Kovziridze, Z. (2020) The Formula of Dependence of Mechanical Characteristics of Materials on Crystalline Phase Composition in the Matrix. Advances in Materials Physics and Chemistry, 10 (08). pp. 178-188. ISSN 2162-531X
ampc_2020082015371747.pdf - Published Version
Download (1MB)
Abstract
Objective: For materials science and generally, for long-term operation of work-pieces in industry the significant role is attributed to dependence of macro-mechanical properties of consolidated body on crystalline phase composition, its dimensions, form, distribution in matrix and the form factor. While working in responsible fields of technology of ceramics and ceramic composites the above referred properties are attributed extremely great role with the view of durability and endurance at the terms of heavy mechanical loads. For description of the resistance of any concrete type work-piece, the crystalline phase plays the greatest role in mechanical strength or deformation of any material. It plays the important role in correlative explanation of materials mechanics and matrix properties. In our case, in the process of destruction of ceramic materials and composites, which will give us exhaustive response to the role of macro- and micro-mechanical properties of materials, the role of a macro- and micro-structural component, that is, of crystalline phase in the process of transition of stable state of materials into meta-stable state is extremely big. Our study aims to develop a formula of dependence of macro-mechanical properties of ceramic and ceramic composites on crystalline phase, the most powerful component of their structure, which will enable theorists and practitioners to select and develop technologies and technological processes correctly. Method: On the basis of the study of micro- and macro-mechanical properties of ceramics and ceramic composites and the morphology of crystalline phase and the analysis of the study we determined and created parameters of the formula. Results: The formula covers macro-mechanical properties, that is when the work-piece is thoroughly destructed: mechanic at bending at three and four-point load, mechanic at contraction; among morphological characteristics: composition of crystalline phase and their spreading in matrix, their sizes, form factor; correlative dependence of the above listed properties. Absolutely new definition of a factor of spreading of crystalline phase in matrix is offered. Conclusion: The created formula is of consolidated nature and it can be used in technology of any ceramic material and ceramic composites. The formula will help practitioners to plan correctly and fulfill accurately all positions of technology of production of work-pieces, to carry out the most responsible thermal treatment process of technology of manufacture of work-pieces; to determine correlation between mechanical and matrix properties of materials.
Item Type: | Article |
---|---|
Subjects: | Digital Open Archives > Chemical Science |
Depositing User: | Unnamed user with email support@digiopenarchives.com |
Date Deposited: | 28 Mar 2023 12:37 |
Last Modified: | 02 Sep 2024 12:29 |
URI: | http://geographical.openuniversityarchive.com/id/eprint/724 |