 5

From → ℓ∞ c c0 bs cs, c0s

To ↓∫
bv(u,w) 7a. 7a. 7a. 8a. 9a. 10a.

Table 6

From → ℓ∞ c c0 bs cs, c0s

To ↓
d(bv(u,w)) 7b. 7b. 7b. 8b. 9b. 10b.

6 Conclusions

The difference sequence spaces are given by Kızmaz [16]. If we choose the absolute summable
sequence space and apply the difference operator to this space, we obtain the space of all sequences
of bounded variation and denote by bv. The space bvp consisting of all sequences whose differences
are in the space ℓp. The space bvp was introduced by Başar and Altay [17]. More recently, the
sequence spaces bv and bvp are studied in Başar and Altay [17], Başar et al. [18], Imaninezhad and
Miri [19], Jarrah and Malkowsky [20], Kirişci [9], Kirişci [10], Kirişci [11], Malkowsky et al. [21].

Integrated and differentiated sequence spaces are introduced by Goes and Goes [1]. Kirişci [10] have
studied some properties of these spaces and defined the Riesz type integrated and differentiated
sequence spaces [11]. In this work, we define the new integrated and differentiated sequence spaces.
We also compute the dual spaces of these spaces which are help us in the characterization of matrix
mappings. Therefore, we characterize the matrix classes. In last section, we give some examples
related to the matrix transformations in the table form.
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Kirişci; JAMCS, 29(1): 1-11, 2018; Article no.JAMCS.44143
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[7] Kirişci M. Almost convergence and generalized weighted mean. First International Conference
on Analysis and Applied Mathematics. AIP Conf. Proc. 2012; 1470: 191-194.
DOI: 10.1063/1.4747672
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