Affected Sib-Pair Analyses Identify Signaling Networks Associated With Social Behavioral Deficits in Autism

Pirooznia, Mehdi and Niranjan, Tejasvi and Chen, Yun-Ching and Tunc, Ilker and Goes, Fernando S. and Avramopoulos, Dimitrios and Potash, James B. and Huganir, Richard L. and Zandi, Peter P. and Wang, Tao (2019) Affected Sib-Pair Analyses Identify Signaling Networks Associated With Social Behavioral Deficits in Autism. Frontiers in Genetics, 10. ISSN 1664-8021

[thumbnail of pubmed-zip/versions/2/package-entries/fgene-10-01186.pdf] Text
pubmed-zip/versions/2/package-entries/fgene-10-01186.pdf - Published Version

Download (3MB)

Abstract

Autism spectrum disorders (ASDs) are characterized by deficits in three core behavioral domains: reciprocal social interactions, communication, and restricted interests and/or repetitive behaviors. Several hundreds of risk genes for autism have been identified, however, it remains a challenge to associate these genes with specific core behavioral deficits. In multiplex autism families, affected sibs often show significant differences in severity of individual core phenotypes. We hypothesize that a higher mutation burden contributes to a larger difference in the severity of specific core phenotypes between affected sibs. We tested this hypothesis on social behavioral deficits in autism. We sequenced synaptome genes (n = 1,886) in affected male sib-pairs (n = 274) in families from the Autism Genetics Research Exchange (AGRE) and identified rare (MAF ≤ 1%) and predicted functional variants. We selected affected sib-pairs with a large (≥10; n = 92 pairs) or a small (≤4; n = 108 pairs) difference in total cumulative Autism Diagnostic Interview-Revised (ADI-R) social scores (SOCT_CS). We compared burdens of unshared variants present only in sibs with severe social deficits and found a higher burden in SOCT_CS≥10 compared to SOCT_CS ≤ 4 (SOCT_CS≥10: 705.1 ± 16.2; SOCT_CS ≤ 4, 668.3 ± 9.0; p = 0.025). Unshared SOCT_CS≥10 genes only in sibs with severe social deficits are significantly enriched in the SFARI gene set. Network analyses of these genes using InWeb_IM, molecular signatures database (MSigDB), and GeNetMeta identified enrichment for phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) (Enrichment Score [eScore] p value = 3.36E−07; n = 8 genes) and Nerve growth factor (NGF) (eScore p value = 8.94E−07; n = 9 genes) networks. These studies support a key role for these signaling networks in social behavioral deficits and present a novel approach to associate risk genes and signaling networks with core behavioral domains in autism.

Item Type: Article
Subjects: Digital Open Archives > Medical Science
Depositing User: Unnamed user with email support@digiopenarchives.com
Date Deposited: 30 Jan 2023 10:27
Last Modified: 28 Aug 2024 13:10
URI: http://geographical.openuniversityarchive.com/id/eprint/196

Actions (login required)

View Item
View Item